
Časopis pro pěstování matematiky

Karel Karták
A system of axioms for Euclidean integration

Časopis pro pěstování matematiky, Vol. 93 (1968), No. 3, 326--340

Persistent URL: http://dml.cz/dmlcz/117627

Terms of use:
© Institute of Mathematics AS CR, 1968

Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to
digitized documents strictly for personal use. Each copy of any part of this document must
contain these Terms of use.

This paper has been digitized, optimized for electronic delivery and stamped
with digital signature within the project DML-CZ: The Czech Digital
Mathematics Library http://project.dml.cz

http://dml.cz/dmlcz/117627
http://project.dml.cz


Časopìs pro pěstování matematiky, roč. 93 (1968), Praha 

A SYSTEM OF AXIOMS FOR EUCLIDEAN INTEGRATION 

KAREL KARTAK, Praha 

(Received June 1, 1967) 

0. In what follows, JT denotes the set of all natural numbers {1, 2,...}; for any 
m e Jr

9 0tm stands for the set of all real m-tuples x = \xl9..., xm~\ equipped with the 
distance d(x9 y) = max {\xk — yk\; k = 1,..., m}. All measurability notions refer to 
the Lebesgue measure on 0T. Instead of 0tx we write merely 0t; we put 0t = 0tu 
u {oo, -co}, with usual algebraic and order properties. A mapping / defined on A 
will be sometimes denoted by/ | A or x -> f(x)9 x e A; for 0 ^ B c A9 f | B denotes 
the reduction off to B. A function f on a set A ^ 0 is a mapping of A into M; if 
A c 0T9 then / always denotes the function such that /1 A = f, /1 Mm - A = 0. 
If f(x) -= c e 0t for each x e A, we write also f\A = £. 

Let .4 c ^?m; the symbols A9 A°9 \A\9 diam (A) denote the closure of A9 the interior 
of A9 the outer Lebesgue measure of A and the diameter of A9 respectively. If x e 0lm

9 

then d(x9 A) = inf {d(x9 y); ye A}; if s > 0, then 0(A, e) denotes the e-neigh-
bourhood of A in ̂ m . 

A set K of the form ix x ... x ?m, where ik = <afc, fcfc>, ak < bk9 k = 1,..., m, will 
be called an m-dimensional interval; we have thus |K| == II(bfe — ak). The set of all 
m-dimensional intervals will be denoted by Jm; the set of all m-dimensional intervals 

I <z K will be denoted by Jm(K). Further we put/ = U Jm. We say that a sequence of 
m = l 

intervals {In}9 neJf9 converges to xe0tm in K e/m and write In -> x\K iff Jn G 
e/m(K), xe / B , ne•>•% and limdiam(In) = 0. Further, we write In A x|K iff J„ -> 
-> x|K and d(x9 K - JB) > 0, n e «yT. Let J, Il912 e/m; we write I = Ix + J2, iff 
J = h u J2 and (Jt n J2)° = 0. 

Let K e/m. We say that F is a function of interval on K iff F is a mapping from the 
set Jm(K) into £?. The set of all functions of interval on K e/m will be denoted by 
U(K). We say that F e U(K) is superadditive on K iff F(h + J2) = F(/i) + ^(^2)* 
whenever ll9 J2 G/m, lx + J2 c K. Writing ^ or = instead of _•, we get the defini­
tion of a subadditive or additive function of interval. We say that F e U(K) is con­
tinuous on K iff, given e > 0, there exists S > 0 such that Je/m(K), 11\ < 8 => 
- |F(/)| < e. 
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1. In this section we give an axiomatic definition of integration (see also [3] for 
the 1-dimensional case). 

For each measurable A c Mm, £?(A) denotes the set of all measurable functions / : 
: A -> 3», and JSf(A) is the set of allfe^(A) such that the Lebesgue integral (L) jAf 
converges; however, we shall also write merely j ^ / i n this case. 

(1,1) Definition. Let me«yV. An m-dimensional O -integration is a mapping 
(#", i) assigning to each K e/m a set ^(K) c S?(K) and a finite function/ -> (*) JK/, 
/ e #*(K) so that the following is satisfied: 

For each KG/m 

(I) \\Ke&(K) and (*) f 1 = |K| 

(II) fie*(K)9 f2e^(K)=>ft+f2e^(K), 

(Of (/i+/2) = (o f / i+ (o f / 2 
J K J K J K 

(here, /x(f) + f2(t) of the form e.g. oo — oo may be defined in an arbitrary way) 

(III) fe^(K) , ke0t=> kfe<F(K), and (c) f kf = fc(i) j / 
J x J JK: 

(IV) f\hs^(It), f\l2e^(l2), ^ -f/^K^/IKG^K) 

and 

(o f .T=(o f / + ( o Г /• 
J к Jix Ji2 

The set of all m-dimensional o -integrations will be denoted by gm. 
Let (&?, i) e g°, K e/m. Iffe #"(K), then we say that/ is i-integrable over K, and 

the number (i) ] # / is called the ^-integral of/ over K. 
Let (#*, i), (&X, ix) e %m; we write (&, i) c (#" t, it) iff, for each K e/m, <T(K) cz 

c= ^x(K) and (*) J^ = (i^ j K | ^(K). The relation cz clearly orders the set gm; 
instead of g°, we shall also write (gm, cz). 

