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Casopis pro p&stovani matematiky, rot. 93 (1968), Praha

A SYSTEM OF AXIOMS FOR EUCLIDEAN INTEGRATION

KAREL KARTAK, Praha
(Received June 1, 1967)

0. In what follows, /4" denotes the set of all natural numbers {1, 2, ...}; for any
me A", R™ stands for the set of all real m-tuples x = [x;, ..., x,,| equipped with the
distance d(x, y) = max {|x, — y,|; k = 1, ..., m}. All measurability notions refer to
the Lebesgue measure on 2™, Instead of 2! we write merely &; we put Z = R U
U {00, — o0}, with usual algebraic and order properties. A mapping f defined on 4
will be sometimes denoted by f | A or x — f(x), x € 4; for @ # B < A, f | B denotes
the reduction of f to B. A function f on a set 4 # 0 is a mapping of A into Z&; if
A = R", then f always denotes the function such that f| A =f, f|#™ — 4 = 0.
If f(x) = c € R for each x € A, we write also f | 4 = 2.

Let A = &2™; the symbols A4, 4°, |4|, diam (4) denote the closure of 4, the interior
of A, the outer Lebesgue measure of A and the diameter of 4, respectively. If x e Z™,
then d(x, A) = inf {d(x, y); yeA}; if ¢ >0, then O(4,¢) denotes the e-neigh-
bourhood of 4 in ™.

A set K of the form i; x ... x i,, where i, = {ay, b,), a, < b, k =1, ..., m, will
be called an m-dimensional interval; we have thus |K| = II(b, — a;). The set of all
m-dimensional intervals will be denoted by J,,; the set of all m-dimensional intervals

I < K will be denoted by J,(K). Further we put J = U J,.. We say that a sequence of
- m=1

intervals {I,}, ne A", converges to x e #" in K €},, and write I, » x|K iff I, €
eJ.(K), x€l,, ne A, and lim diam (I,) = 0. Further, we write I, - x|K iff I, -
- x|K and d(x,K —I,) >0, ne #". Let LI,,1,€J,; we write [ =1, + I, iff
I=LvlLand (I, n1)° = 0.

Let K € J,,. We say that F is a function of interval on K iff F is a mapping from the
set J,(K) into . The set of all functions of interval on K € J,, will be denoted by
U(K). We say that F € U(K) is superadditive on K iff F(I, 4 I,) 2 F(I,) + F(I,),
whenever I,,1, €J,, I, + I, < K. Writing £ or = instead of =, we get the defini-
tion of a subadditive or additive function of interval. We say that F e U(K) is con-
tinuous on K iff, given & > 0, there exists 6 > O such that I/, (K), |I| < 5=
= |F(I)] < &.
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1. In this section we give an axiomatic definition of integration (see also [3] for
the 1-dimensional case).

For each measurable 4 = 2™, #(A) denotes the set of all measurable functions f :
: A - R, and Z(A) is the set of all fe #(A4) such that the Lebesgue integral (L) [, f
converges; however, we shall also write merely [ f in this case.

(1,1) Definition. Let me A". An m-dimensional O-integration is a mapping
(#, 1) assigning to each K € J,, a set #(K) < &(K) and a finite function f — (¢) [ f,
fe #(K) so that the following is satisfied:

For each K € J,,
(1) I[Ke#(K) and (1) J‘KT = [K]
(1) fLeF(K), freF(K)=fi + fre FK),
Of Gi+=0[1+0] 5

(here, f,(t) + f2(t) of the form e.g. o0 — co may be defined in an arbitrary way)
)  feF(K), keR=kfeF(K), and (L)j Kf = k(t)-[ f
K K

(V) fllie# (1), flLe#(,), I, +1,=K=f|KeZ#(K)

and

(L>Lf= (t).[hf+ (L)Lf-

The set of all m-dimensional O-integrations will be denoted by 2.

Let (#, ¢) € §n, K €J,,. I f € #(K), then we say that f is t-integrable over K, and
the number (¢) [ f is called the w-integral of f over K.

Let (%, 1), (1, 1)) € §5; we write (F, 1) = (F4, ¢,) iff, for each K €, F(K) =
< #(K) and (1) [x = (44) [x | #(K). The relation < clearly orders the set F;
instead of &, we shall also write (§, <).

