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Časopis pro pěstování matematiky, roč. 93 (1968), Praha 

LIAPUNOV'S DIRECT METHOD IN ABSTRACT 
CONTROL PROCESSES 

JOZEF NAGY, Praha 

(Received May 4, 1967) 

INTRODUCTION 

Since 1893, when the famous Liapunov's fundamental memoir [2] concerning 
stability of motion has been first published, the analysis of stability problems forms 
the center of interest of many mathematicians and technicians dealing with the 
analysis or synthesis of dynamical systems, control systems, etc. A majority of papers 
devoted to this theme is concerned with physical systems, whose behaviour may be 
described by means of systems of ordinary differential equations. In the last decades, 
especially in connection with the study of optimal control processes, systems of partial 
differential equations and functional differential equations are very often used to 
describe a behaviour of such systems. 

In connection with the above mentioned variety of descriptions it appears desirable 
to make the analysis of stability properties of these systems as much as possible 
independent on the special type of equations describing their behaviour. 

One of the last attempts to solve this problem in a full generality is the concept of 
the abstract process introduced by HAJEK in his lecture on the second EQUADIFF-
Symposium in Bratislava in 1966 (see [1]). His abstract process seems to be the last 
step in the process of generalization of the concept of ordinary differential equation. 
(It is not surprising that this concept enables one to describe a behaviour of systems, 
described usually in the classical formulations in the terms of partial differential 
equations, difference-differential equations, functional differential equations, etc.) 
The definition of this abstract process is recalled and its basic properties are described 
in the first chapter of the paper. Using this concept, we introduce two basic concepts — 
an abstract control system and an abstract control process. The abstract control 
process is not, however, an abstract process, although it is shown to share many 
basic properties with an abstract process. In the second and the third chapter several 
stability properties of certain sets, m, with respect to an abstract control process, p, 
are discussed. In this discussion we do not use any special continuity structure on the 

299 



domain of the relation p (except a very simple structure induced by a certain non-
negative function g assuming the zero value precisely on the set m). To illustrate the 
analogy between our problem and the classical stability problem for a system of 
ordinary differential equations in Rn, we set up a correspondence between our control 
process p and the system of differential equations, between the set m and the trivial 
solution of the differential system, and finally between the function g and the distance 
(in Rn x R1) of a point (x, a) e Rn x R1 from the trivial solution. In analogy with the 
situation in differential equation theory we introduce the concept of a solution of 
a control process. Since in our theory we do not assume a uniqueness of solutions 
(of the intial value problems for a given initial value) it seems to be useful to divide 
the analysis of the stability problem into two parts. 

In the second chapter we occupy ourselves with the problem of the so called 
strong stability of m. Intuitively and loosely speaking, the set m is strongly stable 
with respect to a control process p if each solution of the initial value problem with 
an initial value near the set m (where the measure of this nearness is the corresponding 
value of the function g) remains near this set m also in the further time instants. In 
this chapter Liapunov's functions will be used to set up necessary and sufficient con­
ditions of the strong stability, the strong asymptotic stabiHty, and the corresponding 
uniform modifications of these concepts. f 

In the third chapter similar investigations are carried out for concepts of a weak 
stabiUty, an asymptotic weak stabiHty and their uniform modifications, where the 
set m is said to be weakly stable if for each initial value problem with the initial value 
near the set m there is at least one its solution remaining near m in the following 
time instants. 

In the last chapter several possibilities of analysis of control processes on abstract 
set using control processes on the set of non-negative reals are shown (see also [3]). 

STANDING NOTATION 

The symbols R1, R°, R+ and R# denote the sets (-00, +00), <0, +00), (0, +00) 
and (—00, +oo>, respectively. R denotes a given non-void subset of R1, P and U 
denote given abstract sets, / and /° denote the intervals (0,1> and <0,1>, respectively. 
For a given a e R1 let [a] denote the integer such that [a] ^ a < [a] + 1. To 
simplify the writing of some formulas, we shall use the following notation: Q = 
= ? x I/, W=*U x P x U, T= P x U x P x U. Since one of the most im­
portant concepts used in the paper is is the concept of the relation, we introduce some 
notation and conventions concerning the relations. A relation r between sets X and Y 
(in this order) is a subset of the cartesian product Y x X. If a pair (y, x) e Y x X 
belongs to the relation r, we prefer to write yrx instead of (y, x) e r. If r is a relation 
between sets X and 7, then the relation inverse to the relation r is the relation between 
Y and X denoted by r"1 such that xr"1 yiS y r x. A relation r between X and 7 is 
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called also a relation on X. The identity relation on X is the relation lx such that 
y lx x iff y = x. If r is a relation between X and F, s a relation between Y and Z, 
then s o r denotes a relation between X and Z such that z s o r x iff there is a y e Y 
such that z 5 y and >> r x. A relation r between X and yis called a partial map out of X 
into y (and is denoted by r: X -» y) iff r o r"1 c ly. Given a relation r between X 
and y, let domain r denote the set of all x e X such that there is at least one y eY 
such that y r x. A partial map r: X -• y is termed a map iff domain r = X. In what 
follows, we use often the projection maps defined as follows. Let there be given 
a system of sets Xs for; = 1,2,..., n. For each ordered set (ix, i2,..., **) of integers is 

such that 1 ^ is < is+ x S n with l g s ^ f e - 1 define 

P*o)tut2 tk >XX x X2 x ... x Xn-*Xit x Xh x ... x K/fc 

so that for aj e X,-, J = 1, 2,.. . , n it holds 

ProJ*i.i2M..,ik(*i» fl2> •••> ««) = (^i i? «i2? ••.> a i J • 

In the paper we shall analyse several properties of some relations between sets of the 
type X x R and Y x R where X and Y are abstract sets. We suppose that the rela­
tion r between X x R and Y x R fulfils always the following condition 

(1) (y,0)eYxR, (x,*)eXxR, (y, fi) r (x, a) => p £ a . 

Each such relation r defines a system 

(2) {pra : p £ a in R} 

of relations ^ra between X and y so that 

(3) yfaxo (y, 0) r (x, a) ; 

and conversely, each system (2) defines by (3) a relation r between X x R and Y x R. 
With each relation r between sets X x R and Y x R we associate the following sets: 

Er = domain r ; 

&r = {(0> ^ « ) e K x Z x R:(y,6)r (x9 a) for some y eY) ; 

erax = {y e Y: (y, 6) r (x, a) for a given (0, x, a) € Dr} . 

Finally, given a relation r between X x R and y x R, we define a very important 
partial map 

sr: Er ~> R# : er(x, a) = sup {jS € R : (j3, x, a) e .Dr} 

(with the l.u.b. taken in the extended real line). 

301 



1. ABSTRACT CONTROL PROCESS 

1.1. In this chapter we remember a notion of a process [1] and we use this concept 
to define a control system, a control process and their several basic properties. The 
notation and conventions introduced in the preceding part will be used throughout. 

1.2. Definition. Let X be a set, R c R1, h a relation onX x R satisfying the con­
dition 

(1) pha implies p ^ a for all a, P e R . 

A relation h is said to be a process on X over R iff 

(i) aha cz lx for all a in JR; 

(ii) fa o pha = yha for all y ^ p *> a in JR. 

A process h is termed local (global) iff e,.(x, a) > a (sh(x, a) = + oo) holds for all 
(x, a) € £h. 

Before illustrating the concept of a process let us introduce several new concepts 
related to the process. 

1.3. Definition. Let h be a process on X over R. s is said to be a solution of a pro­
cess h iff 

(i) s : R -> X; 

(ii) domain s is an interval in R; 

(iii) (s(0), 0) h (s(a), a) holds for each 0 § a in domain s. 

1.4. Definition. Let h be a process on X over i?. The process h is said to be solution-
complete iff, corresponding to each couple (x, a), (y, p) in £h with (y9 P) h (x, a) 
there exists a solution s such that s(a) = x, s(p) = y. 

1.5. Lemma. Let h be a process on X over R and let su s2 be solutions of h such 
that domain st n domain s2 4= 0 and sl(6) = s2(6)for all 9 e domain st n domain s2. 
Then st n s2 and st u s2 are tf/so solutions of h and there hold domain (st n 
n s2) = domain sx n domain s2 and domain st u domain s2 = domain (st u s2). 

Now let us introduce a special type of process, which generalizes the known concept 
of a differential equation with a periodic right hand side. 

1.6. Definition. A process h on X over R is said to admit the period x iff t e R1 and 

holds for all j8 ^ a in R. 
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1.7. Example. In this paragraph we shall describe an example exhibiting the basic 
interpretation of the concept of process. 