(1,2) Theorem. Le* (#", i) e (gfm, cz) fee given. Then there exists a maximal element 
(^max, W ) 6 (5m, <=) SWCft fha* (^", t) CI ( ^ m a x , W ) . 

Proof. If {^a, ej is a linearly ordered set of m-dimensional o-integrations, then 
U(J**a, ea) e (5°, cz) may be defined in an obvious way. The result now follows from 
a 

Zorn's lemma. 
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(1.3) Definition. Let {&, t) e %m be given. We say that {SF, t) is saturated iff, for 
each KeJm and each nonnegative feSf{K), fe^{K) if and only if fe &{K), and 
( t ) J* /= W -

In theorems (1,4) to (1,9) below we suppose that {!F, t) e g° is saturated; as usually, 
K denotes an m-dimensional interval. 

(1.4) Theorem, fe F{K) => | / | < oo a.e. on K. 

Proof, fe &{K) =>(- / ) e F{K), hence / + ( - / ) e &{K); then 0 = (t) ]Kf + 
+ (0 W (~~/) = (0 J* [/ + (""/)]• When the sum is of the form e.g. oo — oo, we 
put /(*) - /(*) = 1. Then / + ( - / ) = 0, lies in &{K), hence in Se{K); thus, / + 
+ ( - / ) = Oa.e. onX. 

(1.5) Theorem. / e S?{K) => f e &{K), and JK/ = (t)JK/. On the other hand, 
fe &{K), \f\ e 2F{K) = - / e SB{K). 

Proof. Easy. 

(1.6) Theorem. / e &{K), f = g a.e. on K => g e 3F{K), and (t) $Kg = (t) j" K / . 

Proof. This is a direct consequence of (1,5). 

Remark. We see that a function / e ^{K) may be defined only a.e. on K. 

(1.7) Theorem. f,ge 3F{K), f^g a.e. on K => (t) $Kf = ( t ) J"K g. 

Proof, (t) JK g - (t) J K / = $K {g - f) = 0. 

(1.8) Theorem. Let 
1° g,he3F{K), 
2°feSF{K), 
3° g <= / = h a.e. on K. 

Thenfe&{K). 

Proof. We have O^f-g^h-g a.e. on X, h - g e S£{K), f - geSf{K). 
Hence f-ge &{K), so that f=g + (f-g)e &{K). 

Instead of "/„ converge to f asymptotically", we shall write limas /„ = / . We 
prove the following generalization of the Lebesgue convergence theorem. 

(1.9) Theorem. Let 

1° gn, K, g,he &{K), neJV, 
2° gn^fn^ K a.e. onK,ne JT, 
3° lim as gn = g, lim as/„ = / , lim as hn = K 
4° lim (t) fK gn -, (t) $K g, lim (t) JK hn = 0) U K 
5° fneS?{K),nejr. 

Then fn,fe&{K), neJV, and lim (t) $Kf„ = (t) J K / 
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Proof. According to (1,8), fne&{K) for each neJT. Further, it is elementary 
that g g / ^ h a.e. on K; hence fe &(K). We prove that lim inf (t) $Kfn ^ (t) \Kf. 
Suppose on the contrary that liminf («) jKf„ < (0/«/• T h e n t h e r e e x i s t "i> n2> ••• 
such that /„k ->/, g„k -» a a.e. on X and lim(0 J.-/* < (Of*/- U s i n g Fatou's 
lemma we get J\ (/ - a) = JK lim (L t - gj S lim inf ((t) JK/„k - (t) JV 0„J = 
= lim inf (0 $Kf„k - (0 jK g; hence (t) j * / =S lim inf (t) /*/„,. This is a contradic­
tion. Passing to opposite functions, we obtain (i) $Kf ^ lim sup (i) $Kf„. 

(1.10) Definition. Let (J% t) e 5° be given. We say that {&, i) is hereditary iff, for 
each K ejm and each / 6 3F{K), f\le ^{1) for each I eJjK). 

(1.11) Theorem. Let a hereditary (f, i) e g° be given, and let KeJm. For each 
IeJm{K),put 

/ • (i.n.1) i^) = (0J; 

Then F e U(K) is additive on K. 

Proof. Clear. 

(1.12) Definition. Let a hereditary (#", i) e gm be given. We say that (J% *) is 
continuous iff, for each KeJm and each/e /F(K), the function F defined by (1.11.1) 
is continuous on K. 