(1,2) Theorem. Let (%, 1) € (¥, <) be given. Then there exists a maximal element
(F maxs tmax) € (& <) such that (F, ¢)  (F rnaxs tosx)-

Proof. If {#,, 1} is a linearly ordered set of m-dimensional O-integrations, then
U(F o t) € (§n» <) may be defined in an obvious way. The result now follows from

Zorn’s lemma.
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(1,3) Definition. Let (%, t) € &, be given. We say that (F, ¢) is saturated iff, for
each X € J,, and each nonnegative f e #(K), f € #(K) if and only if fe #(K), and
(‘) Ixf=Ixf.

In theorems (1,4) to (1,9) below we suppose that (£, ¢) € &, is saturated; as usually,
K denotes an m-dimensional interval.

(1,4) Theorem. f € #(K) = |f| < o a.e. on K.

Proof. fe #(K) = (—f)e #(K), hence f + (—f) e #(K); then 0 = () [ f +
+ (&) [k (=f) = () f[x [f + (—f)]- When the sum is of the form e.g. 0 — o0, we
put f(f) — f(¢) = 1. Then f + (—f) = 0, lies in #(K), hence in Z(K); thus, f +
+ (=f) =0ae.onk.

(1,5) Theorem. fe #(K)= fe F(K), and [f = () [xf. On the other hand,
fe #(K), |f| e #(K) = f e Z(K).

Proof. Easy.

(1,6) Theorem. fe #(K), f = g a.e. on K = g € #(K), and (1) [x g = (¢) [x /-
Proof. This is a direct consequence of (1,5).

Remark. We see that a function f € #(K) may be defined only a.e. on K.

(1,7) Theorem. f, g e F(K), f < g a.e. on K= (1) [¢ f < (¢) [x 9.
Proof. (¢) [xg — (1) fxf =[x (@ - f) = 0.

(1,8) Theorem. Let

1° g, h e #(K),

2° fe#(K),

3 g=<f< hae onk.
Then f € #(K).

Proof. We have 0 S f—g < h — g ae. on K, h — ge Z(K), f — g e #(K).
Hence f — g € Z(K), so that f = g + (f — g) € #(K).

Instead of “f, converge to f asymptotically”, we shall write limas f, = f. We
prove the following generalization of the Lebesgue convergence theorem.

(1,9) Theorem. Let

1° gp by g, he F(K), ne A,

2° g, =fy,Shy,aeonK, ned,

3° limasg, =g, limasf, = f,limas h, = h,

4° lim (¢) fx g, = (¢) fx g, lim () [ B, = (&) [ I,
5° fae P(K), ne N

Then f,.fe #(K), ne N, and lim (¢) [x f, = (¢) [x f-
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Proof. According to (1,8), f, € #(K) for each n e A". Further, it is elementary
that g < f < h a.e. on K; hence f e #(K). We prove that lim inf (¢) (xfuz (V) Jx f.
Suppose on the contrary that lim inf (¢) [ f, < (¢) [k f- Then there exist ny, n,, ...
such that f, > f, gn — g a.e. on K and lim (¢) fx fu < () [ f. Using Fatou’s
lemma. e get [ (F — g) = [ im (fy, — G0 = lim 0 (() i fow = () i 9m) =
= lim inf (¢) [ fo. — (¢) Jx g5 hence (1) [xf < lim inf (¢) fx fu. This is a contradic-
tion. Passing to opposite functions, we obtain (¢) [xf Z lim sup (¢) [ f,.

(1,10) Definition. Let (£, ¢) € §;, be given. We say that (£, ¢) is hereditary iff, for
each K € J,, and each f e #(K), f | I € #(I) for each I & Ju(K).

(1,11) Theorem. Let a hereditary (¥, 1) € & be given, and let K € J,.. For each
I eJ.(K), put

(1.11.1) F(I) = (L)'[If.

Then F € U(K) is additive on K.

Proof. Clear.

(1,12) Definition. Let a hereditary (&, ¢) € &, be given. We say that (&, ¢) is
continuous iff, for each K € J,, and each f € #(K), the function F defined by (1.11.1)
is continuous on K.

We say that (#, ¢) € &, is an m-dimensional integration, iff it is saturated, heredi-
tary and continuous. The set of all m-dimensional integrations will be denoted by ,,.

