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Časopis pro pěstování matematiky, roč. 93 (1968), Praha 

ON PERIODIC AND RECURRENT COMPACT GRUPOIDS 

BEDRICH PONDELICEK, PodSbrady 

(Received January 24, 1967) 

In the- paper [1], four problems concerning compact periodic semigroups have 
been presented. They deal with the formulation of theorems analogous to the theorems 
on the pointwise periodic mapping of a compact space into itself which have been 
presented in the same paper. We shall show that the analogy is not incidental and that 
it is possible to study the periodic semigroups and the pointwise periodic mapping 
simultaneously as special cases of the compact periodic groupoids. In the present 
paper, two problems out of four are solved, all consideration and results being 
formulated by means of the theory of topological groupoids. Cf. e.g. [2]. 

1. GROUPOIDS 

1.1.1 Let G be an arbitrary groupoid. If A cz G and B cz G, then by AB denote 
the set of all products ab, a e A, b e B. Further denote A2 = AA. By a subgroupoid, 
as it is well known, we mean any non-empty subset A cz G for which A2 cz A holds. 
If A2 = A then the subgroupoid A is called decomposable. By a minimal subgroupoid 
we understand any subgroupoid not containing any other subgroupoid. 

1.1.2 The product of a non-empty system of subgroupoids of the groupoid G is 
either the empty set or again a subgroupoid. 

1.1.3 If A is a subgroupoid of the groupoid G, then A2 is also a subgroupoid. 

Proof. If A2 cz A, then A2A2 c A2. 

1.1.4 Every minimal subgroupoid of the groupoid G is decomposable. 

1.1.5 In this paper Jf always means the set of all natural numbers. Define the 
00 

set S£ = U Ln, where Lx contains only the element 1 from Jf and the set Ln+i all 
B = l 
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ordered pairs <a, /?> of elements from U Lh one element at least being from Ln. 
i = l 

Evidently Ltr\ Lk = 0 for i =t= k, i, k e Jf. The sets Ln are non-empty and finite, 
hence the set JSf is denumerable. The pair <1, 1> let us denote by 2 (cf. [3]). 

1.1.6 In the set S£ let us define the addition. If a, j8 e S£ then put a + /? = <a, /?>. 
Evidently a + p e L„, n = max (i, k) + 1 if a e Lf and j8 € Lk. The set .£? generates 
a groupoid with respect to the addition; it is neither associative nor commutative. 

1.1.7 Let us further define the multiplication in S£. Put al = a for a € S£. If 
n 

P = <H>i» J?2>> ,# e Ln+1 and J?!, j?2 e U I* then aj? = aj8t + a/?2. Again the set S£ 
i = l 

with respect to the multiplication generates a groupoid which is neither associative 
nor commutative. 

1.1.8 The equation la = a = al holds for any element a e if. 

Proof. From 1.1.7 it follows that al = a for all a e S£. By mathematical induction 
with respect to n we prove that la = a for every a e L„. For n = 1 the assertion is 
obvious. Suppose that the assertion holds for all m, 1 = m < n and let us prove it 

n - l 

for n. If a 6 Ln then a = <al9 a2> where ax, a2 e U £»• According to the assumption 
i = l 

lax = ax and la2 = a2. Hence according to 1.1.7 and 1.1.6 there is la = la t + 
+ la2 -= <xx + a2 = <a1? a2> = a. 

1.1.9 If x is an arbitrary element of the groupoid G, put x1 = x. For ae Lrt+1, 
n 

put xa = xai x*2, where a = <ax, a2> and <xu oc2e\J L{. 

1.1.10 For a, ft e S£ and x from the groupoid G there holds: 
1. x V = xa+fi; 
2. (x*)fi = xa/?. 

Proof. The first assertion follows from 1.1.6. The proof of the second relation we 
perform by mathematical induction with respect to «, /? e Ln. For « = 1 the assertion 
is obvious. Now let it hold for all m, 1 = m < n; we shall prove it for n. If p e Lfc 

then jS = <j81, j32> where fii9 p2e\J Lt. According to 1.1.9, 1.1.7 and 1.1.6 (xa)* = 

= (x*yi(x*y> = x*Plx*fi2 = x*
fii+ap" = x*fi. 

1.1.11 Let T be the set of all mappings/ of the groupoid G into itself such that for 
all x e G there is f(x) = x* for some a e J£. 

r is a semigroup with a unit element. 
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Proof. Iff, g e F thenf(x) = xa, g(x) = xfi for a, fi e S£ and x e G. Hence accord­
ing to 1.1.10 there is gf(x) = g(xa) = (xa)^ = xaP, and therefore gfeT. Further 
e e F, e(x) = x1 = x, x G G. 