Consider an initial value problem for an ordinary differential equation 

in euclidean rc-space Rn, formulated in the following classical manner. Let there be 
given an open subset £ in Rn+1 and a continuous mapping/: E -* Rn. Given (x, a) e 
e E, we have to find a partial map s : R1 -> Rn (which need not to be uniquely 
determined by the point (x, a)) such that 

(i) domain s is an interval in R1 (either degenerate or nondegenerate); 
(ii) s(a) = x; 
(iii) if the interval domain s is nondegenerate, then ds(9)jd9 = f(s(9), 9) holds for 

all 9 e domain s (with the corresponding modifications in the end-points of the interval 
domain s). 

A partial map s is then called a solution of the initial value problem with the initial 
value (x, a). With the initial value problem one may associate a process h on Rn in 
the following way: (y, p) h (x, a) iff there exists a solution s with the initial value 
(x, a) such that s(P) = y. 

1.8. Definition. Let P, U be abstract sets, Q = P x U. A pair (q, s) is said to be an 
r-process on Q iff q and s are processes on Q satisfying the following conditions: 

(i) (y, v, P) q(x,u, a) implies v = u; 
(ii) (y, v, P) s (x, u, a) implies y = x. 

1.9. Remark. From the preceding definition there follows directly that for each 
r-process (q, s) on P x U the pair (s, q) is an r-process on U x P. 

1.10. Example. Consider the initial value problems for the systems of ordinary 
differential equations 

(.) £-*.-.«. £ - . 

with / : Rw+m+1 ~-> Kn, g : RB+M+1 -> Rm continuous. The method described in 1.7. 
enables us to associate with each of these initial value problems a process on Rn x Rm. 
Denoting q and s the process associated with the system (1) and (2) respectively, one 
has an r-process (q, s) on R" x Rm. 

Now, let us formulate one of the basic definitions of the paper. 
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1.11. Definition. Let there be given an r-process (q9 s) on Q. A control system t, 
generated by the r-process (q9 s), is the relation t on Q x Q x R, defined in the 
following manner: 

(i) domain *„= {(x, w, y, v, a) : (x, u, a) e domain q, (y, v, a) e domain s}; 
(ii) let (x, u9 y9 v9 a) e domain t be given; 

if 9 6 <a, [a] + 1), then define 

etjx, u9 y9 v) = {(xl9 u9 y, vt) : (xl9 u) 0qa (x, w), (y9 vx) esa (y9 v)} ; 

if 9 = [a] + 1, then define 

0ta(x9 u9 y9 v) = {(xl9 vl9 xl9 vt) : (xl9 u) M+1qa (x, u), (y, vx) [ a ]+1sa (y, v)} ; 

if fc —t 1 and 0ta is defined for all 9 e <a, [a] + fc>, then for 9 e <[a] + fc, [a] + 
+ fc +1> define 

eta = oh<*l + k ° M+kta 

whenever the right hand side is defined. 

1.12. Lemma. A control system t, generated by the r-process (q, s) on Q, is 
a process on Q x Q x R. 

Proof. According to 1.11., t has the properties 1.2. (1) and 1.2. (i). It remains 
therefore to prove that t has also the property 1.2. (ii), i.e. we have to prove that 

1) eta = 0tp a pta 

holds for each a ^ P ^ 9 such that at least one side of the relation (1) is defined. To 
prove this assertion it suffices to show that for each positive integer fc there holds the 
following proposition T(fc): 
Let reals a, /?, 9 are such that a 5| /? <I 9 ^ [a] + fc. Then the relation (1) holds 
with these a, /}, 9. 

First we prove the proposition T(l). Let a :g ft <S 9 51 [a] + 1 are given and let 
(x2, u9 y9 v2) 0ta (x, u9 y9 v). Then (x2, u) 0qa (x, u), (y, v2) 0sa (y, v) and since q and s 
are processes, corresponding to each /} e <a, 9} there exists a point (xl9 u, y, vx) so 
that (x2, u) 0qp (xl9 u)9 (xl9 u) pqa (x, u)9 (y9v2) 0sp (y, vt)9 (y, vt) psa (y, v), hence 
(x29u9y9v)0tfi(xl9u9y9v1) and (xl9u9 y9vt) pta(x9u9 y9v) and according to the 
compositivity property (x2, w, y9 v2) 0tp 0 pta (x, u, y9 v). Hence the inclusion 0ta c 
cz 0tfi o fita follows. 

Now, let there be given j? € <a, 9} and let there be points (x, w, y9 v)9 (xl9 u9 y9 vt)t 

(x2, u9 y9 v2) such that (x2, u9 y9 v2) 0tfi (xl9 u9 y9 vt) and (xl9 u9 y9 vt) fita (x, w, y9 v). 
Then there hold also (xl9 u) pqa (x, w), (x2, u) 0qp (xl9 u), (y, vt) psa (y9 v)9 (y9 v2) 0sfi 

(y9 vt) so that (x2, u) 0qa (x, u), (y29 v) 0sa (y9 v), which is equivalent with (x2, 
w» y> vi) eta (x> u> y» v)9 hence 0tp o pta cz 0ta and proposition T(l) follows. 
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Suppose now that proposition T(k) holds for some fc = 1 and let a :g P S 0 ^ 
^ [a] + fc + 1 be given. If 9 S M + k, then according to the assumption the 
relation (l) holds. Suppose therefore that [a] + fc < 9 ^ [a] + fc + 1. According 
to 1.7. (ii) there holds eta = eh*i+k ° i>]+k*a- Now, if f$ e <a, [a] + fc), then according 
to the assumption there holds 

ot* — oh*]+k ° w+ktp ° pi* = efy ° pt<z > 

if [a] + fc < /? ^ 0 ^ [a] + fc + 1, then proposition F(l) .gives etial+k = 0tp o 
o^r[a]+fc so that 

eh = 0*0 ° ph<*l + k ° [a] + fc*a = 0*0 ° 0*a > 

hence T(fc + 1) follows, which finishes the proof of Lemma 1.12. 

1.13. Remark. Considering that the whole theory of the paper is built up in abstract 
concepts, it seems to be convenient to show at least on an example a motivation of the 
introduced concepts, borrowed from the theory of control systems. Thus we return 
to the concept of r-process (q, s) described in 1.10. As a physical model of this 
r-process we may take an arbitrary couple of physical systems Q and S, whose beha­
viour is described by the equations 1.10. (1) and 1.10. (2), evidently, generally non-
stationary. Then z is an n-dimensional phase coordinate of the system Q and an 
n-dimensional parameter of the system S, and similarly, w is an m-dimensional phase 
coordinate of the system S and an m-dimensional parameter of the system Q. For the 
sake of simplicity we suppose systems 1.10. (l) and 1.10. (2) to fulfil the conditions of 
the existence and the uniqueness of solutions, i.e. given an initial condition, the 
corresponding initial value problem has a uniquelly determined solution, which is 
supposed to be defined on a sufficiently large interval. 

Consider now a new system P, created from the two systems Q and S, whose 
behaviour may be formally described in the following way. 

Let (x, u, a), (y, v, a) be points in Rn x Rm x R1. According to the assumption 
there exist two uniquelly determined solutions 

fc[x, u, a] : <a, [a] + 1> -> Rn x Rm , 
and 

l[y, v, a] : <a, [a] + 1> -> Rn x Rm 

of the initial value problems 1.10. (1) and 1.10. (2) with the initial values (x, u, a) and 
(y, v, a), respectively, i.e. such that fc[x, u, a] (a) = (x, u), l\y, v, a] (a) = (y, v). 
Now, the behaviour of the system P may be described by the system of partial maps 

eta : R
n x Rm x Rn x Rm -> Rn x Rm x Rn x Rm 

defined as follows: 

for (x, u, y, v, a) e Rn x Rm x Rn x Rm x R1, 
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if 0 6 <a, [a] + 1), then (xl9 w, y9 vx) = 0ta (x9 w, y9 v) iff 
(xl9 u) = fc[x, w, a] (0), (y, vt) = /[y, v, a] (0); 

if 0 = [a] + 1, then (xl9 vl9 xl9 vt) = M+1ta(x9 w, y9 v) iff 
(xl9 u) = fcfoc, w, a] ([a] + 1), (y9 vt) = /[y, t;, a] ([a] + 1); 

if 0 e <[a] + fc, [a] + fc + 1> and if i<xl+kta(x9 w, y9 v) is defined, then 
(*i> "i> yi> Vi) = *'*(*> w> y> v) iff 

(x1? wx) = fcfproji o lal+kta(x9 w, y, v), proj4 o w + k 0 c , w, j , v), [a] + fc] (0), 

(yi> *>i) = /[prqh o M+kta(x9 w, y, t;), proj4 o ial+kta(x9 w, y, v)9 [a] + fc] (0). 