We join some usual definition relevant to the 1-dimensional case. Let a hereditary
(7, 1) e & be given. If K = <a, b), fe F(K), we put (¢) [x f = () [5f = = () [3 f,
(¢) [af = 0. Given c €<{a, b, the function t — F(t) = (1) [% f, te K, will be called
a c-antiderivative of f. If (#, ¢) is moreover continuous, then F is evidently continuous
on K.

(1,13) Examples. Let us take m = 1 for simplicity. For each K = {a, b}, let Z(K)
resp #(K) resp. #,,(K) denote the set of all functions on K which are integrable
over K in the sense of Riemann, resp. in the sense of the A-integral (see e.g. [10]),
resp. in the sense defined by Burkill in [1], and let (R) [ f resp. (4) [¢f resp.
(Pap) [xf denote the corresponding integrals. Then (%, R) < (¥, L) < («, A),
(&, L) © (Pap, Pap); further, (%, R) is not saturated, (o, A) is not hereditary
(see [10]), (Zap» Pap) is not continuous (see [1]). In [3], it is shown that it may
happen that (&, ¢), (¥, 1) € &, are such that #(K) = #,(K)for each K € J, whilst
(¢) [x f # (v) [x f for some fe #(K).

(1,14) Definition. We say that a mapping (&, ¢) defined on J is an (euclidean)
integration, iff (%, ¢) | J, € &, for each me A",
The set of all euclidean integrations will be denoted by &.
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(1,15) Let 0 + 4 = K € J,,, and let f € #(A) be given. We say that ae 4 is an L-
singular point of £, iff f | A N O(a, &) ¢ £(A 0 O(a, ¢)), for each ¢ > 0. The (evidently
closed) set of all L-singular points of f will be denoted by o(f).

Let further (#, ¢) € &, be given. We write f € #(A) iff f | K € #(K). We put then
(¢) faf = (¢) [x J; this definition is clearly unambiguous.

2. In what follows we shall need some results on a kind of Perron integration in 2™,
m € A, introduced in [6]. First we stress that for m = 1 we get the classical Perron
integration (see [6], p. 131).

Let K € J,, and let F € U(K). Let x € K; the number F(x) = sup {lim F(I,) (I,)"%;
I, - x | K} is called the upper derivative of F at x. Similarly we introduce the notion
of the lower derivative F(x) = inf {...}.

Let f be a function on K. We say that M € U(K) is a majorant of f on K iff

1° M is superadditive on K,
2° —o0 # M(x) Z f(x) for each x e K.

We say that m € U(K) is a minorant of f on K iff —m is a majorant of —f on K.
Now, the upper Perron integral [ f of f over K equals to inf {M(K); M is a majorant
of f on K}, and similarly for the lower Perron integral [ -k f. We say that f is Perron
integrable over K and write fe 2(K) iff [ f = [_xfe R. For each fe #(K), the
Perron integral of f over K, denoted by (P) [ f, equals to [ f.

For each K €, let 7(K) = {f € #(K); o(f) is finite}.

(2,1) Theorem. (#, P) € &.

Proof. The continuity of (2, P) is proved (for m = 2) in [2]; other results needed
are contained in [6].
Let us recall some other results on Perron integration.

(2,2) Theorem. Let K, resp. K, be an my-dimensional resp. m,-dimensional
interval. Let [x,, x,] — f(x,, x;) be a functionon K| x K,, and letfe (K, x K,).

Then
o 1=0f ([ #e3) 0] ()

Proof. See [6], p. 127.

(2,3) Theorem. Let K € f,, ae K, f : K — Z be given. Suppose that

1° fe (K ~ I), whenever I € J,(K), dist (a, K — I) > 0,
2° lim (P) [k-1,f exists, whenever I, 5 a [K.

Then f € #(K), and (P) [ f = lim [_,, f.
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Proof. For m = 1, see [6], p- 133; form = 2{ see [2], p. 40.&
For each K € J, put #(K) = #(K) N T (K). It is clear that (#, P) e §.

(2,4) Theorem. Let K = (a,, by> X «.. X @y, bpy, me N, let f € P(K) and let ¢
be of bounded variation on {ay, b,». For each x =[xy, ..., x,] €K, put ¢(x) =
= @(x,). Then fp € 2(K).

Proof. For m = 2, see [2], p. 410.
To show the generality of the Perron integration, let us note the following example
(see [2], p. 403).