We say that (J^, i) e %m is an m-dimensional integration, iff it is saturated, heredi­
tary and continuous. The set of all m-dimensional integrations will be denoted by $m. 

We join some usual definition relevant to the 1-dimensional case. Let a hereditary 
(P> i) e %l be given. If K = <a, b>, / e «F(K), we put (i) J*/ = (*) # / = -(«) J*/, 
(0 jaaf = 0. Given c e <a, fc>, the function r -> F(f) = (*) JJ/, * eK, will be called 
a fc-antiderivative of/. If (#", t) is moreover continuous, then F is evidently continuous 
onK. 

(1.13) Examples. Let us take m = 1 for simplicity. For each K = <a, b}9 let M(K) 
resp st(K) resp. ^%(K) denote the set of all functions on K which are integrable 
over K in the sense of Riemann, resp. in the sense of the -4-integral (see e.g. [10]), 
resp. in the sense defined by Burkill in [1], and let (R) $Kf resp. (A)$Kf resp. 
(PaP)$Kf denote the corresponding integrals. Then (M, R) <z (jSf, L) c {$49 A)9 

(<£9 L) c {0>ap9 Pap); further, (0t9 R) is not saturated, ($/9 A) is not hereditary 
(see [10]), (0>ap9 Pap) is not continuous (see [1]). In [3], it is shown that it may 
happen that (W9 e), (&u 11) e %t are such that #"(K) = ^t(K) for each K ejx whilst 
(0 Uf * (h) hf for s o n * e /€ *(K). 

(1.14) Definition. We say that a mapping (J5", t) defined on / is an (euclidean) 
integration, iff (#", i) \ Jm e 3fm f° r e a ch m G • ^ 

The set of all euclidean integrations will be denoted by *$. 
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(1,15) Let Q 3s A c KeJm, and let fe£f(A) be given. We say that a e A is an L-
singular point of/, iff/ | A n 0(a, s) <£ $e(A n 0(a, fi)), for each e > 0. The (evidently 
closed) set of all L-singular points of/will be denoted by a(f). 

Let further (&?, i) e 5W be given. We write / e ^(A) iff /1 K e &(K). We put then 
(0 JU/ ^ (0 JK/» this definition is clearly unambiguous. 

2. In what follows we shall need some results on a kind of Perron integration in fflm, 
m e JT, introduced in [6]. First we stress that for m = 1 we get the classical Perron 
integration (see [6], p. 131). 

Let KeJm and let F e U(K). Let x e K; the number F(x) = sup {lim F(In) (/-,)"
1; 

I„ •-• x | K} is called the upper derivative of F at x. Similarly we introduce the notion 
of the lower derivative F(x) = inf {...}. 

Let / be a function on K. We say that M e U(K) is a majorant of/ on K iff 

1° M is superadditive on K, 
2° - oo # M(x) ^ f(x) for each x e K. 

We say that m e U(K) is a minorant of/ on K iff — m is a majorant of —/ on K. 
Now, the upper Perron integral jK f off over K equals to inf (M(K); M is a majorant 
of/ on K}, and similarly for the lower Perron integral j-Kf. We say that / is Perron 
integrable over K and write fe&(K) iff $K f = $-Kfe m. For each fe &>(K), the 
Perron integral of/ over K, denoted by (P) jKf, equals to J* /• 

For each K ej, let F(K) = {fe s/(K)\ o(f) is finite}. 

(2.1) Theorem. (0>, P) e g. 

Proof. The continuity of (0>, P) is proved (for m = 2) in [2]; other results needed 
are contained in [6]. 

Let us recall some other results on Perron integration. 

(2.2) Theorem. Let Kx resp. K2 be an m^dimensional resp. m2-dimensional 
interval Let [xl5 x2] -*/(x,, x2) be a function on Kx x K2, and letfe ^(Kx x K2). 
Then 

(?)( f-(r)[ ( r / (^^))-c)f ff /(*-,*2>y 
JKixKi JK2\JKI ) JK2\j-Ki } 

Proof. See [6], p. 127. 

(2.3) Theorem. Let KeJm, aeK,f: K ~+ <M be given. Suppose that 

1° fe &(K - I), whenever I eJm(K), dist (a,K - I) > 0, 
2° lim (P) /« - /„ / exists, whenever I„ A a | K. 

Then fe 0{K), and (P) JKf = lim /-_,_/. 
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Proof. For m = 1, see [6], p. 133; for m = 2, see [2], p. 408. 
For each KeJ, put &(K) = 0>(K) r\ f(K). It is clear that (&, P) e g. 

(2.4) Theorem. Let K = (ax,b{> x ... x <am> bm>, me JTJet fe 0>(K) and let cp 
be of bounded variation on <au bt}. For each x = [x t , . . . , xw] eK, put cp(x) = 
= (p(xt). Then fcp e 0>(K). 

Proof. For m = 2, see [2], p. 410. 
To show the generality of the Perron integration, let us note the following example 

(see [2], p. 403). 

