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Casopis pro péstoviani matematiky, roé. 93 (1968), Praha

ON PERIODIC AND RECURRENT COMPACT GRUPOIDS

BepkicH PONDELICEK, Podébrady
(Received January 24, 1967)

In the- paper [1], four problems concerning compact periodic semigroups have
been presented. They deal with the formulation of theorems analogous to the theorems
on the pointwise periodic mapping of a compact space into itself which have been
presented in the same paper. We shall show that the analogy is not incidental and that
it is possible to study the periodic semigroups and the pointwise periodic mapping
simultaneously as special cases of the compact periodic groupoids. In the present
paper, two problems out of four are solved, all consideration and results being
formulated by means of the theory of topological groupoids. Cf. e.g. [2].

1. GROUPOIDS

1.1.1 Let G be an arbitrary groupoid. If A = G and B < G, then by AB denote
the set of all products ab, a € A4, b € B. Further denote 4> = AA. By a subgroupoid,
as it is well known, we mean any non-empty subset A = G for which 42> = A holds.
If A2 = A then the subgroupoid 4 is called decomposable. By a minimal subgroupoid
we understand any subgroupoid not containing any other subgroupoid.

1.1.2 The product of a non-emj)ty system of subgroupoids of the groupoid G is
either the empty set or again a subgroupoid.

1.1.3 If A is a subgroupoid of the groupoid G, then A? is also a subgroupoid.
Proof. If A% c A, then A%4% = A2

1.1.4 Every minimal subgroupoid of the groupoid G is decomposable.

1.1.5 In this paper A" always means the set of all natural numbers. Define the

@
set & = J L,, where L, contains only the element 1 from A4~ and the set L,4+, all

n=1
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ordered pairs {a, ) of elements from |J L,, one element at least being from L,
i=1

Evidently L; n L, = Q for i + k, i, ke A#. The sets L, are non-empty and finite,

hence the set & is denumerable. The pair <1, 1) let us denote by 2 (cf. [3]).

1.1.6 In the set .# let us define the addition. If a, f € £ then put a + B = <{a, .
Evidently « + e L,, n = max (i, k) + 1 if xe L; and B e L. The set £ generates
a groupoid with respect to the addition; it is neither associative nor commutative.

1.1.7 Let us further define the multiplication in &. Put al = « for ae &Z. If
B =<Bi1, B2>, BeL,sy and By, B, €U L;, then af = af; + of,. Again the set &
i=1

with respect to the multiplication generates a groupoid which is neither associative
nor commutative.

1.1.8 The equation 1o = o = al holds for any element o € &.

Proof. From 1.1.7 it follows that ¢l = « for all « € . By mathematical induction
with respect to n we prove that 1o = o for every a € L,. For n = 1 the assertion is
obvious. Suppose that the assertion holds for all m, 1 £ m < n and let us prove it

n—1
for n. If a € L, then o = <oy, @,> where a,, a, € J L;. According to the assumption
i=1
lay; = o; and la, = a,. Hence according to 1.1.7 and 1.1.6 there is la = 1o, +
+ 1o, = oy + oy = oy, 0> = .

1.1.9 If x is an arbitrary element of the groupoid G, put x' = x. For aeL,, {,
n

put x* = x™ x*2, where o« = {ay, a,)» and &, 2, € Y L,.
i=1

1.1.10 For o, B € & and x from the groupoid G there holds:

1. x*xP = x**#,

2. (x%f = x*.

Proof. The first assertion follows from 1.1.6. The proof of the second relation we

perform by mathematical induction with respect to n, g € L,. For n = 1 the assertion
is obvious. Now let it hold for all m, 1 £ m < n; we shall prove it for n. If fe L,

n—1

then g = (B, B,> where B, B, € U L;. According to 1.1.9, 1.1.7 and 1.1.6 (x*)* =
i=1

= (xa)ﬂz(xu)ﬂz = xdﬁxxzh = xaﬂxﬂ!ﬂz = x¢ﬂ.

1.1.11 Let I be the set of all mappings f of the groupoid G into itself such that for
all x € G there is f(x) = x* for some a € £.

T is a semigroup with a unit element.
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Proof. If f, g € I then f(x) = x% g(x) = xf for «, f € £ and x € G. Hence accord-
ing to 1.1.10 there is gf(x) = g(x*) = (x*)* = x*, and therefore gfe I'. Further
eel, ex) =x' =x, xeG.

1.2.1 The product of all subgroups of the groupoid G which contain the element x,
is called the cyclic subgroupoid I',, determined by the element x.