(2,5) Let K =<0,1> x <0,1) and let 4 ={[xy,x,]€K, x; = x,}. There
exists f € Z(K) such that (L) [, f = oo.

This example shows that for Perron integration in 2™, m = 2, we cannot expect any
transformation theorem, with the exception of translations. On the other hand, there are
non-absolutely integrable functions invariant under isometries with respect to Perron
integrability; see [2], p. 411. This example shows that there might even exist non-
absolutely integrable functions invariant with respect to regular transformations,
similarly to the Lebesgue case. This was proved, for m = 2, in an unpublished paper
of the author [4], using mainly the theorem of Banach on the integral representation
of variation of a continuous function. In this paper we prove this result in a different
way.

3. Let Ac R™, m = 2, be a bounded measurable set. We say that 4 € U iff
4] = sup {[4 div v;v = [vy,...,0,], v, polynomials in x,,...,x, such that
Y (vi(x))? £ 1 for each x e A} < o; see [7].
i=1

If K €, then |K| equals to the elementary geometric surface of K ([7], p. 536).
Further, max (|4 U B|, |4 n B|, |4 — B|)) < ||4] + ||B]| ([7], p. 547).

For C,D = # we write C ~ D iff |(C —~ D)u (D — C)| =0. Let y = [y,, ...

oy Vm-1] €A™ 1 and let ke {1,...,m}. Then A% = {te &; [y, ..., Vi-1s &s Vi ..
vy Ym—1] € A}

(3,1) Theorem. Let A U and let an index ke {1, ..., m} be given.
Then there exists a Borel subset A(k, A) = R™* with the following properties:

1° |t — Ak, A)| = 0,
2° for each ye A(k, A) there exist a nonnegative integer r = r(y) and real
numbers a, b, i =1,...,r such that a; <b; <...<a, <b, and that A ~

~ .L__Jl(ai, bi) Py
¥ 2 o i 5 4],
4° if F is a bounded Borel function on the boundary of A such that IF[ S xandif
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we Put @k(F, A, y) =iZ,1(F(Y1’ cees Ye-1s bi’ Yis +-0s ym—l) - F(’ a; ~'~)) fOT each
Y =[y1, --es Ym-1] € A(k, A), then O, is measurable and [gm-1 O < 2x||A|.
Proof. See [7], p. 535, p. 545.

(3,2) Theorem. Let A, € U, ne A, and let lim |A4,]| = 0. Then lim |4,| = 0.

Proof. See [8], p. 263.

In what follows, @ l G denotes always a bijective regular mapping of an open set
0#Gc R into ", H=0(G), ¥ =&, Dy = the functional determinant
of ¥.If Ac G, f: A— @ is given, then f O ® is defined as follows: f O (1) =
= f(P(1)) | De(1)], t € D(4).

(3,3) Theorem. Let & ' G be given as above. Let A be compact, A = G. Then there
exists c € R such that for each measurable set B < A the relation |®(B)| < c||B|
holds.

Proof. See [5], p. 255.

(3,4) Theorem. Let @ | G be given as above. Let A = G be compact and let f e
%(A) be given. Then ®(o(f)) = o(f O ).

Proof. This is a simple consequence of the transformation theorem for Lebesgue
integrals.

4. In this section two euclidean integrations, denoted here (o, ), (Z, w), will be
defined.

For m =1 we put (#,0)|J; =(#,P)|J;. Let m=2, Ke},, and let E,
n € A", be measurable subsets of Z™. We write E, - a | K iff

1°E,cK,ned,

2° lim ||E,| = 0, lim diam (E,) = 0,

3 da,K—-E,)>0,neA.

It is clear that if especially E, are m-dimensional intervals, then E, - a | K has
the meaning introduced in section 1.

(4,1) Definition. Let K € J,,, m = 2, and let fe 7(K) be given. We say that f is

w-integrable over K iff (4.1.1) either f e #(K); in this case we put () fxf = [« f
(4.1.2) or o(f) = {aV, ..., a®’} # 0, and a finite limit

(4.1.3) lim J Y,
k= 0,50
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exists, whenever E{” > a®? | K, i = 1, ..., r; in this case we put (@) fx f = the limit
in (4.1.3). ,
The set of all w-integrable functions on K will be denoted by #/(K).