(2.5) Let K = <0, 1> x <0,1> and let A = {[x1,x2]eK, xx = x2}. There 
exists f e 0>(K) such that (L) jAf= oo. 

This example shows that for Perron integration in ffim, m = 2, we cannot expect any 
transformation theorem, with the exception of translations. On the other hand, there are 
non-absolutely integrable functions invariant under isometries with respect to Perron 
integrability; see [2], p. 411. This example shows that there might even exist non-
absolutely integrable functions invariant with respect to regular transformations, 
similarly to the Lebesgue case. This was proved, for m = 2, in an unpublished paper 
of the author [4], using mainly the theorem of Banach on the integral representation 
of variation of a continuous function. In this paper we prove this result in a different 
way. 

3. Let AL c Mm, m = 2, be a bounded measurable set. We say that A e 91 iff 
HA! = sup {jA div v;v = [vu ..., vm], vk polynomials in x l 5 . . . , xm such that 
m 

X (vi(x)Y =- 1 for each xe A] < oo; see [7]. 
i = 1 

If K e/m, then ||K|| equals to the elementary geometric surface of K ([7], p. 536). 
Further, max(||-4 u B||, ||A n B\\, \\A - B\\) S \\A\\ + ||S|| ([7], p. 547). 

For C , D c ^ w e write C - D iff \(C - D) u (D - C)\ = 0. Let y = [yu ... 
...,ym„i\emm~x and let ke{l,...,m}. Then Ak

y = {te0t; [yu ..., yk-u t, yk,... 
...9ym-t]eA}. 

(3,1) Theorem. Let A e 91 and let an index k 6 {1,. . . , m} be given. 
Then there exists a Borel subset A(k, A) c Mm"x with the following properties: 

1° \mm'x - A(k,A)\ = 0 , 
2° for each y e A(k, A) there exist a nonnegative integer r = r (̂y) and real 

numbers ai9 bh i = 1,..., r such that ax < bx < ... < ar < br and that A?y ~ 

~U(«i ,6«) . 

4° if F is a bounded Borel function on the boundary of A such that \F\ ^ x and if 
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we put 0k(F9 A9 y) = £ (F(yi9..., yk„l9 bi9 yk9..., ym.x) - F(..., ai9...)) for each 

y ^ Lyi> ••*> yw-i] e ^(K ^ ) ' ^ e n ®* IS measurable and j®m-i Ok = 2*.||A||. 

Proof. See [7], p. 535, p. 545. 

(3.2) Theorem. Let An e 91, n e Jf9 and let lim ||^nJ| = 0. Then lim |An| = 0. 

Proof. See [8], p. 263. 
In what follows, <P \ G denotes always a bijective regular mapping of an open set 

0 7* G cz 0T into 0T9 H = $(G), W = 0~\ Dw = the functional determinant 
of W. If yl cr G, / : A -» W is given, then / D # is defined as follows: / • $(t) = 

-/(y(0)i-v(0|.^*(^ 
(3.3) Theorem. Let <J> | G be given as above. Let A be compact9 A cz G. Then there 

exists ceM such that for each measurable set B cz A the relation ||#(-B)|| ^ c||B|| 
holds. 

Proof. See [5], p. 255. 

(3.4) Theorem. Let $ \ G be given as above. Let A cz G be compact and let fe 
Sf(A) be given. Then $(v(f)) = cr(/ • <f>). 

Proof. This is a simple consequence of the transformation theorem for Lebesgue 
integrals. 

4. In this section two euclidean integrations, denoted here (#?, co)9 (2£9 co)9 will be 
defined. 

For m = 1 we put (jt?9co)\J1 = (^, P)\JX. Let m 2> 2, KeJm9 and let £„, 
n e ^V9 be measurable subsets of @T. We write Ew A a j K iff 

1° En c K, n e ^T, 
2° Urn IB.! = 0, lim diam (£;) = 0, 
3° d(a, K- En)>09neJT. 

It is clear that if especially En are m-dimensional intervals, then En A a | K has 
the meaning introduced in section 1. 

(4,1) Definition. Let K ejm9 m = 2, and let fe^(K) be given. We say that / is 
co-integrable over K iff (4.1.1) either fe JS?(K); in this case we put (co) jKf = jKf 
(4.1.2) or o(f) = {a(1),..., a(r)} 5̂  0, and a finite limit 

(4.1.3) lim f / 
JK- U £«<•> 
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exists, whenever £( ,) A a(i) | K, i = 1>..., r; in this case we put (<o) J K / = the limit 
in (4.1.3). 

The set of all co-integrable functions on K will be denoted by Jf(K). 

(4,2) Lemma. Let K ejm, m ^ 2, f e3T(K), and let a(f) = {a(1),..., a(r)} ^ 0. 
Thenfe tf(K) iff £(0. -4 a(i) | K, i = 1,..., r,y = 1, 2, implies 

lim(ľ r / - [ Л = 0. 
V J к - . y E..,i<f> J к - y £„,2<

f> / 

Proof. Clear. 