The cyclic subgroupoid T, is the set of all elements x* of the groupoid G for
ae L.

Proof. Let A4 be the set of all elements x* of the groupoid G for a € &. According
to 1.1.10 A is a subgroupoid containing x and hence I', = A. Let x*€ 4, a € L,. We
prove by mathematical induction with respect to n that x*€ I'y. If n = 1 then x* =
= x € I',. Let the assertion hold for all m, 1 £ m < n; we shall prove that it holds

n—1

for n. If a € L, then a = {a,, a,) where a;, 2, € J L;. From 1.1.7 it follows x* =
=x"x2el? T, Hence A =T,. =1

1.2.2 An element x of the groupoid G is called strongly periodic if the cyclic
subgroupoid I', is decomposable.

An element x of the groupoid G is strongly periodic if and only if there exists
ae P (a =+ 1) such that x = x*.

Proof. Let x be a strongly periodic element of the groupoid G; then I', is a de-
composable subgroupoid. Therefore x € I', = I'2. From 1.2.1 we get x = x*'x** for
oy, 0y € & and thus x = x% where a € &£ and o + 1.

If x=x% ae¥ and « #+ 1 then x = x* = x*'x2 e I'2 for & = {ay, %), &y, &3 €
€ #. According to 1.1.3, I'? is a subgroupoid containing the element x and hence
I', « I'? c I',. From here it follows I', = I'2, The element x is strongly periodic.

1.2.3 A grupoid whose each element is strongly periodic is called a strongly
periodic groupoid.

1.2.4 Example — F. Let X be an arbitrary non-empty set and f a mapping of this
set into itself. Let us define multiplication in X:

xy = f(x) for x,yeX.

Evidently X is a groupoid. Further I, = {x, f(x), ..., f"(x), ...} and I} =
= {f(x), f3(x), ..., f™(x),...}. Hence the element x is strongly periodic in the
groupoid X if and only if there is a natural number m such that x = f "‘(x). According
to [4] it means that the mapping f is periodic at the point x. If the groupoid X is
strongly periodic then the mapping f is pointwise periodic.

1.2.5 Example — S. Let S be an arbitrary semigroup (an associative groupoid).
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ThenTl, = {x,x* ..., x" ...} and I'Z = {x?, x,...,x™,...}. Obviously, the element x
is in the semigroup S strongly periodic if and only if there is a natural number m
such that x = x™*!'. If the groupoid S is strongly periodic then we say that S is
a strongly periodic semigroup.

1.2.6 Theorem. The groupoid G is strongly periodic if and only if its every
subgroupoid is decomposable.

Proof. If each subgroupoid of the groupoid G is decomposable then each element x
is strongly periodic. Conversely let the groupoid G be strongly periodic. If 4 is its
subgroupoid then 4% = A. Let x€ A. Then I', = A and hence xeI', = I'2 ¢ A%
Therefore A = A% and each subgroupoid is decomposable.

1.2.7 Corollary — F. A mapping f of a non-empty set X into itself is pointwise
periodic if and only if for any subset A = X there holds

fA)c A=f(A)=A.

See Proposition 1 — Fin [1].

1.2.8 Corollary — S. A semigroup S is strongly periodic if and only if its each
subsemigroup is decomposable.

See Proposition 1 — Sin [1].

1.3.1 An element x of a groupoid G is called strongly regular if the cyclic sub-
groupoid I', is minimal. By a strongly regular groupoid we understand a groupoid
whose each element is strongly regular.

1.3.2 Every strongly regular element of the groupoid G is strongly periodic.
Every strongly regular groupoid is strongly periodic.

Proof follows from 1.1.4.

1.3.3 An element x of the groupoid G is strongly regulac if and only if to each o
from & there is B in & such that x = x°%.

Proof. If x is a strongly regular element then the subgroupoid I', is minimal. Let
y =x" a€Z. Obviously yeI', and hence I', = I',. From here it follows that
I, = I,. Therefore x € I', and there exists f in & such that x = y# = (x%)f = x*.

Conversely let there exist to each a« € £ an element e % such that x = x*. If
A = T,, A> = A % 0 then for some « from & there is x* = y € A and hence I', = A.
According to the assumption there is f in & such that x = x* = (x*) = y. There-
fore x e I'y and hence I', < I', which means that I'y) = A = I',. The subgroupoid I,
is minimal. '
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1.3.4 Note. An element x of the groupoid X (cf. 1.2.4) is strongly regular if and
only if it is strongly periodic. An element x of the semigroup S is strongly regular if
and only if it is idempotent. The semigroup S is strongly regular if and only if it is
a semigroup of idempotents.