(42) Lemma. Let K€J,, m = 2, fe 7(K), and let o(f) = {a®, ..., a"} # 0.
Then fe #(K) iff E& 5> a® |K, i=1,...,r,j=1,2, implies

lim (J f- f) =0.
K_‘y‘ En,l“) K_‘l;'lE"’z(n

Proof. Clear.

(4,3) Lemma. Let K€J,, m = 2, and let fe &(K) be given. Let K =1, } I,.
Then fe #(K) iff f|I;€ #(1)), j = 1, 2; moreover,

() Lf - (@) Lf + (@) Lf

Proof. Let fe #(K). Suppose for simplicity that o(f) NI, nI, = 0. Let e.g.
o(f| 1) = {a®,...,a"}, o(f|1,) = {a"*Y,...,a®}. Let EO 5 a®|I,, i=
=1,...,7,j=12, and let E) = E, = E? 5> a®W|I,, i=r +1,...,s. Then,
according to (4,2),

lim (J f - f) = lim(f f - f) =0;
K= U En,i® K= U En2® Iim U En) Ii= U Enat)
i=1 i=1 i=1 i=1

hence f € #(I,). The proof for other cases is similar.
If, on the other hand, f|I;e€ #(I}), j = 1,2, then (4,2) gives immediately that
fe #(K).

holds in this case.

(4,4) Corollary. Let A be a division of K € J,, (= the cartesian product of divisions
of 1-dimensional factors of K; see [6], p. 38 for a precise definition). Let 4 =

={Iy,...,1,}. Then (o) [¢ f = zp: (@) f1,f iff one side has a meaning.
j=1
(4,5) Theorem. For each K €], #(K) = #(K); for each fe #(K), (w) fxf =
= (P) fx f.
Proof. This follows from (2,3).
(4,6) Theorem. (#, ) € §, (#, ) = (2, P).

Proof. (II) Using (4,4), it is sufficient to consider the case when o(f;) U o(f,) has
at most one point on K; but then it is obvious.
(IV) This follows from (4,3).
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Hereditarity of (#, w) may be proved similarly to (4,3). Continuity of (#, w) is
a consequence of (4,5) and (2,1).

(4,7) We introduce the integration (2, o).

Form = 1, put (%, ) |J, = (&, P)|J;. Let m = 2, me A, K €J,,. We say that
fe W (K)iff

1° fe 7(K),

2° for each a = [ay, ..., a,] €K and each ke {l,..., m}, there exists a relative

(with respect to K) neighbourhood € of a such that the function x — F,(x), xe @
defined by

Xk
Fk(x) = (P)J\ f(xl, ooy Xp—1s t, Xi41s 200 xm) dt
(3

is bounded and Borel measurable on Q.
Put further Z(K) = Z(K)® #(K) = {f; f = g + h, g Z(K), he w(K)}.

(4,8) Theorem. For each K € J, Z(K) = #(K).

Proof. Let f € Z(K). To prove the theorem, it is sufficient to suppose that m = 2,
o(f) = {a}. We may also suppose that fe #'(K). Let E, ; > a |K,j=1,2. Let Q
be a relative neighbourhood of a such that F(x) = [3! f(t, x,, ..., x,,) dt is in absolute

value £ x on Q.
I l
< f 1l + 1l
Epn,1—En,2 En,2—En,1 !

We have
f - s
K—En,1 K~En,2

hence it is sufficient to prove that lim [ ,_p ,f =0. Put E,, — E, , = A4, for
short; suppose further that 4, = Q, n € A". Then, using (3,1),

LAl (oo

< 2xf r < x||4,]
Rm-1

S F(bo y) ~ Fan y)

&m-1J=1

=

which proves the theorem.

(4,9) Theorem. (2, v) € &.
Proof. Simple.

5. In this section we introduce some properties of integrations, which are fulfilled
for Lebesgue integration.
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(5,1) Definition. Let (%, t) e § be given. We say that (&, ¢) has the property (Fub)
iff there exists an (%, ¢;) € § such that, for each me A", m 2 2, the following is
satisfied: if m = r + s, r,se A, KeJ,, K, € J,, K, € J, K = K, x K,, fe #(K),
then

1° y - f(y, z) € #4(K,) for almost all z e K,,

2° () [xf = (1) Jxl(t4) [, )

We write then (£, ¢) (Fub) (#, ¢,).
Remark 1. As it is known, (&, L) (Fub) (%, L).

(5,2) Theorem. (2, P) (Fub) (2, P).