(4,3) Lemma. Let KeJm9 m ^ 2, and Zef f e£f(K) be given. Let K = It + I2„ 
Thenfe JtT(K) iff f \ Is e Jf(lj)9 j = 1, 2; moreover, 

Иľ/-(a>)ľ/ + (æ)f / 
J K J /l J Ь 

ho/ds in f/iiS case. 

Proof. Let fe3tf(K). Suppose for simplicity that o(f) r\Ix nl2 = 0. Let e.g. 

<r(/| j 1) = {a(1),...,a(')}, <r(/ | j 2) = {a('+1),...,a(s>}. Let £(0- A a(i> | J., i = 
= 1,..., r, j = 1, 2, and let £ ( 0 = £ ( 0 = £ ( 0 A a(i) | J2, i = r + 1,..., s. Then, 
according to (4,2), 

hm(T m f-\ m /)=-lim(T f / - [ r / ) « - 0 ; 
V J K - U -Sn,l<'> JK- U £„,2<

i> / V J / l - U ^n,l<l> J l l - U -?»i,2<f> / 
1=1 1=1 i = l 1=1 

hence fe ^(Ix). The proof for other cases is similar. 
If, on the other hand, / 1 Ij e ^f(Ij), j = 1,2, then (4,2) gives immediately that 

fetf(K). 

(4.4) Corollary. Let Abe a division of K e/OT (= the cartesian product of divisions 
of 1-dimensional factors of K; see [6], p. 38 for a precise definition). Let A = 

v 
= {Il9..., Ip}. Then (co) jKf = ]£ (co) jjjf iff one side has a meaning. 

/ = i 

(4.5) Theorem. For each KeJ9 Jt?(K) c < (̂K); for each feJf(K)9 (co) $Kf = 

- ( * ) ! * / . 
Proof. This follows from (2,3). 

(4.6) Theorem. ( ^ , o>) e g, («?f, co) c (^, P). 

Proof. (II) Using (4,4), it is sufficient to consider the case when cr(ft) u a(f2) has 
at most one point on K; but then it is obvious. 

(IV) This follows from (4,3). 
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Hereditarity of (jf9 co) may be proved similarly to (4,3). Continuity of («#*, co) is 
a consequence of (4,5) and (2,1). 

(4,7) We introduce the integration (Jf, co). 
Form = 1, put^T.G)))/! **(&9P)\JX. Let m = 2, w e / , Ke/W. We say that 

/e-T(K)iff 
i°/e«r(K), 
2° for each a = [aA,..., am] e K and each ke {1,..., m}, there exists a relative 

(with respect to K) neighbourhood Q of a such that the function x ~> Ffc(x), x e Q 
defined by 

çxk 
Fk(x) = (P) f(xí9..., xfe_ ,̂ ř, xfc+x,..., xш) 

J ak 

dí 

is bounded and Borel measurable on Q. 
Put further JT(K) = j§P(K) © iT(K) = { / ; /= g + ft, g e jSf(K), h e W(K)}. 

(4,8) Theorem. For eacft K e/ , <2f(K) c j f (K). 

Proof. Le t /e J?(K). To prove the theorem, it is sufficient to suppose that m ^ 2, 
a(f) = {a}. We may also suppose that / e ^ (K ) . Let EnJ A a | K9 j = 1, 2. Let ;Q 
be a relative neighbourhood of a such that F(x) = JJJ /(f, x2,..., xm) At is in absolute 
value S x on Q. 

We have 

If / - f / i s f fj+f /|; 
\JK-En,i jK~En,2 JEn,i-En,2 | JE„, 2-En,l ! 

hence it is sufficient to prove that lim$Enl„En2f = 0. Put EnX — £„ 2 = A„ for 
short; suppose further that An <=: Q9 n e JT, Then, using (3,1), 

< f / = f ( f / ( ' , y) dt) dy\ = \! £ F(bh y) ~ F(ah y) 
\jAn I \Jmm'i \J(An)yl J j |J^m-lJ - l 

£ 2x f r = %||AJ 

which proves the theorem. 

(4,9) Theorem. («2T, G>) e g. 

Proof. Simple. 

5. In this section we introduce some properties of integrations, which are fulfilled 
for Lebesgue integration. 
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(5.1) Definition. Let (&, i) e % be given. We say that (/F, i) has the property (Fub) 
iff there exists an (&\, ix) e % such that, for each m e JT, m £: 2, the following is 
satisfied: if m = r + s, r, s e JT, K ejm, Kx e Jr, K2 eJs,K = Kx x K2,fe&(K\ 
then 

1° y -* /(y> z) e ^"i(-^i) for almost all z e K2, 
2° ( * ) / r / - ( h ) M * i ) / * . / ) . 
We write then (^, i) (Fub) (^u ix). 