In the above introduced physical interpretation the control system p may be described 
thus: In the initial instant the corresponding initial values of phase variables and 
parameters of both systems Q and S are arranged. Since the instant a to the instant 
[a] + 1 the behaviour of each of the both processes is uniquely determined, indepen­
dently of the behaviour of the another process, by the physical laws given by the 
inner structure of the system and the initial values of the phase variables and para­
meters. The values of the parameters of the both systems remain in this whole time 
interval constant. In the instant [a] + 1 the values of the parameters are changed 
so that the parameter of the system Q is adjusted to the instantaneous value of the 
phase variable of the system S and vice versa. The values of the phase variables of 
the both systems remain unchanged. Now, with the "initial values" adjusted in the 
described manner, the behaviour of the both systems is again uniquely determined 
until the time instant [a] + 2, when the initial values of the parameters are changed 
again and this situation is periodically repeated. 

In analyzing control systems we are concerned very often with situations in which 
a behaviour of the system Q is simulated on the system S. Then the action of the 
system S on the system Q, described above, effects that the phase variables of the 
system Q vary in some prescribed domain. In this situation the system S is termed 
"controller" and the system Q "control process". Since in the problems of this type 
we are interested mainly in the behaviour of phase variables of the control process, it 
appears convenient to introduce the following definition. 

1.14. Definition. Let there be given a control system t on P x U over R. A control 
process p on P over R is a relation p between PxUxPxUxR and P x R 
defined as follows: 

(z, 0) p (x9 w, y9 v9 a) iff there exists (wl9 yl9 rt) e U x P x U 

so that (z, ul9 yl9 vl9 0) t (x, w, y9 v9 a) . 

A control process p is termed local (global) iff f is a local (global) process. 

1.15. Remark. Using the projection map a control process may be characterized as 
p = proj15 o t9 or, if {9ta} is the system of the relations associated with the relation t9 
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then the system {ePa}> characterizing the relation p, may be defined as 0pa = projx o 
°etm. 

If p is a control process of a control system generated by an r-process (q, s), then 
we say also that the process p is generated by the r-process (q, s). 

Consider in some details the situation arising when the control system t is generated 
by an r-process (q, s) on Q x R such that domain s c domain q and for each 
0 ^ a there holds 0sa c l Q . Let us try to find a correspondence between the behaviour 
of the control system t and that one of the process p. 

Let there be given (x, u9 y9 v, a) e domain t. According to 1.11. and the properties 
of the process s, for each 0 e <a, [a] + 1) there hold 

eta(x9 u, y, v) = {(z\ u, y, v) : (z\ u) eqa (x, u)} , 
and 

r«] + i'«(*> u> y> v) = {(zu v> zu v) - (zu u\al+1qa(x, u)} . 

Further, for each 8 e ([a] 4- 1, [a] 4 2) one obtains in the same way 

$ta(x, u, y, v) = etm+1 o lal+1ta(x, u, y, v) , 
hence 

eta(x, u, y, v) = {(zi, v, zl9 v) : (z'l5 v) eqw+1 (zu v) 

for some (zl9 v, zl9 v)e{al+1ta(x, u, y, v)} ; 

[a] + 2*«(*> "> y> V) = {(Z2> V, Z2, V) • (Z2> V) [a] + 2q[«] + l (Zl> V) 

for some (zl9v9zl9v)eM+ xta(x, u, y, v)} . 

Now it is seen that one may easily by induction prove the following proposition. 
Let there be given (x, u, y, v, a) e domain t and an integer k 7z 1. 

If 0 e ([a] 4- k, [a] 4 k + 1) and eta(x, u, y, v) is defined then 

e'«(*> w, y, v) = {(z'k, v, zk, v) : (z'k, v) eqm+k (zk, v) 

for some (zk, v, zk9 v) e ial+kta(x9 u9 y9 v)} ; 

if 0 = [a] + k 4 1 and ial+k+1ta(x, u9 y, v) is defined then 

[a] + fc+l*a(x> u> y> v) = {\zk + l> v> Zk + U v) : \zk+U v) [a] + fc+ lq[a] + fc (zk> v) 

for some (zk, v, zk, v) e lal+kta(x, u, y, v)} . 

This remark shows that for each initial value (x, u, y, v) e domain t and for any 
0 ^ [a] 4- 1 the behaviour of the system t is fully described by the behaviour of the 
process q. Especially, if u = v then this assertion holds evidently for eich 0 ^ a. 
Hence there follows directly the following proposition. 
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1.16. Lemma. Let a control process p be generated by an r-process(q, s)on Q x R 
such that domain s a domain q and for each 9 ~ a it holds QS^ C \Q. Then 

(z, 9) p (x, u, y, u, a) iff (z, 9) proj13 o q o proj1>2j5 (x, u, y, u, a) . 

1.17. Remark. In what follows, we use certain generalizations of methods of the 
Liapunov's stability theory for differential equations to study several stability and 
boundedness properties of control processes. It is seen that each control system t on 
Pxl7xPxUxR = TxjR defines a partial order U o n T x R as follows 

((x1, u \ y1, v1, a1), (x, u, y, v, a)) e U iff (x1, u1, y1, v1, a1) t (x, u, y, v, a) . 

It is therefore natural to set up the following definition. 

1.18. .Definition. Let p be a control process of a control system t on PxUxPx 
x U over R. A partial map 

V:Ep-+I° 

is said to be a Liapunov function of the control process p iff V is non-increasing 
along p, i.e. iff (xj, uj, yj, vj, a3) e domain V, j = 1, 2, (x2, u2, y2, v2, a2) t (x1, u1, 
y1, v1, a1) implies V(x2, u2, y2, v2, a2) = V(x\ u1, y1, v1, a1). 

1.19. Definition. Let p be a control process of a control system t on PxUxPx 
x U = P x W. A partial map s : R -» P is called a solution of the control process p 

iff there exists a solution a : R -> P x IV of t such that s = projx o cr. 

1.20. Definition. Let p be a control process of a control system t on P x Wover R. 
A partial map 

V:EP-+I° 

is said to be a weak Liapunov function of the control process p iff corresponding to 
each (x, w, a) e domain V there exists a solution v of the control process t such that 
domain a => <a, sp(x, w, a)) and V(a(9), 9) S V(a(0), p) hold for all a = p S 9 < 
< sp(x9 w, a) in R. 

1.21. Definition. Let p be a control process of a control system t on P x Wover R. 
The control process p is said to be solution-complete iff the control system t is 
solution complete. The control process p is said to admit a period x iff t admits the 
period T. 

1.22. Lemma. Let p be a control process of a control system t. Then 

(z>9) p (x, w, a), (x, w, a) t (x1, w1, a1) imply (z, 9) p (x1, w1, a1). 

Proof, see 1.14. and 1.12. 
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2. STRONG STABILITY OF SETS 

2.1. Notation. In this chapter we suppose given sets P and U, a control process p 
of a control system * o n P x U x P x U x P = Px W x R generated by an 
r-process (q, s) on P x U. In what follows we shall write E and D instead of Ep 

and Dp, respectively. In the whole following part of the paper we are given a non-
void set 

(1) m c P x R 

and a function 

(2) g : P x R ~> R° 

such that there holds 

(3) g(x, a) = 0 iff (x, a) € m . 

The sets domain p and domain V are interpreted in a twofold way, as subsets of 
Px J V x P o r o f P x U x P x U x J R , so that both the manner of the notation 
(x, w, a) e domain p and (x, u, y, v, a) e domain p are admissible and equivalent. 

2.2. Definition, m is said to be strongly invariant with respect to piff 

(9, x, w, a) e D , (x, a) e m , (z, 9) p (x, w, a) imply (z, 0) € m . 

2.3. Definition, m is said to be strongly stable with respect to p iff there exists 
a map 

(1) co:R x I -> / 

such that 

(2) (0, x, w, a) e D , g(x, a) = co(cc, Q , (z, 0) p (x, w, a) imply a(z, 9) = £ . 

2.4. Lemma. / / m is strongly stable, it is strongly invariant. 
Proof. Suppose that the lemma does not hold. Then there exist (9, x, w, a) e D 

and zeP such that (x, a) e m, i.e. g(x, a) = 0, and (z, 0) JP(x, w,), (z, 0)£ m, i.e. 
g(z, 9) = Q > 0. Then for each QX e (0, #) there holds g(x, a) = a)(a, f^) and 
g(z, 0) > Q19 which contradicts 2.3. (2). 