Proof. This is a simple consequence of (2,2).

(5,3) Definition. Let (#, /) e §,, me A, be given. We say that (%, ¢) has the
property (Tr) iff there exists an (%, ¢,) € &, such that whenever K € J,, f € #(K),
@ | G is a bijective regular mapping of an open set G > K, then

1° fO @ e #,(9(K)),
2 () fxf = (1) Jow) f O @
We write then (£, ¢) (Tr) (%4, 1))

Remark 2. As it is known, (&, L) (Tr) (&, L), for each me A".

(5,4) Theorem. (#, ) (Tr) (#, w), for each me A".

Proof. Let KeJ,, m 2 2, fe #(K), o(f) = {a, ..., a”}. Then o(f O @) =
= {®(a?V), ..., #(a”)}. LetK, € J, be such that K; o &(K). Using a suitable division
of K, we may construct a finite set & of intervals I € J,, such that

10 11,1265‘,11 # Iz=>(11 ﬁlz)o = 0,
2° ¢(K) = UK = ¢(G),
3° for each I € &, o(f O ®) N I has at most one point, lying then in I°.

To prove the theorem, it clearly suffices to prove that, for each I € &,
(54.1) foo|lesx(I).

This is true provided o(f O @) NI = 0. Let o(f O ®) = &(a'”), and let E, >
> &(a?) | I, n e A". Then there exists an index n, € A" and K € J,, such that

4 K, = (1),

5° Y(E,)> a® |Ky, n 2 ng, ne N
as it follows from (3,3). As [;_5, f O @ = [gu)-wa, J and | K, € #(K,), we see
that (5.4.1) holds. :
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(5,5) Definition. Let (#, ¢) € §,, m € A", be given. We say that (£, ) has the
property (Four) iff there exists an (#, ¢;) € §,, such that whenever K = <ay, b;> x
X oo X s by € Js f€ F(K), and g; | a;, b;> > R, i = 1, ..., m are of bounded
variation, then-fg; ... g,, € #(K) (here, the product is defined similarly to (2,4)).

We write then (%, ¢) (Four) (%, (,).

Remark 3. (&, L) (Four) (%2, L), for each me A"

(5,6) Theorem. (2, P) (Four) (2, P).

Proof. This is a simple consequence of (2,4).

Let KeJ, Ne # U {0}. We write ¢ € €"(K) iff there exists an open set G > K
such that ¢ has continuous N**-order derivatives on G. We put [o[y = max {|o(x)|,
|D ¢(x)], ..., |D” @(x)|; x € K}, D’ denoting a differentiation operator of the j-th
order, 0 < j < N.

(5,7) Definition. Let (%, ¢) € §,., me A", be given. Let N € A~ U {0}. We say that
(#, 1) has the property (Pr N) iff there exists an (#,, ¢;) € &, such that whenever
fe #(K), ¢ € €"(K), then fo € # ,(K).

We write then (%, ¢) (Pr N) (# 4, t,).

Remark 4. (&, L) (Pr0) (2, L).

(5,8) Theorem. (%, w) (Pr 1) (Z, w).

Proof. Let fe Z(K), KeJ,, m 2 2, aeK. It is evidently sufficient to suppose
that fe #7(K). Let ¢ € ¢'(K) and put F(x) = (P) [i' f(t, y) dt, x = [x,,y]eK.
Then (P) [ f(t, ¥) o(t, y) dt = F(x) o(x) — [3! F(t, y) (0[0t) (t, y) dt; the right-
hand side shows immediately that fo € %#(K). This proves the theorem.

(5,9) Definition. Let (£, ¢) € &, me A", be given. Let N € #” L {0}. We say that
(#, ¢) has the property (Distr N) iff it has the property (PrN), ie. (#,¢)(PrN)
(#1,4,) for some (F, ¢;)€ §,,and if ,e@™(K), lim ||@,||y = 0=>1lim(¢,) [ fo, = 0.

We write then (%, ¢) € (Distr N).

Remark 5. As it is known, (£, L) € (Distr 0), for each m € A",

(5,10) Theorem. (%, w) € (Distr 1).

Proof. Let ¢ > 0 be given. Let f € Z(K), K € J,,, m 2 2, ;€ €'(K), lim |o;]|, =
= 0. We may suppose that o(f) = aeK. Let F(x) = (P) [ f(t, y)dt, x = 0,
and suppose that |@;|; < %, je A", |F| < x on a relative neighbourhood @ of a.