Remark 1. As it is known, (Se, L) (Fub) (Se, L) . 

(5.2) Theorem. (0>, P) (Fub) (&, P). 

Proof. This is a simple consequence of (2,2). 

(5.3) Definition. Let (&, i) e gm, me JT, be given. We say that (&, t) has the 
property (Tr) iff there exists an {jyu ix) e gm such that whenever K ejm, fe^(K), 
^ | G is a bijective regular mapping of an open set G z> K, then 

1 7 D * e ^ ( # ( K ) ) , 
2°(0J*/=('i)/w/D*-
We write then («T, t) (Tr) {&l9 Al). 

Remark 2. As it is known, (Se, L) (Tr) (Se, L), for each m e JT. 

(5.4) Theorem. (jP, co) (Tr) (jf, co), for each meJf. 

Proof. Let K ejm, m = 2, fe je(K), c(f) = {a(1),..., a(r)}. Then a(/ D <f>) = 
= (<P(a(1)),..., #(a(r))}. Let Kj e/m be such that Kx => #(K). Using a suitable division 
of K1? we may construct a finite set St of intervals I ejm such that 

\° lx,l2eSK,lx ^/2==>(/1nJ2)° = 0, 
2° <f>(K) c (J# c #(G), 
3° for each J e Si, a(f D #) n J has at most one point, lying then in 1°. 

To prove the theorem, it clearly suffices to prove that, for each I e 5t, 

(5.4.1) / D * | J e J f ( / ) . 

This is true provided o(f D #) n J = 0. Let a(/ D #) = #(a(i)), and let En A 
-4 #(a(,)) \l, ne JT. Then there exists an index n0eJf and K2 ejm such that 

4° K2 c y(i), 
5° !F(£„) A a(,) | K2, n £ n0, n e JT 

as it follows from (3,3). As jr-Enf D # = j^d)-w(En)f and / | K2 e Jf(K2), we see 
that (5.4.1) holds. 
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(5.5) Definition. Let (#", i) e gm, me JT9 be given. We say that (&, i) has the 
property (Four) iff there exists an (^u h) e 5 m

 s u c h that whenever K = <#i, bt> x 
x ... x <am, bm} eJm,fe^(K), and gt \ <af, bf> -> M, i = 1, . . . , m are of bounded 
variation, then*/gi . . . gm e^(K) (here, the product is defined similarly to (2,4)). 

We write then (&, i) (Four) ( # \ , it). 

Remark 3. (jSf, L) (Four) ($e, L), for each meJf. 

(5.6) Theorem. (^, P) (Four) (&, P). 

Proof. This is a simple consequence of (2,4). 
Let K ej, N e Jf u {0}. We write 9 e #N(K) iff there exists an open set G 3 K 

such that q> has continuous Nth-order derivatives on G. We put \(p\N = max {|̂ >(x)|, 
|D<p(x)|,..., \DN <p(x)\; x e K } , DJ denoting a differentiation operator of the j-th 
order, 0 ^ ; ^ N. 

(5.7) Definition. Let (#", 1)egffl,me JT, be given. Let Ne JV u {0}. We say that 
(F91) has the property (Pr N) iff there exists an ( ^ l 9 t^e gm such that whenever 
/ e 3F(K), cp e ^N(K), then fq> e ^ i ( K ) . 

We write then (#*, t) (Pr N) (&u ix). 

Remark 4. (if, L) (Pr 0) (if, L). 

(5.8) Theorem. (29 co) (Pr 1) (&, co). 

Proof. Let/e<2f(K), KeJm, m ^ 2, a e K . It is evidently sufficient to suppose 
that feiT(K). Let ^ e ^ ( K ) and put F(x) = (P) jx

a\f(t, y)dt, x = [xuy]eK. 
Then (P) ft /(*, j;) <p(*, y) dt = F(x) <p(x) - jx

a\ F(t, y) (dcpjdt) (t, y) dt; the right-
hand side shows immediately that fcp e W(K). This proves the theorem. 

(5.9) Definition. Let (&, c)e%m, me JT, be given. Let Ne JT u {0}. We say that 
(#*, i) has the property (Distr N) iff it has the property (Pr N), i.e. (#", 1) (Pr N) 
(Vi,*i) for some (<FU h)e^m, mdif cpne^N(K), \im\cpn\N = ^\im(h)$Kf(pn = 0. 

We write then (#", 1) e (Distr N). 

R e m a r k 5. As it is known, (Se, L) e (Distr 0), for each m e JV*. 

(5.10) Theorem. ( # , co) e (Distr 1). 