2.5. Theorem, m is strongly stable with respect to p iff there exist maps 

(1) V:E-+I°, 8.R-+I, ca0:RxI-*I, a : / ° - > / ° 

such that 

^o(a> C) -* 0 as C -* 0 and a e R; a increasing, a(r) -> 0 as r -> 0, wifh the following 
properties: 

(i) Vis a Liapunov function; 
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(ii) domain V 3 {(x, w, a) e E : (x, w, a) £ (x1, w1, a1) for s0me (x1, w1, a1) e £ 
wft/i ^(x1, a1) = <5(a)}; 

(iii) (x, w, a) e domain V, g(x, a) g coo(a, C) Jwp/y V(x, w, a) _ C; 
(iv) (x, w, a) ejiomain V implies a(g(x, a)) = V(x, w, a). 

Proof. Let m be strongly stable. Define a map 

(2) 5 : R -> / : 5(a) = co(a, 1) 

and a partial map 

(3) V:E-*I°: V(x, w, a) = sup {g(z9 0) : (z, 0) p (x, w, a)} 

whenever there exists (x1, w1, a1) eF such that g(xl
9 a1) = ^(a1) and (x, w, a) * 

(^wW). 
Further, define maps 

(4) co0 : R x I -> I : co0(a, C) = co(a, C) ; 

(5) a:I°->I°:a(r) = r . 

Now we shall prove that the maps (2) to (5) have the properties (i) to (iv). 
Ad (i): Let there be given (x1, w1, a1) e domain V and let (x, w, a) be such that 
(x, w, a) t (x1, w1, a1). Then for each (z, 0) satisfying the relation (z, 0) p (x, w, a) 
there holds, according to 1.22., (z, 0) p (x1, w1, a1), hence 

V(x, w, a) = sup {g(z9 0) : (z, 0) p (x, w, a)} = 

= sup {fl(z, 0) : (z, 0) p (x1, w\ a1)} = V(x\ w1, a1), 

thus Vis a Liapunov function. 

Ad (ii): Let (x1, w1, a1) e E be such that g(x\ a1) ^ ^(a1). If (x, w, a) t (x1, w1, a1), 
then, according to 1.22., corresponding to each (z, 0) with (z, 0) p (x, w, a) it holds 
(z, 0)p(x1, w1, a1). Hence using (2) and 2.3. (2) it follows g(z96) :g 1, so that 
V(x, w, a) is by (3) really defined and Vhas property (ii). 

Ad (iii): From (x, w, a) e domain V, g(x, a) = a>0(a, C) = c0(a, C)> (Z> #) P (*> w, a) 
there follows g(z9 9) = (9 hence V(x, w, a) = sup {g(z9 6) : (z, 0) p (x, w, a)} g C-

Ad (iv): Clearly, g(x9 a) e {g(z9 0) : (z, 0) p (x, w, a)}, hence g(x, a) = V(x, w, a). 
Now, let there exist maps (1) having properties (i) to (iv). First define a map 

C0 : R -» J with 0 < Co(a) < SUP {C e I' <̂ o(a> ^(0) < ^(a)}' an(* a m a P ^ ^ r o m 

definition 2.3. as follows 

(6) co(a9 C) = co0(a, a(C)) for C e (0, C0(a)> , 

(7) co(a, C) = ct)0(a, a(C0(a)) for C e <Co(a)> 1> • 

Now, it may be easily shown that for each (0, x, w, a) e D9 g(x9 a) _ co(a, C)» 
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(z, 9) p (x, w, a) and for some w1 e W with (z, w1, 9) t (x, w, a) there holds 

a(g(z, 9)) £ V(z, w1, 9) £ V(x, w, a) = a(C). 

Hence g(z, 9) = C and m is strongly stable. 

2.6. Remark. Condition (iv) in Theorem 2.5. may be replaced by the condition 

(iv)' (x, w, a) 6 domain V, V(x, w, a) = a(Q imply g(x, a) ^ C-

To prove this assertion it is sufficient to use the proof of Theorem 2.5. with the 
following two changes. The part Ad (iv) should be replaced by the following text 
Ad (iv)': If (x, w, a) e domain V such that V(x, w, oc) = a(£) = C» then, using the 
evident relation g(x, oc) ^ V(x, w, oc) one obtains g(x, oc) g C> hence (iv)' follows. 

In the second part of the proof it suffices to define the map o again by 2.5.(6) and 
2.5.(7). Now, let there be given (9, x, w, a) e D, g(x, oc) S &>(%, C) a n d (z, 9) such that 
(z, w1, 9) t (x, w, oc) holds for some w1 e W. Then, using 2.5.(6) and 2.5.(7) one easily 
obtains V(z, wl,9) g V(x, w, a) g a(Q, hence, according to (iv)', g(z, 9) ^ C-

2.7. Definition, m is said to be uniformly strongly stablewith respect to p iff there 
exists a map 

(1) il/ : / - > / 

such that 

(2) (9, x,w,ct)eD, g(x, a) ^ ^ ( 0 > (z> #) p (x, w, a) imply g(z, 9) ^ C . 

2.8. Theorem, m is uniformly strongly stable with respect to p iff there exist 
maps 

(1) V: E -* 1°, a,b :I° -> 1°, a increasing, b nondecreasing, b(r) -+ 0 as r —> 0, 
and a real del with the following properties: 

(i) Vis a Liapunov function; 

(ii) domain V = {(x, w, a) e E : (x, w, a) t (x1, w1, a1) for some (xl, w1, a1) e E 
with g(xx, a1) ^ 8}; 

(in) (x, w, oc) e domain V implies a(g(x, oc)) ^ V(x, w, a) g b(g(x, a)). 

Proof. Let m be uniformly strongly stable. Define a partial map Vby 2.5. (3) with 
<5(a) = i^(l) for all a. Clearly, V has properties (i) and (ii). Further, it is possible to 
show that the map ij/ in 2.7. may be chosen increasing and continuous, hence the 
map b may be defined by the relations 

b(r) = il/-\r) for re<0, i /<l )>, 

b(r) = 1 for r e < ^ ( l ) , 1>. 
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The definition of V gives directly that for each (x, w, a) G domain V there follows 
g(x, a) <i 1 and V(x, w, a) <I 1. Thus, it is sufficient to show that V(x, w, a) <£ 
<I b(.g(x, a)) holds for each (x, w, a) € domain Vwith g(x, a) <I i^(l). Given (x, w, a) G 
G domain V, there is C e I such that g(x, a) = ^(C). Hence for each (z, 0) with 
(z, 0) p (x, w, a) it holds g(z, 0) = C = 'r/"1(^(x' °0) = % ( * ' °0)> h e n c e V(x> w ' a) = 
51 b(g(x, a)). Defining a(r) = r for each r G I, we may see that the maps V, a, b have 
also property (iii). 

Let now exist maps (1) with properties (i) to (iii). Define the map if/ from 2.7.(1) so 
that the relations 

(2) 0 < i#(C)) £ «(0 for Ce(0,<5>; tf<C) = lK«) f o r Ce<<U> 

hold. Then, for each (x, w, a) G £ with gf(x, a) <i */>(C), and for each (z, 0) with 
(z, wi,0)t (x, w, a) for some w1 G JV, there hold 

a(g(z, 0)) g V(z, w1, 0) = V(x, w, a) S b(g(x, a)) = fcty(Q) £ a(0 , 

hence #(z, 0) <| C> i-e. w is uniformly strongly stable. 

2.9. Remark. Condition (iii) in Theorem 2.8. may be replaced by the following two 
conditions: 

(iii)' (x, w, a) G domain V implies a(g(x, a)) 51 V(x, w, a); 
(iv) (x, w, a) G domain V, g(x, a) 51 b(C) imply V(x, w, a) 51 C-

Proof. In the proof of the first implication it suffices to prove only property (iv), 
as property (iii)' is contained in 2.8. (iii). Property (iv) follows, of course, directly 
from the definitions of the uniform strong stability and the partial map V; since, 
defining b(Q = î (C) for each C e /, from (x, w, a) G domain V, g(x, a) S b(Q 51 (̂C) 
and (z, w1, 0) t (x, w, a) it follows g(z, 0) 51 C> hence V(x, w, a) 51 C-

Let now there exist maps 2.8. (1) with properties 2.8. (i), 2.8. (ii), (iii)' and (iv). 
Taking Co e (0» S U P {C e J : b(a(C)) < d}), define the map \j/ from 2.7. (1) as follows: 

*KC) = *>(a(0) f̂  Ce<0,Co>, 

^(C) = b(a(Q) for Ce<C0,l>. 