Let E, > a | K, E, = Q; then
f fo, f fo,
K—E, En

Jf‘/’j
K

= +
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for each j, n e A", Using (3,1) we have immediately that

jm j q mﬂﬂ=
En a1 \J (Enyt

L8 e

L ,{3 [F(bi’ y) 0ibi, y) — F(ai, ) o(a;, ) — rl

E(t, y) 9%; (t.y) dt] dy
m-1i=1 ; ot

=

a

<[ e REpher =] + ),

for each j, ne A .

Choose nge A" such that x%(|E,| + |E,|) < &/2; now it is sufficient to find
jo € A such that j = j, = |[- £n, O j| < &[2. This proves the theorem.

6. We introduce the following concept.

(6,1) Definition. Let (#, ) € & be given. We say that (&, () is a quasi-Lebesgue
integration iff there exists an (£, ¢,) € § such that

(6.1.1) (#, o) (Fub) (# 4, ;)
and for each me A~

(6.1.2) () | JnT0) (F 15 01) | I
(6.1.3) (#, 0 | Jm (Four) (F 1, 11) | Jm
and for some N e A" U {0}

(6.1.4) (Z, 0| J(Pr N) (F1, 41) | )
(6.1.5) (#, 1) e (Distr N)

(6,2) Theorem. (Z, ) is a quasi-Lebesgue integration.

Proof. This is a consequence of the preceding theorems.

From Remarks 1 to 5 of section 5 we see that if (%, ¢) = (&, L), then (%, ¢;)
may be chosen equal to (£, ¢).

(6,3) Problem. Does there exist any other euclidean integration possessing the
above property?

7. Let us still mention another example of integration, which was studied in [5].

For each K €J;, put #(K) = {f e #(K); o(f) is countable}; see also [9]. For
each f e B(K), put (B) [« f = (P) [ f.
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If m 2 2, K€, let B(K) = {f e #(K); (B) [ f defined in [5] exists}.
(7,1) Theorem. (#, f) € §.

Proof. The only point here is to prove continuity for m = 2. To this end, we use
the following lemma (for notions mentioned below, see [5]).

(7,2) Lemma. Let ¢ be an additive function defined on a ring of sets Dom ¢.
Then ¢ is continuous with respect to the convergence — iff given ¢ > 0, C > 0,
B e Dom ¢, there exists a 6 > 0 such that

(721) |A| <6, |4 <C, A<B, AeDomo = |p(d)| <.

Proof. 1° Let ¢ be continuous with respect to —. Suppose on the contrary that
there exist ¢ > 0, C > 0, Be Dom ¢ such that for each ne A", there exist 4, €
e Dom ¢ such that |4,| < n~?, |4,]| < C, 4, =B, |p(4,)] = & Then B — 4,€
eDom ¢, B — 4, B, and lim ¢(B — 4,) = lim (¢(B) — ¢(4,)) # ¢(B). This is
a contradiction.

2° Let the conditions of the lemma be fulfilled, and suppose that B, — B, B,, B€
€ Dom ¢. There exists C > 0 such that |B — B,| < C. Let ¢ > 0. Let 6 > 0 be
such that (7.2.1) is fulfilled for these B, C. As |B — B,| — 0, there exists n, such that
n > no=|B — B,| < &. Then n > n, = |p(B) — ¢(B,)| = |¢(B — B,)| < &. Hence
lim ¢(B,) = ¢(B), which proves the lemma.

To prove the theorem, put B = K€J,, ¢ = (B) [. Let C = |K|. Given & > 0,
there exists & > 0 such that (7.2.1) is fulfilled. If I & J,(K), then evidently |I|| < C,
I e Dom ¢. Hence, according to (7,2), |I| < 6 = |o(I)] < &, which proves the con-
tinuity of () J.

(7,3) Let us still mention that in view of [5], Theorem 11, p. 255, (%, B) (Tr) (&, B)
for each m = 2; for m = 1 this is well-known.

Properties (Fub), (Four), (Pr), (Distr) have not been investigated for this type of
integration.

(7,4) Let us also note that for m = 1, it may occur that |o(f)| > O for e.g. fe
€ #(K), with properties (Four), (Tr), ... still holding true. I do not know any m-
dimensional (m = 2) integration with this property.