1.2.1 The product of all subgroups of the groupoid G which contain the element x, 
is called the cyclic subgroupoid Tx determined by the element x. 

The cyclic subgroupoid Tx is the set of all elements xa of the groupoid G for 
<xe&. 

Proof. Let A be the set of all elements xa of the groupoid G for a e ££. According 
to 1.1.10 A is a subgroupoid containing x and hence Tx <= A. Let xa e A, a e Ln. We 
prove by mathematical induction with respect to n that xa G Tx. If n = 1 then x1 = 
= xeTx. Let the assertion hold for all m, 1 = m < n; we shall prove that it holds 

for n. If a e Ln then a = <at, a2> where al5 a2 e \J Lt. From 1.1.7 it follows xa = 
= xaixa2 e f j c Tx. Hence A = Tx.

 i=zl 

1.2.2 An element x of the groupoid G is called strongly periodic if the cyclic 
subgroupoid Fx is decomposable. 

An element x of the groupoid G is strongly periodic if and only if there exists 
a e J£f (a =j= 1) such that x = xa. 

Proof. Let x be a strongly periodic element of the groupoid G; then Tx is a de­
composable subgroupoid. Therefore x e Tx = T2. From 1.2.1 we get x = xaixa2 for 
a1? a2 G $£ and thus x = xa, where a e J§? and a =f= 1. 

If x = xa, a e ££ and a #= 1 then x = xa = xaixa2 e T2 for a = <a1, a2>, a t, a2 e 
G f̂. According to 1.1.3, T2 is a subgroupoid containing the element x and hence 
Tx cz Tl cz Tx. From here it follows Tx = F2. The element x is strongly periodic. 

1.2.3 A grupoid whose each element is strongly periodic is called a strongly 
periodic groupoid. 

1.2.4 Example — F. Let X be an arbitrary non-empty set and f a mapping of this 
set into itself. Let us define multiplication in X: 

xy = f(x) for x, y e X . 

Evidently X is a groupoid. Further Tx = {x,f(x), ...,fw(x), ...} and T2
X = 

= {f(x),f2(x), ...,fm(x),...}. Hence the element x is strongly periodic in the 
groupoid X if and only if there is a natural number m such that x = fm(x). According 
to [4] it means that the mapping f is periodic at the point x. If the groupoid X is 
strongly periodic then the mapping f is pointwise periodic. 

1.2.5 Example — S. Let S be an arbitrary semigroup (an associative groupoid). 
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Then rx = {x, x 2 , . . . , xm,...} and F2 = {x2, x , . . . , x m , . . . } . Obviously, the element x 
is in the semigroup S strongly periodic if and only if there is a natural number m 
such that x = xm + 1. If the groupoid S is strongly periodic then we say that S is 
a strongly periodic semigroup. 

1.2.6 Theorem. The groupoid G is strongly periodic if and only if its every 
subgroupoid is decomposable. 

Proof. If each subgroupoid of the groupoid G is decomposable then each element x 
is strongly periodic. Conversely let the groupoid G be strongly periodic. If A is its 
subgroupoid then A2 cz A. Let x e A. Then Tx cz A and hence x e Tx = F2 cz A2. 
Therefore A = A2 and each subgroupoid is decomposable. 

1.2.7 Corollary — F. A mapping f of a non-empty set X into itself is pointwise 
periodic if and only if for any subset A cz X there holds 

f(A) <= A =>>f(A) = A . 

See Proposition 1 — F in [1]. 

1.2.8 Corollary - S. A semigroup S is strongly periodic if and only if its each 
subsemigroup is decomposable. 

See Proposition 1 — S in [1]. 

1.3.1 An element x of a groupoid G is called strongly regular if the cyclic sub­
groupoid Fx is minimal. By a strongly regular groupoid we understand a groupoid 
whose each element is strongly regular. 

1.3.2 Every strongly regular element of the groupoid G is strongly periodic. 
Every strongly regular groupoid is strongly periodic. 

Proof follows from 1.1.4. 

1.3.3 An element x of the groupoid G is strongly regulac if and only if to each a 
from ££ there is J? in $£ such that x = xap. 