1.4.1 A groupoid G is called palintropic if for all xe G and «, B € & there is
x*# = xP*, Cf. [5].

1.4.2 A groupoid G is palintropic if and only if the semigroup I' is commutative.

Proof is obvious.

1.4.3 In a palintropic groupoid G let us define the relation: x ~ y if and only if
there exist a, B in % such that x* = x?. Evidently x ~ x and x ~ y implies y ~ x.
If x ~ y, y ~ z then for a, B, B,, y from Z there is x* = y?* and y#? = z”. Using
1.1.10 and 1.4.1 we get X2 — (xa)ﬂz = (yﬂx)ﬁz = yﬁxﬂz = yﬂzl31 = (yﬂz)ﬁl — (z}')ﬂx =
= 2" which means that x ~ z. Hence the relation ~ is an equivalence on G. By G,
denote the equivalence class that contains the element x. Evidently I', = G, since
x ~ x* for all x e &Z.

1.4.4 If G is a strongly regular palintropic groupoid then I', = G,.

Proof. If y € G, then there are a, B € & such that x* = y’. According to 1.3.3 there
is y € £ such that y = y” and hence y = x*'. Therefore it is y € I', and consequently
G, < I',. According to 1.4.3 thereis G, = I',.

145 Letae £ and 0 + A = G, G being a groupoid. By A denote the set of all
elements x*, x € A.

If G is a palintropic groupoid then for each x € G and a € Z there is G} < G,.

Proof follows from the relation I', = G, (cf. 1.4.3).

1.4.6 Note. The groupoid X (see 1.2.4) is palintropic. Evidently x ~ y in X if and
only if there exist natural numbers n, m such that f"(x) = f™(y). Each semigroup is

palintropic and x ~ y in the semigroup S if and only if there exist natural numbers n,
m such that x" = y™.

1.5.1 Groupoid G is called complete if for all « € # there is G = G,

1.5.2 The groupoid G is complete if and only if it holds f(G) = G for each
mapping f from the semigroup I.

Proof is obvious.
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1.5.3 Let x be an element of a complete palintropic groupoid G. If G, is a finite
set then the element x is strongly regular.

Proof. If « € & then there is f& I' such that f(y) = y* for all y € G. The com-
pleteness of the groupoid G implies according to 1.5.2 that f| (G) = G. Hence there
is a sequence X;, X,, ..., X,, ... of elements of G such that f(x,) = x,_, and x, = x.
Obviously x, € G, and therefore there exist natural numbers r and s (r < s) such that
X, = x,. It holds therefore x = f(x,) = f(x,) = f*7"(x) = gf(x) where g = f*7"~ 1.
Hence there is B € & such that g(y) = »* for all y € G. It holds therefore x = gf(x) =
= (x“)” = x** which according to 1.3.3 means that the element x is strongly regul'flr.

1.5.4 Every palintropic strongly regular groupoid is complete.

Proof. If x € G and a € & then according to 1.3.3 there is f in & such that x =
= x*. From 1.4.1 there follows x = x* = x#* = (xf)* = )%, y = x..

1.5.5 Let G be a palintropic groupoid whose all sets G, are finite The groupoid G
is complete if and only if it is strongly regular.

Proof follows from 1.5.3 and 1.5.4.

1.5.6 If G is a palintropic complete groupoid then for all x€ G and a € £ there
is G = G,.

Proof follows from 1.4.5 and 1.5.1.

1.5.7 If G is a complete palintropic groupoid whose all sets G, are finite then
each mapping from the semigroup I is one-to-one.

Proof. If f(x) = f(y) then x ~ y and the rest of the proof follows from 1.5.6.

1.5.8 Note. The groupoid X (see 1.2.4) is complete if and only if it holds f(X) = X.
The semigroup S is complete if and only if to each its element x and to each natural
number n there is y in S such that y" = x. Cf. [6].

2. COMPACT GROUPOIDS

2.1.1 The groupoid G is a topological groupoid if it is a Hausdorff topological
space and if to any open set U containing the product xy in G there exists an open set V'
containing x and an open set W containing y so that VW < U. By A4 let us denote
the closure of the subset 4 = G. Evidently each subgroupoid of a topological
groupoid is a topological groupoid with respect to the relative topology.