Proof. Let e > 0 be given. L e t / e ^f(K), K e Jm, m = 2, cps e ^l(K), lim ||<pj t = 
= 0. We may suppose that a(f) = aeK. Let F(x) = (P) j x \ f(t, y) dt, x = 0, 
and suppose that ||<P/||i ^ 5 j 6 *̂ V, |F| _; x on a relative neighbourhood Q of a. 
Let £„ -V a I K, EM c .Q; then 

f fJ ^ I f / J +1 f fq>j 
JK I |JK~E„ I \J En 
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for each ;, neJT, Using (3,1) we have immediately that 

If f%\ = f (T MdAdy = 
J J En I J ^ m ~ - \J (E„) y - / J 

| r /r(y) /»*>. \ I 

= (I /(t.^^^dfjd,. = 
|J«»n-l V = l Jfl f / j 

= f I r ^ i . y) <pfrt> y) - I^-. y) ?/-.. .v) - P'-^. y) -J- (t. y) dtl dJ s 
J « — i » = i L J«< dt J I 

* f (2^rW + x2|(£„)i|)d^x2(||£n|| + |£„ |) , 

for each j, n e ^V. 
Choose n0eJT such that x2(||Fno|| + \Eno\) < e/2; now it is sufficient to find 

jo e «/V such that j ^ j 0 => |f K-En f<Pj\ < £/2- T h i s proves the theorem. 

6. We introduce the following concept. 

(6,1) Definition. Let (J5*, t ) e g b e given. We say that (J^, t) is a quasi-Lebesgue 
integration iff there exists an (J^ , At) e % such that 

(6.1.1) ( ^ 0 ( * * ) ( ^ i . * i ) 

and for each me Jr 

(6.1.2) (^Ol-UTrM^i.ti)IL. 
(6.13) (^,t)|L(Four)(^1)tl)|jra 

and for some N e JT u {0} 

(6.1.4) ( ^ 0 | i « ( P r ^ ) ( ^ * i ) | / « 
(6.1.5) («F, Oe(DistrN) 

(6.2) Theorem. («^, co) is a quasi-Lebesgue integration. 

Proof. This is a consequence of the preceding theorems. 
From Remarks 1 to 5 of section 5 we see that if (^, t) = (j*?, L), then (#"l9 it) 

may be chosen equal to (#", i). 

(6.3) Problem. Does there exist any other euclidean integration possessing the 
above property? 

7. Let us still mention another example of integration, which was studied in [5]. 
For each KeJu put ®(K) = {fe&(K)\ o(f) is countable}; see also [9]. For 

each / e <§(K), put (/?) jKf = (P) JK/. 
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If m = 2, K ejm, let a(K) = {/e #>(K); (p) J K / defined in [5] exists}. 

(7.1) Theorem. (@, p) e %. 

Proof. The only point here is to prove continuity for m = 2. To this end, we use 
the following lemma (for notions mentioned below, see [5]). 

(7.2) Lemma. Let (p be an additive function defined on a ring of sets Dom (p. 
Then <p is continuous with respect to the convergence -.» iff given e > 0, C > 0, 
B e Dom cp, there exists a 8 > 0 such that 

(7.2.1) |-4|<<5, | | i l | | < C , AcB, A e Dom (p=>\cp(A)\ <e. 

Proof. 1° Let <p be continuous with respect to ->. Suppose on the contrary that 
there exist s > 0, C > 0, B e Dom (p such that for each n e JT, there exist An e 
e Dom ip such that \An\ < n"1, \An\ < C, An c B, \(p(An)\ = e. Then B - Ane 
e Dom cp, B - An -> B, and lim <p(# - 4,) = lim (<p(B) - <p(-4n)) ¥> <p(B). This is 
a contradiction. 

2° Let the conditions of the lemma be fulfilled, and suppose that Bn -+ B, Bn, B e 
e Dom (p. There exists C > 0 such that ||B - J?B|| < C. Let e > 0. Let <5 > 0 be 
such that (7.2.1) is fulfilled for these B, C. As \B - Bn\ -» 0, there exists n0 such that 
n > n0 => \B - BB| < 5. Then n > n0 => |̂ >(J5) - <p(Bn)\ = |<p(£ - £„)| < e. Hence 
lim <£>(#„) = <p(B), which proves the lemma. 

To prove the theorem, put B = K ejm, q> = (j3) J. Let C = ||K||. Given s > 0, 
there exists <5 > 0 such that (7.21) is fulfilled. If IeJm(K), then evidently ||/|| £ C, 
J e Dom <p. Hence, according to (7,2), \l\ < 8 => \(p(l)\ < B, which proves the con­
tinuity of (P) J. 

(7.3) Let us still mention that in view of [5], Theorem 11, p. 255, (@, P) (Tr) (@, p) 
for each m *> 2; for m = 1 this is well-known. 

Properties (Fub), (Four), (Pr), (Dhtr) have not been investigated for this type of 
integration. 

(7.4) Let us also note that for m = 1, it may occur that |tx(/)| > 0 for e.g. fe 
e 0>(K), with properties (Four), (Tr),... still holding true. I do not know any Tri­
dimensional (m 2£ 2) integration with this property. 