Then, according to (iv), the relations (x, w, a) G domain V and g(x, a) 51 î (C) give 
V(x, w, a) 51 a(Q, hence for each (z, 0) with (z, w1, 0) t (x, w, a) it holds 

a(g(z, 0)) £ V(z, w1, 0) £ V(x, w, a) £ <C) . 

Thus g(z9 0) S C takes place and m is uniformly strongly stable. 

2.10. Remark. Condition (iii)' in the preceding Remark may be replaced by the 
following condition: 

(iii)" (x, w, a) e domain V, V(x, w, a) 51 a(£) imply g(x, a) g C-
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2.11. Theorem. Let a control process p admit a period x > 0 and let the map g 
from 2.L (2) be periodic in the second variable with the period T. If m is strongly 
stable and if there are maps pi :I -» J and o : R x I -> I such that m satisfies 
Definition 2.3. and //(C) ;= co(a, C) for each aeR and £ e J , then m is uniformly 
strongly stable and there exists a Liapunov function V periodic with respect to the 
last variable with the period x, having properties 2.8. (ii) to (hi), 2.9 (hi)' to (iv) and 
2.10. (iii)''. 

Proof is trivial. 

2.12. Definition, m is said to be asymptotically strongly stable with respect to p 
iff there exist maps 

(1) o>:RxI-»I, Q.R-+I, T : P x R x J - » R + 

such that 

(2) (0, x, w, a) e D , g(x, a) S co(a, C) , (z, 0) p (x, w, a) imply g(z, 0) ^ C ; 

(3) (0, x, w, a) € D , g(x, a) S 0(a) , 0 ^ a + T(x, a, C) > (z, 0) p (x, w, a) imply 

g{?> 0) = C . 

2.13. Theorem, m is asymptotically strongly stable with respect to p iff there 
exist maps 2.5. (l) with properties 2.5. (i) to 2.5. (iv) and a partial map T0 : P x 
x R x I -> R+ such that 

(v) (x, w, a) e domain V, g(x, a) f£ (5(a) , (z, w1, 0) * (x, w, a) , 0 ^ a + T0(x, a, C) 
imply V(z, w1, 0) = C-

Proof. Let m be asymptotically strongly stable. Then m is strongly stable and 
according to Theorem 2.5. there exist maps 2.5. (1) with properties 2.5. (i) to 2.5. (iv). 
Clearly, the map d may be taken so that S(a) = min {0(a), a>(a, 1)} holds. Now, 
define a partial map T 0 : P x J R x J - » R + : T0(x, a, C) = T(x, a, C). Then, accord­
ing to 2.12. (3), for each (x, w, a) e domain V and (z, w1, 0) t (x, w, a) with 0 ^ a + 
+ T0(x, a, C) there holds g(z, 0) <; C- and as for each (z1, 01) p (z, w1, 0) there hold 
01

 = 0 ^ a + T0(x, a, C) and (z1, 01) p (x, w, a), one has also V(z, w1, 0) g C, 
hence g(z\ 01) g C-

In proving the implication in the opposite direction it is sufficient to define maps 
2.12. (1) by the relations 2.5. (6) and 2.5. (7), 0(a) = min {co0(a, 1), 8(a)}, and 
T(x, a, C) = T0(x, a, a(Q). 

2.14. Theorem. Let p be a global solution complete control process of a control 
system t. Let there exist maps 2.5. (1) with properties 2.5. (i) to 2.5. (iv) and a map 
c :I° -> J, nondecreasing, with the following property: 

(v) V(s(0), 0) - V(s(a), a) g - $ c(V(s(a), a)) da holds for each solution s of t 

and each a, 0 e domain s with a <S 0. 
Then m is asymptotically strongly stable. 
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Proof. Evidently, according to Theorem 2.5. m is strongly stable, so that it remains 
to prove the existence of maps Q and Tfrom 2.12. (1) satisfying 2.12. (3). Suppose 
that these maps do not exist. Then corresponding to each map Q : R -> / there exist 
(xQi Wfl, aQ) and Co with g(xQ9 <xQ) ^ Q(ocQ) and corresponding to each /? > 0 there 
exist y *z /? and a solution sQp of t such that 

s.o,*(a.o) = (*«> w0) , g(proJi o s0t/f(a« + y), afi + 7) > C0 . 

Now, given a map O, take /? so that for each y ^ /? it holds 

m v > F(*fl> wo> «o) 
W <a(Ca)) ' 

Since Vis non-decresing along f, it holds for each 0 e <a^, a^ + y> 

V(s^(0), 0) -i- V(sQ,p(aQ + y),aQ + y)^ 
^ a(g(projx o sQj(aQ + y), a^ + y)) > a ( Q . 

Hence, using (v), one obtains 

/•ajj + y 

V(xQ9 wQ9 ccQ) - V(sQtfi(ocQ + 7), afl + y) £ c(V(s^(<r), 0)) dcr = 
Ja.a 

j*a.a + У 

C 
c(a(Cß)) dcr = c(a(Q). y, 

from which there easily follows the relation 

< V(xn> WQ> afl) 

««(&>)) 

contradicting (1) and proving the asymptotic strong stability of m. 

2.15. Remark. In the preceding two Theorems it is possible to replace condition 
2.5. (iv) by condition 2.6. (iv)'. 

2.16. Definition, m is said to be uniformly asymptotically strongly stable with 
respect to p iff there exist 

(1) ! > : / - > / , T : / - + R + , QeK+ 

such that 

(2) (0, x, w, a) 6 D , g(x9 a) £ ^(f) , (z, 0) I? (*, w, a) imply g(z9 0) ^ £ ; 

(3) (0, x, w, a) e D , g(x, a) ^ -Q, 0 = a + T(C) , (Z, 0) p (x, w, a) imply 
9(z,9)SZ-
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2.17. Theorem, m is uniformly asymptotically strongly stable with respect to p 
iff there exist maps 2.8. (1) with properties 2.8. (i) to 2.8. (iii) and a map T0 :1 -» R+ 

such that 

(iv) (x, w, a) e domain V, (z, w1, 0) t (x, w, a ) , 0 = cc + T0(£) imply 
V(z, w1, 0) = C . 

Proof. Let m be uniformly asymptotically strongly stable. The existence of 
the maps 2.8. (1) with properties 2.8. (i) to 2.8. (iii) follows from 2.8. Taking <5 e 
e (0, min [Q, *A(l)}), one may choose as a map T0 the map Tfrom Definition 2.16. 
Then, clearly, (x, w, a) e domain V, 9 ^ a -f- T0(Q, (z,wl,6)t (x, w, a) imply g(z, 0) ^ 
S C- whence also V(z, w1, 0) ^ £. 

To prove the opposite direction implication it is sufficient to take \jf satisfying 2.8. 
(2), Q = min {5, ij/(l)} and T: I -> R+ : T(C) = T0(a(C)). 

2.18. Theorem. Let p be a global solution complete control process of a control 
system t. Let there exist maps 2.8. (1) with properties 2.8. (i) to 2.8. (iii) and a map 
c :I° -> I, non-decresing, with the following property: 

(iv) V(s(0), 0) — V(s(a), a) = — j*£ c(g(proii 0 s(a), a)) da, for each solution s of t 
and each a, 0 e domain s with a = 9. 

Then m is uniformly asymptotically strongly stable. 

Proof. According to Theorem 2.8., m is uniformly strongly stable. Define 

(1) Q = S; T:I^R+:T(Q = ^ 

#(0) 
Let there be given £ e I. Suppose there exist (0, x, w, a) € D with g(x, oc) = Q and 
9 — a + T(C) with g(z, 0) > C for some (z, w1, 0) f (x, w, a). Let s be a solution of t 
with s(a) = (x, w), s(0) = (z, w1) and let there exist y e <a, 0> such that g($TO)t o 
o s(y), y) = i/t(£). Then from (z, w1, 0) t (s(y), 7) there follows gfcroji 0 s(0), 0) = 

= g(z, 0) :g £, contradicting the assumption. Thus it must hold g(projt 0 s(y), y) > 
> i/t(£) for each y e <a, 0>. Hence, using (iv), there follows 

V(s(0), 0) = V(s(a), a) - {9c(g(proj1 0 s(a), a)) da < b(Q) - c(xj,(t)) . T(C) = 0 , 

which contradicts the non-negativeness of V. Thus Q and Thave to satisfy Definition 
2.16. and m is uniformly asymptotically strongly stable. 