2.1.2 If G is a topological groupoid then any mapping from the semigroup r
is continuous.

267



Proof. If f € I' fthen there is « in & such that f(x) = x* for all x € G. By mathe-
matical induction with respect to n we prove that f is a continuous mapping of the
topological space G into itself for any a € L,. For n = 1 we get the identical mapping
which is obviously continuous. Let now the mapping x — x* (where Be L,) be

continuous for all m, 1 £ m < n; we shall show that the mapping f: x — x* is
n—1

continuous, too. Since a € L, there is a = {a,, 2, where a,, a, € J L;. Accordmg
i=1

to the assumption the mappings g: x — x* and h: x — x™* are continuous. According
to 2.1.1 to any open set U containing the element x* = x*'x* there exists an open set V
containing x*' and an open set W containing x* so that VW < U. The mapping g as
well as h is continuous and hence to the open sets V, W respectively there exist open
sets V,, W, respectively containing the element x so that V/*!c V, Wil c W
respectively. The set U, = V;, n W, is open and contains x. Further it is obviously
U™ < yllwl=l ¢ YW < U. Hence the mapping f is continuous:

2.1.3 Let G be a topological groupoid. If A = G and B = G then AB < (4B).

Proof. If x € AB then x = ab, ae A and b e B. Let U be an arbitrary open set
containing x. Then there exist open sets Vand Wsuchthatae V,be Wand VW < U.
Obviously ¥n A + 0 + Bn Wand hence @ & VW n AB = U n AB. Consequently
x € (AB).

2.1.4 The closure of a subgroupoid of a topological groupoid is again a sub-
groupoid.

Proof. If A% = A then according to 2.1.3 there is 4> = (42) < A. Cf. Theorem 2.1

in [2].

2.1.5 If A, B are two compact subsets of a topological groupoid then AB is also
a compact set.

Proof. If 4, B are compact sets then according to 8.3.18 in [7] the set A x B is
also a compact set. Let g be a mapping of the set A x B on AB, g(a, b) = ab for
a € A and b € B. Evidently g is a continuous mapping and hence according to 8.3.15
in [7] AB is compact.

2.1.6 If A, B are two connected subsets of a topological groupoid then AB is also
a connected set.

Proof. According to 10.1.21 in [7] the set 4 x B is a connected set if only 4, B
are connected. The mapping g (from 2.1. 5) is continuous and hence according to
10.1.12in [7] AB is a connected set.

2.1.7 Note. Hausdorff topological space X (see 1.2.4) is a topological groupoid if

268



and only if the mapping f is continuous. By a topological semigroup we shall under-
stand an associative topological groupoid.

2.2.1 Let x be an element of a palintropic topological groupoid G. Let all the
mappings f from the semigroup I' be open. If G, is a compact set then there exists an
open set U containing the element x and a mapping f from the semigroup I" such
that f is constant on U N G,.

Proof. For «, e % put 4,, = 8[yeG; y* = x’]. Obviously G, = U 4,,.

a,pe’

According to 7.1.20 [7] and 2.1.2 the sets A4, ; are closed. According to 1.4.5 it is
possible to make all these considerations in the topological space G,. The set & is
denumerable (see 1.1.5) and hence ([4], pp. 53 and 54) there exist a,, B, in & and an
open subset V of the topological space G, such that ¥V < A4, .. According to our
assumption the set V) = {xP°} is open. Hence the set W of all elements y€ G,
yPo = xPois open according to 2.1.2 and x € W. If f is a mapping from the semigroup I
such that f(y) = y* for all y € G then f is constant on W. In the topological space G
there is then an open set U, U n G, = W.

2.2.2 Let x be an element of a complete palintropic topological groupoid G.
Let all mappings f from the semigroup I be open. Then the set G is compact if and
only if it is finite.

Proof. If G, is a finite set then it is obviously compact. Conversely let G, be
be a compact set. Then according to 2.2.1 to any element y € G, there exists an open
set U, containing the element y and a mapping f, from the semigroup I such that the
mapping f, is constant on U, n G,. In fact, there is G, = G,. The compactness of
the set G, implies that there exists a finite number of elements y, € G, (i = 1,2, ..., n)

n
so that G, « U U,, U; = U,,. The mappings f; (f; = f,,) are constant on U; n G,.

i=1
From 1.4.2 there follows that the mapping f = f,f, ... f, is constant on U; n G, and
hence the set f(G,) is finite. 1.5.6 implies that also the set G, = f(G,) is finite since
according to 1.1.11 there is feTI.

2.2.3 Theorem. If G is a palintropic compact groupoid then the following two
properties are equivalent:

1. The groupoid G is complete. All mappings f from the semigroup I" are open.
The sets G, are closed.

2. The groupoid G is strongly regular. All cyclic subgroups of G are finite.
Proof. 1 = 2. The sets G, are according to 8.3.1 in [7] compact. The rest follows
from 2.2.2, 1.5.3 and 1.4.4.