Proof. If x is a strongly regular element then the subgroupoid Tx is minimal. Let 
y = xa, a G ££. Obviously y e Tx and hence Fy cz Fx. From here it follows that 
Ty = Tx. Therefore x e Ty and there exists j? in X such that x = / = (xa)^ = x*fi. 

Conversely let there exist to each a e S£ an element ft e ££ such that x = x*p. If 
A cz Tx9 A2 cz A 4= 0 then for some a from ££ there is xa = y e A and hence Ty cz A. 
According to the assumption there is /? in $£ such that x = xap = (xa)^ = yfi. There­
fore x e ry and hence Tx cz Fy which means that Ty = A = Fx. The subgroupoid Tx 

is minimal. 
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1.3.4 Note . An element x of the groupoid X (cf. 1.2.4) is strongly regular if and 
only if it is strongly periodic. An element x of the semigroup S is strongly regular if 
and only if it is idempotent. The semigroup S is strongly regular if and only if it is 
a semigroup of idempotents. 

1.4.1 A groupoid G is called palintropic if for all x e G and a, p e i f there is 
x*fi = xfi*. Cf. [5]. 

1.4.2 A groupoid G is palintropic if and only if the semigroup F is commutative. 

Proof is obvious. 

1.4.3 In a palintropic groupoid G let us define the relation: x ~ y if and only if 
there exist a, p in j£? such that xa = xfi. Evidently x ~ x and x ~ y implies y ~ x. 
If x ~ y, y ~ z then for a, fil9 p2, y from JS? there is xa = yfii and yfil = zy. Using 
1.1.10 and 1.4.1 we get x*fi2 = (x*)fi2 = (yfii)fi2 = yfiifi2 = yfi2fii = (yfi^ = (zy)fii = 
= zyfii which means that x ~ z. Hence the relation ~ is an equivalence on G. By Gx 

denote the equivalence class that contains the element x. Evidently Fx cz Gx since 
x ~ xa for all a e JSf. 

1.4.4 If G is a strongly regular palintropic groupoid then Fx = Gx. 

Proof. If y G Gx then there are a, jS e j£? such that xa = y*. According to 1.3.3 there 
is y e J£? such that y = >;̂ y and hence y = xay. Therefore it is y e Fx and consequently 
Gx c rx. According to 1.4.3 there is Gx = rx. 

1.4.5 Let a e j ^ and 0 4= A cz G, G being a groupoid. By y4[a] denote the set of all 
elements xa, x e A. 

If G is a palintropic groupoid then for each x e G and a e j£? there is G^a] cz G .̂. 

Proof follows from the relation F* cz Gx (cf. 1.4.3). 

1.4.6 Note . The groupoid X (see 1.2.4) is palintropic. Evidently x ~ y in X if and 
only if there exist natural numbers n, m such that f"(x) = fm(y). Each semigroup is 
palintropic and x ~ y in the semigroup S if and only if there exist natural numbers n, 
m such that x" = ym. 

1.5.1 Groupoid G is called complete if for all a e S£ there is G = GCa]. 

1.5.2 The groupoid G is complete if and only if it holds f(G) = G for each 
mapping f from the semigroup F. 

P roof is obvious. 
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1.5.3 Let x be an element of a complete palintropic groupoid G. If Gx is a finite 
set then the element x is strongly regular. 

Proof. If a e JS? then there is fe F such that f(y) = y* for all y e G. The com­
pleteness of the groupoid G implies according to 1.5.2 that /(G) = G. Hence there 
is a sequence xl9 x 2 , . . . , x n , . . . of elements of G such that/(xn) = xn_ t and x0 = x. 
Obviously xn e Gx and therefore there exist natural numbers r and s(r < s) such that 
xr = xs. It holds therefore x = /s(xs) = fs(xr) = / s~ r(x) = gf(x) where g = f-r'1. 
Hence there is ft e J5? such that g(j) = )>* for all y e G. It holds therefore x = g/(x) = 
= (x

a)^ = xa/? which according to 1.3.3 means that the element x is strongly regular. 

1.5.4 Every palintropic strongly regular groupoid is complete. 

Proof. If x e G and a e «̂ f then according to 1.3.3 there is j? in <£? such that x = 

= xafi. From 1.41 there follows x = x"p = xPa = (xpf = / , y = xfi. 

1.5.5 Let G be a palintropic groupoid whose all sets Gx are finite The groupoid G 

is complete if and only if it is strongly regular. 

Proof follows from 1.5.3 and 1.5.4. 