2.19. Remark. Evidently, in both preceding Theorems condition 2.8. (iii) may be 
replaced by 2.9. (iii)' and 2.9. (iv) or by 2.10. (iii)" and 2.9. (iv). 
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3. WEAK STABILITY OF SETS 

3.1. Notation. We continue to use notation introduced in the preceding text. 
Especially, t will denote a control system on P x W, p the corresponding control 
process. Also in this chapter m and g will denote the set 2.1. (l) and the map 2.1. (2) 
satisfying 2.1. (3). For a given (x, w,a)eE let l(x, w, a) denote the set of all solu­
tions a of t such that a(a) = (x, a) and let I0(x, w, a) denote the set {a el(x, w, a) : 
: domain a z> <a, e(x, w, a))}. Similarly, symbols S(x, w, a) resp. 50(x, w, a) are 
defined thus: s eS(x, w, a) iff s = projx o a for some a el(x, w, a), and s eS0(x, w, a) 
iff s = proji o a for some a el0(x, w, a). 

3.2. Definition, m is said to be weakly stable with respect to p iff there exists 
a map 

(1) co:R x I -> I 

such that 

(2) (x, w, a) G D , g(x, a) = co(a, £) imply g(s(9), 9) :g £ for some s e S0(x, w, a) 
and all 9 e <a, e(x, w, a)). 

3.3. Remark and notation. If m is weakly stable with respect to p, then it may be 
shown that the map co in 3.2. (1) may be chosen so that for each a e R the map co is 
continuous and increasing in the variable £ on the interval J (i.e. for each as R the 
map coa:I ~»I: coa(Q = co(a, £) has the both properties). 

Now, suppose m to be weakly stable and co to be continuous and increasing in £ 
on L Given (x, w, a) e E with 0 < g(x, a) :g co(a, 1), there exists £ e J such that 
g(x, a) = co(a, £), and according to Definition 3.2. there exists at least one solution s 
such that s(a) = x, domain s => <a, s(x, w, a)) and g(s(9), 9) = £ for each 9 e 
e <a, e(x, w, a)). Denote S^x, w, a) the set of all solutions s of the control process p 
such that s(a) = x, domain s z> <a, e(x, w, a)) and g(s(9), 9) _ £ for all 0 6 
G <a, e(x, w, a)). Similarly, define Z\(x, w, a) as follows: aeZt(x, w, a) iff projx o 
o a 6 S^x, w, a). 

3.4. Theorem, m is weakly stable with respect to p iff there exist maps 

(1) V:£->/°, 5 : 1 ^ ^ 1 , t o 0 : R x I - » I , a:I°->I° 

such that co0(a, £) -* 0 as £ -> 0 and a e JR; a increasing, a(r) -> 0 as r —> 0, wif/z the 
following properties: 

(i) Vis a weak Liapunov function (see 1.20); 
(ii) domain V = {(cr(0), 0) : cr e£0(x, w, a), 0 e <a, e(x, w, a)) / o r all (x, w, a) e E 

with g(x,a) ^ <5(a)}; 
(iii) (x, w, a) € domain V, #(x, a) ^ co0(a, £) imply V(x, w, a) ^ £; 
(iv) (x, w, a) G domain V implies a(g(x, a)) = V(x, w, a). 
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Proof. Let m be weakly stable. Define a map 

(2) 5 : R -+ 1: 6(a) = co(a, 1) 

and a partial map 

(3) V:F-»J° :V(x, w,a) = 

= sup {g(s(6), 0) : s eSx(x, w, a), 0 e <a, e(x, w, a))} , 

whenever there exists (x1,wi,a1)eE such that g(xl, a1) _" <5(a*) and for some 
aelx(x

x, w1, a1) there holds a(a) = (x, w). It is easily seen that Vdefined by (3) has 
property (ii). Defining 

(4) w0 : R x I -> J : co0(a, £) = w(a, Q , 

one obtains g(s(9), 0) = £ for each s e St(x, w, a) and 0 e <a, e(x, w, a)) with (x, w, a) e 
G F and C satisfying a(x, a) _ <S(a) and g(x, a) g co0(a, (). Hence, according to (3), 
V(x, w, a) ^ C and (iii) holds. 

Define now 

(5) a:I° -> J° : a(r) = r . 

Cleraly, for each (x, w, a) e domain V there holds 

g(x, a) e {g(s(6), 0) : seSt(x, w, a), 0 e <a, e(x, w, a))} , 

hence g(x, a) = a(g(x, a)) g V(x, w, a), i.e. (iv) takes place. 
It remains to prove that V is a weak Liapunov function of the control process p. 

Given (x, w, a) e domain V, there exists a0 e £i(x, w, a) such that (a0 (0), 0) e 
domain Vfor each 0 e <a, e(x, w, a)). Further, for each couple P, y such that a S P ^ 
=- y < e(x, w, a) there hold the following relations: 

a0 e It(a0(p), p), a0 el^a^y), y) , 

{(a(6), 0) : ael^y), y), y = 0 < e(x, w, a)} c 
c {(a(0), 0) : aelt(a0(p), p), p £ 0 < e(x, w, a)} . 

Hence easily follows 

V((x0(y), y) = sup {g(s(6), 0) : seS^y), y), y = 0 < s(<70(),), r)} = 

£ sup {g(s(6), 0) : S G S , ^ ) , P), P = 0 < e(<To(/0, /?)} = V((70(/?), /?) , 

thus Vis a weak Liapunov function of the control process p. 
Let now exist maps (1) with properties (i) to (iv). First define a map £0 : R -> I 

satisfying 

(6) 0 < C0(a) < sup {£ G I : co0(a9 a(Q) < d(a)} 
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and the map co from Definition 2.3. by 

(7) co(a, C) = co0(a, a(£)) for Ce(0,COv*)>> 

(8) * co(a, C) = a>0(a, a(C0(a))) for £ e <Ua), l> . 

Now, given (x, w, a) e £ with g(x, a) 51 a>(a, (), according to (6) to (8) one has 
g(x, a) <| <5(a), hence (x, w, a) 6 domain V. According to (i) and Definition 1.20. 
there exists ael0(x, w,a) such that Vis non-decreasing along a. Now it will be 
shown that s = proJ! o a satisfies Definition 3.2. Clearly, a(g(s(0), 9)) <I V(a(9), 9) 51 
5a V(a(a)9 a) holds for each 9 e <a, e(x, w, a)). According to (7), (8), (iii) and g(x, a) g 
51 co(a9 C) there hold V(a(a), a) = V(x, w, a) 51 a(C), hence, as a is increasing, there 
follows g(s(9), 9) g C- Thus m is weakly stable. 

3.5. Remark. Condition (iv) in Theorem 3.4. may be replaced by 

(iv)' (x, w, a) e domain V, V(x, w, a) 5| a(() imply g(x, a) 5* C-

3.6. Definition, m is said to be uniformly weakly stable with respect to p iff there 
exists a map 

(1) ^:I^I 

such that 

(2) (x, w, a) e D , g(x, a) 51 i//(C) imply g(s(#), 0) g C for some s e S0(x, W, a) 
and all 9 e <a, e(x, w, a)) . 

3.7. Theorem, m is uniformly weakly stable with respect to p iff there exist 

(1) del, V:E->I°, a,b:I°-+I°; 

a increasing, b non-decreasing, b(r) -* 0 as r -> 0, wffft the following properties: 

(i) V is a weak Liapunov function; 

(ii) domain V = {(<r(0), 9) : aeI0(x, w, a), 9e <a, e(x, w, a)) for each (x, w, a) e 

e E with g(x, a) 5| 8); 
(iii) (x, w, a) e domain V implies a(g(x, a)) = V(x, w, a) 51 b(g(x, a)). 

Proof. Let m be uniformly weakly stable. Set 8 = ^(1) and define a partial map V 
by 3.4. (3) with 8(a) = ^(1) for all ae R. Then Vhas properties (i) and (ii). If the map 
a is defined by 3.4. (5), then a(g(x, a)) S V(x, w, a) for all (x, w, a) e domain V. To 
prove the remaining part of (iii), one may suppose i/t to be continuous and increasing 
on I, so that if/"1 exists. The map b may be now defined by b(r) = ^"^(r) for r e 
e(0, ^(1)>, b(r) = 1 for r e <^(l), 1>. Clearly, V(x, w, a) = 1 for each (x, w, a) e 
e domain V; thus it suffices to prove the relation V(x, w, a) g b(g(x, a)) for (x, w, a) e 
e domain Vwith g(x, a) 51 t^(l). Then, of course, there exists C e 7 such that g(x, a) = 
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= \j/(C), so that g(s(0), 9) = C = ^ x(^(x ' a)) holds for each s eSx(x, w, a) and 9 e 
e <a, fi(x, w, a)). Hence V(x, w, a) = b(g(x, a)). 