8. We show that iT(K) - J$f(K), Ke/2, is nonempty. Instead of [x l f * 2 ] , w e 

write [x, y]. 

(8,1) Theorem. Let Q = V(*2 + y2). Define f as follows: f(0, 0) = 0, f(x, y) = 
=- Q"~2 sin £~3, Q #= 0. Tften 

1° / is continuous on ^t2 — [0, 0], 
2° F(x, y) = (P) j*S/(f, y) dr is continuous on M2, 
3°*(/) = [0,0]. 
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Proof. 1° is clear. 

2° We show that (P) Jo/(*>y)df exists. It suffices to consider the case y = 0, 
x > 0. Let 0 < e < x. Then J*f(t9 0) dt = J* t~2 sin r 3 dt = i J*~4 z~2/3 sin z dz 
so that existence of (P) $of(t> 0) d* follows. 

We show that F is continuous at [0, 0]. Let first x > 0, y > 0, ̂ J(x2 + y2) = r < 1. 
Then # / (* , j,) d* = JS (y2 + r2)"1 sin (y

2 + *2)"3 / 2 dt = j ; c^ V - y2Ym • 
. sine~3d£, as we get using t = ^(Q2 - y2). Let j ^ = min(y + >>4, r). Then 
J j . . . = JJ1 ... + j r

y i . . . We estimate the first integral. It holds 

[ Y V - y2)~1/2 sin <r3 dJ ;g f Y 1 ^ + y)"1/2 (Q - y)~1/2 d<? ^ 

£ [Y3/3(<f - y)-1/2de = 2y~*l2(yi - j;)1/2 g 2 Vy ^ 2Vr. 

To estimate the second one, we suppose that yt < r. We have jr
yi ... = jr

yi Q3(Q2 — 
- y2)~1/2 Q~4 sing"3 dQ. The derivative of the function X(Q) = Q*(Q2%- y2)~1/2, 
f2G<iy1, r> equals to Q2(2Q2 - 3j;2)(e2 - y2)"3/2, and is therefore negative for 
Q < y y/h positive for Q > y /̂f. Supposing r g y /̂f, the function X attains its 
maximum for Q = yl9 and A(yx) = X(y + / ) = yj(y)(l + y3)3 (2 + y3)""1/2; as 
y < 1, we have A(yt) < 4N/(2,y). If r > y^Af, then A attains its maximum on the 
boundary of <j>l5 r>. It holds X(r) = r3x~x; as 2r2 > 3}>2, we have 3x2 > r2 so that 
X(r) < r2 ^J3. Hence 0 < X(Q) < 4 «J(2r)9 Q e <yls r>, in each case. 

Now put \/J(Q) == £~4 sin Q~3 and estimate Jj. X(Q) I//(Q) dQ. It is immediate that, 
for each kl9 k2 > 0, |J£* \j/\ g f • The interval <yl5 r> may eventually be divided into 
two subintervals on each of which X is monotone. Using there the second mean-value 
theorem, we get \j'yi fy\ g 4. 4^(2r) . f < 16 ^/r. Hence \j; .. .| g 16 ^(r) + 2 V(r) = 
= 18Vr. As F(-x9y)= -F(x9y)9 F(x, - y ) = F(x, y), F(0,0) = 0, we have 
|F(x, y)| < 18 Jr for each [x, j;] such that x ?- 0, x2 + y2 < 1. As F(0,0) = 0 and 
F(x, 0) is continuous on 0t9 the continuity of F at [0, 0] follows at once. 

Further, F is continuous at each [x, y\ such that y i=. 0. Let x0 > 0; we show 
that F is continuous at [x0, 0]. Let e > 0; let 8t > 0 be such that |x| g 8l9 \y\ g ^ = > 
=> |F(x, y)\ < e/3. The function G(x, y) = J^ f(t9 y) dt is clearly continuous at 
[x0, 0]; further we have F(x, y) = jx

0 ... = J*1 ... + J* ... = F(<519 j>) + G(x, y). 
Choose a neighbourhood Q of [x0, 0] such that [x, y] e Q => |G(x, y) - G(x0,0)| < 
< e/3. Then [x, y] e Q9 |y| g <5X => |F(x, y) - F(x0, 0)| = \F(8l9 y)\ + |F(*t, 0)| + 
+ |G(x, y) - G(x0, 0)| < £. This proves 2°. 

3° Suppose on the contrary that (L)jcf9 C = {[x, j ] ; x2 + y2 S 1}> exists. 
Then also (L) fc*. r"11 sin r"3 dr d(p, C* = {[r, <p]; 0 g r g 1, 0 < <p < 2TT}, exists, 
and using Fubini's theorem we get that (L) JJ r"1 sin r""3 dr = (L) i J? z"1 sin z dz 
exists, which is a contradiction. This proves 3°. 
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