8. We show that #/(K) — #(K), K € J,, is nonempty. Instead of [x;, x,], we
write [x, y].

(8,1) Theorem. Let ¢ = /(x* + y?). Define f as follows: f(0,0) = 0, f(x, y) =
=0 2%singp~3 0 + 0. Then

1° f is continuous on R* — [0, 0],

2° F(x, y) = (P) [5 f(t, y) dt is continuous on R?,

3° o(f) = [0, 0].
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Proof. 1° is clear.

2° We show that (P) Isf (t, y) dt exists. It suffices to consider the case y = 0,
x>0 Let 0 <e<x. Then [7f(t,0)dt = [Tt 2sint™3dt = § (21327 3sinz dz
so that existence of (P) f5 f(t, 0) dt follows.

We show that F is continuous at [0, 0]. Let firstx > 0,y > 0, /(x> + y*) =r < 1.
Then [3 f(t, y) dt = [5 (v* + #)"!sin (y2 + 2)7¥2 dt = [T o7 Y(* — y?)" V2.
.sin@”3de, as we get using t = ./(¢* — y?). Let y;, = min(y + y* r). Then
Jyo =+ [}, ... We estimate the first integral. It holds

1 1 _
%J Q—I(QZ _ y2)—1/2 sin Q—S dQ é J‘ g-'l(e + y)"l/z (Q — y)‘1/2 dQ é
vy y

Y1
< f Y~ = )TV de = 2y7¥3(y, — y)2 <2y S 24r.
y

To estlmate the second one, we suppose that y; < r. We have [}, ... = [} 0%(e* —
¥?)"2 ¢7*sin @"* dg. The derivative of the function A(g) = 93(9 — yH)T12,
QE<y1, r> equals to 0*(2¢* — 3y%)(e® — y*)™%2, and is therefore negative for
¢ < y+/3, positive for ¢ > y./3. Supposing r < y /4, the function A attains its
maximum for ¢ = y;, and A(y,) = Ay + y*) = J() (1 + y*)* (2 + y*)"V3; as
y <1, we have A(y1) < 4./(2y). If r > y /3, then 1 attains its maximum on the
boundary of (y;, r>. It holds A(r) = r’x™!; as 2r* > 3y%, we have 3x? > r? so that
Ar) < r? \/3. Hence 0 < A(g) < 4./(2r), ¢ € {y1, 1, in each case.

Now put ¥(o) = ¢~ *sin ¢ and estimate [}, A(e) ¥(e) do. It is immediate that,
for each ky, k, > 0, |[i2 | < %. The interval {y;, r) may eventually be divided into
two subintervals on each of which A is monotone. Using there the second mean-value
theorem, we get |[}, W] < 4. 4/(2r). %4 <16 /r. Hence |[;...| < 16 /(r) + 2/(r) =
= 18./r. As F(-x,y)= —F(x,y), F(x, —y) = F(x,y), F(0,0) =0, we have
|F(x, y)| < 18 JJr for each [x, y] such that x s 0, x* + y* < 1. As F(0,0) = 0 and
F(x, 0) is continuous on £, the continuity of F at [0, 0] follows at once.

Further, F is continuous at each [x, y] such that y # 0. Let x, > 0; we show
that F is continuous at [xo, 0]. Lete > 0;let 5, > 0 be such that |x| < &y, |y| < 6, =
= |F(x, y)| < &/3. The function G(x, y) = [}, f(t, y) dt is clearly continuous at
[xo, 0]; further we have F(x,y) = [5...= [o'... + [} ... = F(6;, ¥) + G(x, ).
Choose a neighbourhood € of [x,, 0] such that [x, v]e Q = |G(x, ¥) — G(xo,0)| <
< &/3. Then [x, y]€ @, |y| £ 8; = |F(x, y) — F(xo, 0)| = |F(8,, y)| + |F(64,0)| +
+ |G(x, y) — G(x0,0)| < &. This proves 2°.

3° Suppose on the contrary that (L) [cf, C = {[x, y]; x* + y* £ 1}, exists.
Then also (L) [ce 7™t sinr™3drde, C* = {[r,¢]; 0= r £ 1,0 £ ¢ < 27}, exists,
and using Fubini’s theorem we get that (L) [5 r™*sinr=3dr = (L)} [T z7 ' sinz dz
exists, which is a contradiction. This proves 3°.
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