Now, let there exist maps (1) with properties (i) to (iii), let \jj : I -• I satisfy b(\//(Q)S 
S a(Q for 0 < C S S, \j/(Q = \I/(S) for 8 = C _S 1, and given (x, w, a) e E with 
g(x, a) _̂  ^(C) k t (T e r0(x, w, a) be such that V is non-increasing along a. Denote 
s = projj o <T. Then for each 9 e <a, e(x, w, a)) there holds 

a(g(s(9), 9)) £ V(a(9), 9) = V(x, w, a) = % ( x , a)) = b(i/<C)) = a(C) , 

hence g(s(9), 9) S C and m is uniformly weakly stable. 

3.8. Remark. Condition (iii) in the preceding theorem may be replaced by 2.9. (iii)' 
and 2.9. (IV), or by 2.10. (iii)" and 2.9. (iv). From the proof of Theorem 3.7. it is 
directly seen that Definition 3.6. is satisfied by each solution along which the func­
tion Vis non-increasing. 

3.9. Theorem. Let a control process p admit a period x> 0 and let the map g 
from 2.1. (2) be x-periodic with respect to the second variable. If m is weakly stable 
and if there exist maps co : R x I -> I and \i:I -» I such that o satisfies Definition 
3.2. and fi(Q = co(a, C) holds for each a e R and C el, then m is uniformly weakly 
stable and there exists a weak Liapunov function V, x-periodic in the last variable, 
with the properties 3.4. (ii) to 3.4. (iv), 2.9. (iii)', 2.9. (iv) and 2.10. (iii)'. 

Proof is trivial. 

3.10. Definition, m is said to be asymptotically weakly stable with respect to p 
iff there exist maps 

(1) co:RxI-+I, Q:R~>I, T : P x K x I - » R + 

such that corresponding to each (x, w,a)eE there exists s e S0(x, w, a) with the 
following properties: 

(i) if g(x, a) S &(a) and 9 = a 4- T(x, a, C) then g(s(9), 9) <; C; 

(ii) if g(x, a) = co(a, C) and 9 = a then g(s(9), 9) = f. 

3.11. Theorem, m is asymptotically weakly stable with respect to p iff there exist 
maps 3.4. (l) with properties 3.4. (i) to 3.4. (iv), and a partial map 

(1) T 0 : P x R x / - » R+ 

such that 

(v) (x, w, a) e domain V, g(x, a) S -2(<x) imply V(a(9), 9) g C / ^ r s o m e <* e 
e r 0 (x , w, a) and a// 9 = a + T0(x, a, C). 
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Proof. Let there exist maps 3.4. (1) and 3.11. (1) with properties 3.4. (i) to 3.4. (iv) 
and 3.11. (v). Define maps 3.10. (1) by 3.4. (7), 3.4. (8), Q(a) = min (<5(a), c00(a, 1)}, 
T(x, a, C) = T0(x, a, a(C)), respectively. Clearly, according to Theorem 3.4., condi­
tion 3.10. (ii) is satisfied. To prove 3.10. (i), take (x, w, a) e E with g(x, a) = Q(a) and 
a solution ael0(x, w, a) satisfying condition (v). Then V(a(9), 9) _" a(() for each 
6 *• a + T0(x, a, a(C))> hence, applying 3.4. (iv), one has for 5 = projt 0 a 

a(g(s(0), 0)) = V(a(9), 9) = a(C), 

so that g(s(9), 9) = C and 3.10. (i) is fulfilled. 

3.12. Theorem. Let there be given a control process p, let there exist maps 3.4. (l) 
with properties 3.4. (ii) to 3.4. (iv) and let there exist non-decreasing map 

(1) " c:I°~*I° 

such that 

(i)' corresponding to each (x, w, a) e domain V there exists a el0(x,w,a) such 
that for each a _" /? ^ y there holds 

V(a(y), y) - V(a(p), /?) :S - !\(V(a(9), 9)) d0 . 
Jfi 

Then m is asymptotically weakly stable. 

Proof. Since (i)' gives directly V(a(y), y) = V(a(fi), ft) for each a = /? g 7, 
condition 3.4. (i) is satisfied and m is weakly stable according to Theorem 3.4. Now, 
let us prove that there exist maps Q and Tfrom 3.10. (1) such that corresponding to 
each (x, w,a)eE with g(x, a) = Q(a) there exists a e I0(x, w, a) satisfying (i)' and 
3.10. (2). Suppose that such maps Q and Tdo not exist. Then, corresponding to each 
Q : R -+1 there exist (x, w, a) e E and C with the following properties: 

g(x, a) g O(a) ; 

corresponding to each j8 > 0 and a e I0(x, w, a) satisfying (i)' there exists y^^P 
such that g(s(a -f yff), a -f ya) > C> where 5 = projt o a. 

Given Q, take @ so that 

« ^ ' > J ^ 

holds for each mentioned a. Since V is non-decreasing along such a, there hold, for 
each 0 e <a, a + ya}, 

V(o(0), 0) >, V(o(z + ya), a + y„) ^ a(^(s(a + y„), a + ya)) > a({). 
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Hence it follows 

V(x, w, a) Ш V(x, w, a) - V(<т(a + ya), a + ya) ^ Г ?°c(V(c( ), )) á ïţ 

ГУ"c(a(0)d = c(a(C)).ya, 
fa + У<т 

> 

which contradicts (2). Since Q and a were arbitrary, this contradiction proves the 
existence of Q and T from 3,10. (l) satisfying 3.10. (i). Thus m is asymptotically 
weakly stable. 

3.13. Remark. According to 3.5., condition 3.4. (iv) in both preceding Theorems 
may be replaced by 3.5. (iv)\ 

3.14. Definition, m is said to be uniformly asymptotically weakly stable with 
respect to p iff there exist 

(1) i/t:J-»J, T : J - » R + , QeR+ 

such that corresponding to each (x, w, a) e E there exists 5 e S0(x9 w, a) with the 
following properties: 

(i) if g(x9 a) g .0 and 0 ^ a + T(C) then g(s(0)9 0) g f; 
(ii) if g(x9 a) ^ $(£) and 0 ^ a then g(s(0), 0) S f. 

3.15. Theorem, m is uniformly asymptotically weakly stable with respect to p 
iff there exist maps 3.7. (1) with properties 3.7. (i) to 3.7. (iii) and a map 

(1) T 0 : J ->R + 

such that 

(iv) (x, w, a) G domain V, g(x9 a) fg ;Q imP/^ V(ff(0), 0) ^ C/0r some a e r0(x, w, a) 
and all 0 ^ a + T0(C). 

Proof is an easy modification of the proof of Theorem 3.11. 

3.16. Remark. Condition 3.7. (iii) in Theorem 3.15. may be replaced by 

(iii)' (x, w, a) e domain V implies a(g(x9 a)) ^ V(x, w, a); 

so that the assumption of the existence of the map b from 3.7. (1) may be omitted. 

3.17. Theorem. Let there be given a control process p9 let there exist maps 3.7. (l) 
with properties 3.7. (ii) and 3.7. (iii), and let there exist a non-decreasing map 

(1) c:I°->I° 

such that 
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(i)' corresponding to each (x, w, a) e domain V there exists a e I0(x, w, a) such 
that for each a £ /? g y and s = proji o a there holds 

V(a(y), y) - V(a(p), J?) «g - f 'c(g(s(0)9 9)) &9 . 
JP 

Then m is uniformly asymptotically weakly stable. 

Proof. According to Theorem 3.7. m is uniformly weakly stable. Obviously, 
Definition 3.6. is satisfied by each solution satisfying (i)' (see 3.8.). Define 

(2) Q = S; T : I ^ R + : T ( C ) = - ^ 
<#(0) 

and prove that each solution satisfying(i)' satisfies also 3.14. (i). Given ^ el, (x, w, a) e 
e domain V with g(x, a) = Q, ae I0(x, w, a) satisfying (i)', s = projj 0 a, suppose 
the existence of y _• a + T(Q with g(s(y), y) > {. Then, according to uniform weak 
stability, there holds g(s(9), 9) > \j/(C) for each 9 e <oe, y>. Hence and from (i)' one 
obtains 

V(a(y), y) = V(a(a), a) - f7c(g(s(9), 9)) d9 < b(Q) - c^)). T(Q = 0 , 

which contradicts the non-negativeness of Vand finishes the proof. 