1.5.6 If G is a palintropic complete groupoid then for all x e G and cue S£ there 
is G*« = Gx. 

Proof follows from 1.4.5 and 1.5.1. 

1.5.7 i / G is a complete palintropic groupoid whose all sets Gx are finite then 
each mapping from the semigroup F is one-to-one. 

Proof. If f(x) = f(y) then x ~ y and the rest of the proof follows from 1.5.6. 

1.5.8 Note . The groupoid X (see 1.2.4) is complete if and only if it holds/(K) = X. 
The semigroup S is complete if and only if to each its element x and to each natural 
number n there is y in S such that yn = x. Cf. [6]. 

2. COMPACT GROUPOIDS 

2.1.1 The groupoid G is a topological groupoid if it is a Hausdorff topological 
space and if to any open set U containing the product xy in G there exists an open set V 
containing x and an open set W containing y so that VtW c U. By A let us denote 
the closure of the subset A c G. Evidently each subgroupoid of a topological 
groupoid is a topological groupoid with respect to the relative topology. 

2.1.2 / / G is a topological groupoid then any mapping from the semigroup T 
is continuous. 
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Proof. I f / e F fthen there is a in S£ such that f(x) = xa for all xeG.By mathe­
matical induction with respect to n we prove that / is a continuous mapping of the 
topological space G into itself for any a e Ln. For n = 1 we get the identical mapping 
which is obviously continuous. Let now the mapping x -> xfi (where ft e Lm) be 
continuous for all m, 1 £ m < n; we shall show that the mapping / : x -+ xa is 

n - l 

continuous, too. Since a e Ln9 there is a = <al5 a2> where al9 a2 e (J L,. According 
i = l 

to the assumption the mappings g: x -> xai and h: x -» xai are continuous. According 
to 2.1.1 to any open set U containing the element xa = xaixa2 there exists an open set V 
containing x*1 and an open set W containing xai so that VJV c U. The mapping g as 
well as h is continuous and hence to the open sets V, W respectively there exist open 
sets Vi9 Wx respectively containing the element x so that V[aa c V, Jf}**3 c W 
respectively. The set Ux = Vt n Wx is open and contains x. Further it is obviously 
Uial c vla^W[^ c VWcz U. Hence the mapping/is continuous. 

2.1.3 Let G be a topological groupoid. If A c G and B c G then AB c (AB). 

Proof. If xeAB then x = ab9 a € A and b e B. Let (7 be an arbitrary open set 
containing x. Then there exist open sets Vand JVsuch that aeV9b e PVand VW c U. 
Obviously VnA[#04=BnPVand hence 0 # VJF n ALB c U n ALB. Consequently 
xe(31). 

2.1.4 The closure of a subgroupoid of a topological groupoid is again a sub-
groupoid. 

Proof. If A2 c A then according to 2.1.3 there is A2 c (A*) c A. Cf. Theorem 2.1 
in [2]. 

2.1.5 If A9 B are two compact subsets of a topological groupoid then AB is also 
a compact set. 

Proof. If A9 B are compact sets then according to 8.3.18 in [7] the set A x B is 
also a compact set. Let g be a mapping of the set A x B on AB9 g(a9 b) = ab for 
a e A and b e B. Evidently g is a continuous mapping and hence according to 8.3.15 
in [7] AlB is compact. 

2.1.6 If A9 B are two connected subsets of a topological groupoid then AB is also 
a connected set. 

Proof. According to 10.1.21 in [7] the set A x B is a connected set if only A, B 
are connected. The mapping g (from 2.1.5) is continuous and hence according to 
10.1.12 in [7] AB is a connected set. 

2.1.7 Note. HausdorfF topological space X (see 1.2.4) is a topological groupoid if 
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and only if the mapping/is continuous. By a topological semigroup we shall under­
stand an associative topological groupoid. 

2.2.1 Let x be an element of a palintropic topological groupoid G. Let all the 
mappings f from the semigroup F be open. If Gx is a compact set then there exists an 
open set U containing the element x and a mapping f from the semigroup T such 
that f is constant on U n Gx. 

Proof. For a, jSeJSf put Aafi = &[yeG; y* = x*]. Obviously Gx = U AatP. 
atfie& 

According to 7.1.20 [7] and 2.1.2 the sets Aa>fi are closed. According to 1.4.5 it is 
possible to make all these considerations in the topological space Gx. The set S£ is 
denumerable (see 1.1.5) and hence ([4], pp. 53 and 54) there exist a0, /?0 in J2? and an 
open subset V of the topological space Gx such that V c AaotPo. According to our 
assumption the set V[ao] = {xfio} is open. Hence the set W of all elements y e G, 
yPo ^ xfio j s 0 p e n according to 2.1.2 and xeW. If/is a mapping from the semigroup T 
such that/(j;) = yfio for all y e G then/is constant on W. In the topological space G 
there is then an open set 17, U n Gx = W. 