2 = 1. Realizing that (8.3.24 in [7]) each mapping f from the semigroup I is
homeomorphic, the proof follows from 1.5.4, 1.4.4 and 1.5.7.
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2.2.4 Corollary — F. A continuous mapping f of the compact space X into itself
is pointwise periodic if and only if the following is true:

1) f is an open mapping,

2) f(X) = X7

3) the sets 8[yeX; f*(y) = f™(x) for some natural n, m] are closed for all x € X.

See Proposition 4 — F in [1].

2.2.5 Corollary — S. A compact semigroup S is a semigroup of idempotents if and
only if there holds

1) S is a complete semigroup,

2) the mapping f, (f(x) = x" for all xe S and for all natural numbers n) are
open,

3) the sets [y € S; y* = x™ for some natural n, m] are closed for all x € S.

See Problem 4 — S in [1].

2.3.1 An element x of the topological groupoid G is called recurrent if x € (T}:)

An element x of the topological groupoid G is recurrent if and only if to any open
set U containing x there is a. € & (o * 1) such that x*e U.

A recurrent groupoid is a topological groupoid whose each element is recurrent.

2.3.2 Note. An element x of the topological groupoid X (cf. 2.1.7) is recurrent if
and only if to each open set U containing x there is a natural number m such that
f™(x) € U. If the groupoid X is recurrent then we say that the mapping f is recurrent.
Cf. [4].

An element x of the topological semigroup S is recurrent if and only if to every
open set U containing x there is a natural number m such that x™** e U. A topological
semigroup whose each element is recurrent is called a recurrent semigroup. Cf. [1].

2.3.3 If K is a closed subgroupoid of a compact groupoid then there is no recur-
rent element in K — K2,

Proof. 1.1.3 and 2.1.5 implies that K? is a closed subgroupoid of the groupoid G.
If xeK and x € (TZ) then I',< K and hence I'; = K?. Therefore x & (T2) < K?) =
= K2,

2.3.4 Theorem. A compact groupoid G is recurrent if and only if each of its
closed subgroupoids is . decomposable.

Proof. Let the compact groupoid G be recurrent. If A4 is a closed subgroupoid then
according to 2.3.3 there is 4% = A.

Let every closed subgroupoid of the compact groupoid G be decomposable.
According to 2.1.4 there is T, a closed subgroupoid and hence 2.1.3 implies x e T, =

= (T.)* = (T?).
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2.3.5 Corollary — F. A continuous mapping f of a compact space into itself is
recurrent if and only if there holds for any closed subset A = X

f(4) = 4= f(4) =
See Proposition 5 — F in [1].

2.3.6 Corollary — S. A compact semigroup S is recurrent if and only if its each
closed subset is decomposable.

See Proposition 5 — Sin [1].

2.4.1 Theorem. Let e be a recurrent element of a compact groupoid G. If H, K are
two closed connected subsets with the properties

1) HUK = G,

2) HNK = {e},

3) HHnH + 0 + K n K?,

4) H* nK? = {e?}
then e is an idempotent.

Proof. Property 1) implies that e lies either in H or in K. Suppose that it hes in K.
Evidently e? e H? and hence H> nK =+ 0 % H? A H. According to 2.1'6 H? is
a connected set and hence e € H? since e is a dividing point in G. Property 2) implies
evidently e e K. If e ¢ K? then K*> = K since K* is a connected set (see 2.1.6) and
K n K? + 0. Obviously K is a closed subgroupoid and e € K — K? which is a con-
tradiction since according to 2.3.3 the element e is not recurrent. Hence e € K? which
means that e e H> n K2. According to Property 4, however, e = €.

2.4.2 Corollary — F. Let the continuous mapping f of the compact space X into
itself be recurrent at the point e. If H, K are two closed connected subsets with the
properties

1) HUK =X,

2) HnK = {e},

3) f(H) A H + 0 + K n f(K),

4) f(H) n f(K) = {1(e)}
then e is a fixed point of the mapping f.

2.43 Note. If f is a one-to-one mapping then Property 4, in the assumptions of
the Corollary — F can be omitted.

See Proposition 6 — F in [1].

2.4.4 Corollary — S. Let e be a recurrent element of a semigroup S. If H, K are
two closed connected subsets with the properties

I)HUK =35,
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2) HnK = {e},
3) H*nH+0+KnK?
4) H* n K? = {&*}
then e is an idempotent.
See Problem 6 — S in [1].
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