3.18. Remark. According to 3.8., condition 3.7. (hi) in 3.16. may be replaced by 
2.9. (hi)' and 2.9. (iv) or 2.10. (iii)" and 2.9. (iv). 

4. SEVERAL SPECIAL STABILITY PROPERTIES 

4.1. Notation. In this chapter t will denote again a control system on P x U x 
x P x U = P x Jfover R, p will denote the corresponding control process, m and g 
the subset of P x R and the function P x R -» R°, respectively, satisfying the con­
dition g(x, a) = 0 iff (x, a) e m. Moreover, p° will denote a control process on R° 
over R, m° = {(0, 9) € R° x R :. -oo < 9 < 4-co}, g° : R° x R -> R° : g°(r, 9) = 
= r. Instead of Ep, Ep0, Dp, Dp0 we shall write E, E0, D, D0, respectively. Finally, 
B0 will denote the set of all solutions of the control process p°. 

In what follows we shall be concerned with two control processes p and P°. We 
formulate several conditions under which certain stability properties of p° induce the 
corresponding stability properties of p. Before setting up the theorems we formulate 
the following basic coriditions. 

4.2. Conditions. There exist maps 

(1) V: E -*> 1°, s : E -* B0, a, b : I0 -> 1°; a, b increasing, a(r) -• + oo as r -> + oo, 
b(r) -» 0 as r -> 0, 
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such that 

(i) (0, x, w, a) € D implies V(x, w, a) = s(x, w, a) (a), V(j;, v, 0) S s(x, w, a) (0) 
for each (y, v, 0) with (y, v, 0) t (x, w, a); 

(ii) (0, x, w, a) e D implies V(x, w, a) = s(x, w, a) (a), V((r(0), 0) S s(x, w, a) (0) 
for some a e I0(x, w, a); 

(hi) (x, w, a) e E implies a(g(x, a)) S V(*> w, a) S b(g(x, a)). 

4.3. Theorem. Let there exist maps 4.2. (1) satisfying 4.2. (i) and 4.2. (iii). Let m° 
be strongly stable with respect to p°. Then m is strongly stable with respect to p. 

Proof. According to the assumption there exists map co° : R x I -* I such that 
for each s' e B0 and a, 0 e domain s', 0 ^ a, from s'(a) £ a)°(a, C°) there follows 
s'(0) g C°- Define a map co : # x I -+ I so that b(ct)(a, C)) g ct)°(a, a(C)) holds. Now, 
given (a, £)e R x I, (0, x, w, a) e I) with #(x, a) ^ co(a, C), s' = s(x, w, a) € # 0 

satisfying 4.2. (i), then 

(1) V(x, w, a) = b(g(x, a)) = b(co(a, C)) ^ co°(a, a(C)) , 

so that s'(a) g co°(a, a(C)). Hence and from the assumption of the strong stability 
of m° there follows s'(0) g a(C). Hence, using 4.2. (iii), for arbitrary (y, v, 0) satisfying 
(y, v, 0) t (x, w, a) one obtains 

a(g(y, 0)) ^ V()>, v, 0) £ s'(0) = a(C), 

which gives g(y, 0) ^ C and thus m is strongly stable. 

4.4. Theorem. Let there exist maps 4.2. (l) satisfying 4.2. (ii) and 4.2. (iii). Lef m° 
be strongly stable with respect to p°. Then m is weakly stable with respect to p. 

Proof. Define co as in the preceding proof. Given (a,QeR x I and (0, x, w, a) e D 
with g(x, w, a) ^ co(a, C), it holds V(x, w, a) g co°(a, a(C)). Hence, for s' = s(x, w, a) e 
e B0 and a e ^o(x> w> a ) satisfying 4.2. (ii), there follows s'(a) ^ co°(a, a(Q), s'(0) !g 
^ a(C). Now, denoting sx = projx o cr and using 4.2. (iii) one obtains 

a(g(Sl(0), 6)) S V(a(d), 6) fg s'(6) ^ a(Q , 

i.e. g(sx(0), 0) = C- Thus the solution a satisfies the definition of the weak stability 
of m. 

Very simple modifications of the proofs of both preceding Theorems enable one 
to verify the following two Theorems. 

4.5. Theorem. Let there exist maps 4.2. (1) satisfying 4.2. (i) and 4.2. (iii). Let m° 
be uniformly strongly stable with respect to p°. Then m is uniformly strongly 
stable with respect to p. 
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4.6. Theorem. Let there exist maps 4.2. (l) satisfying 4.2. (ii) and 4.2. (iii). Let m° 
be uniformly strongly stable with respect to p°. Then m is uniformly weakly stable 
with respect to p. 

4.7. Theorem? Lef there exist maps 4.2. (1) satisfying 4.2. (i) and 4.2. (iii). Let m° 
be asymptotically strongly stable with respect to p°. Then m is asymptotically 
strongly stable with respect to p. 

Proof. According to Theorem 4.3. m is strongly stable, so that it remains to prove 
the existence of the maps Q : R -> I and T : P x I J x I - » R + satisfying condition 
2.12 (2). Further, according to the assumption, there exist maps .0° : R -» I and 
T° : R° x R x I -> R+ such that 

s' e B0, a, Be domain s', s'(a) S Q°(<x) , 0 = a + T°(s'(a), a, C) imply 

s'(0) = C • 

It may be easily shown that T° may be taken increasing in the first variable (i.e. the 
map Ta>c: R° -» R+ : Tar(r) = T(r, a, C) would be increasing). Define maps Q and T 
to satisfy 

(1) b(Q(a)) = Q°(a); 

(2) T(x, a, C) = T°(b(g(x, a), a, a(C)). 

Let (0, x, w, a) e D, g(x, a) g Q(a), 0 ^ a + T(x, a, C) and let s' = s(x, w, a) e £0 

satisfy condition 4.2. (i). From 4.2. (iii) and (1) there follows 

(3) V(x, w, a) S b(g(x, a)) g b(0(a)) = Q°(*), 

and thus, using 4.2. (i), also s(a) <* ,Q0(a). Hence, for each 0 ^ a + T(s'(a), a, a(Q) 
it holds s'(0) g a(C). Now, taking (y, v,9)eE with (y, v, 0) * (x, v, a) and 0 ^ 
^ a + T(x, cc, C), it follows from (2) and the fact that T° is increasing in the first 
variable 

0 £ a + T°(6(0(x, a), a, a(0) = a + T°(V(x, w, a)), a, a(C)) = 
= a + T°(s'(a), a, a(C)) . 

Now 4.2. (iii) and 4.2. (i) give 

a(g(y, 0)) S V(y, v, 0) g s'(0) g a(C), 

hence gf(j;, 0) g £. Thus O and T satisfy the definition of the asymptotic strong 
stability. 

4.8. Theorem. Let there exist maps 4.2. (1) satisfying 4.2. (ii) and 4.2. (iii). Let m° 
be asymptotically strongly stable with respect to p°. Then m is asymptotically 
weakly stable with respect to p. 
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Proof. According to Theorem 4.4. m is weakly stable, so that it suffices to find 
maps Q : R -> I and T: P x R x I -* I satisfying condition 3.10. (i). Define these 
maps again by 4.7. (1) and 4.7. (2). Now, given (x, w, a) e E with g(x, a) g 0(a) 
and 0 ^ a + T(x, a, C), let solutions s' = s(x, w, a) e B0 and c e r0(x, w, a) satisfy 
condition 4.2. (ii). Then 4.7. (3) gives s'(a) g .Q°(a), hence s'(0) g a(C) for each 
0 ^ a + T°(s'(a), a, a(£)). Since from 0 ^ a + T(x, a, £) it follows 0 ^ a + 
+ T°(s'(a), a, a(C)), one has for st = proJ! o a 

a(g(Sl(e)9 9 ) S V(a(9\ 9) £ s'(0) g a(C), 

from where g(s1(9), 9) S C follows for each 0 ^ a + T(x, a, £)• Thus, O and T 
satisfy 3.10. (i) and Theorem is proved. Using the stadard technique described above 
one may easy prove the following two Theorems. 

4.9. Theorem. Let there exist maps 4.2. (1) satisfying 4.2. (i) and 4.2. (iii). Let m° 
be uniformly asymptotically strongly stable with respect to p°. Then m is uniformly 
asymptotically strongly stable with respect to p. 

4.10. Theorem. Let there exist maps 4.2. (1) satisfying 4.2. (ii) and 4.2. (iii). 
Let m° be uniformly asymptotically strongly stable with respect to p°. Then m is 
uniformly asymptotically weakly stable with respect to p. 
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