2.2.2 Let x be an element of a complete palintropic topological groupoid G. 
Let all mappings f from the semigroup F be open. Then the set Gx is compact if and 
only if it is finite. 

Proof. If Gx is a finite set then it is obviously compact. Conversely let Gx be 
be a compact set. Then according to 2.2.1 to any element y e Gx there exists an open 
set Uy containing the element y and a mapping/,, from the semigroup F such that the 
mapping fy is constant on Uy n Gx. In fact, there is Gx = Gy. The compactness of 
the set Gx implies that there exists a finite number of elements y f eGx(i = 1,2,..., n) 

n 

so that Gx c U Ui9 Ut = Uyi. The mappings / f (ft = /y.) are constant on Ut n Gx. 
i = - i 

From 1.4.2 there follows that the mapping / -= ftf2 ... /„ is constant on Ut n Gx and 
hence the set f(Gx) is finite. 1.5.6 implies that also the set Gx = f(Gx) is finite since 
according to 1.1.11 there i s / e F. 

2.2.3 Theorem. / / G is a palintropic compact groupoid then the following two 
properties are equivalent: 

1. The groupoid G is complete. All mappings f from the semigroup T are open. 
The sets Gx are closed. 

2. The groupoid G is strongly regular. All cyclic subgroups of G are finite. 

Proof. 1 => 2. The sets Gx are according to 8.3.1 in [7] compact. The rest follows 
from 2.2.2, 1.5.3 and 1.4.4. 

2 => 1. Realizing that (8.3.24 in [7]) each mapping / from the semigroup F is 
homeomorphic, the proof follows from 1.5.4, 1.4.4 and 1.5.7. 

269 



2.2.4 Corollary — F. A continuous mapping f of the compact space X into itself 
is pointwise periodic if and only if the following is true: 

1) / is an open mapping, 
2) f(x) = x; 
3) the sets S\yeX\fn(y) =-= fm(x)for some natural n, m] are closed for all xeX. 
See Proposition 4 - F in [1]. 

2.2.5 Corollary — S. A compact semigroup S is a semigroup of idempotents if and 
only if there holds 

1) S is a complete semigroup, 
2) the mapping fn (fn(x) -= xn for all xeS and for all natural numbers n) are 

open, 
3) the sets S\y eS; yn = xm for some natural n, m] are closed for all xe S. 
See Problem 4 - S in [1]. 

2.3.1 An element x of the topological groupoid G is called recurrent if x e (F2.). 
An element x of the topological groupoid G is recurrent if and only if to any open 

set U containing x there is a e JSf (a 4= 1) such that xa e 17. 
A recurrent groupoid is a topological groupoid whose each element is recurrent. 

2.3.2 Note. An element x of the topological groupoid X (cf. 2.1.7) is recurrent if 
and only if to each open set U containing x there is a natural number m such that 
/m(x) e U. If the groupoid X is recurrent then we say that the mapping/is recurrent. 

a. [4]. 
An element x of the topological semigroup S is recurrent if and only if to every 

open set U containing x there is a natural number m such that xm+1 G U. A topological 
semigroup whose each element is recurrent is called a recurrent semigroup. Cf. [1]. 

2.3.3 If K is a closed subgroupoid of a compact groupoid then there is no recur­
rent element in K — K2. 

Proof. 1.1.3 and 2.1.5 implies that K2 is a closed subgroupoid of the groupoid G. 
If x e K and x e (Ff) then Fxc K and hence F2 c K2. Therefore x e (T|) c (]P) = 
= K2. 

2.3.4 Theorem. A compact groupoid G is recurrent if and only if each of its 
closed subgroupoids is,decomposable. 

Proof. Let the compact groupoid G be recurrent. If A is a closed subgroupoid then 
according to 2.3.3 there is A2 = A. 

Let every closed subgroupoid of the compact groupoid G be decomposable. 
According to 2.1.4 there is Tx SL closed subgroupoid and hence 2.1.3 implies x e Tx = 

= (Tc)2 <= (Tf). 
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2.3.5 Corollary — F. A continuous mapping f of a compact space into itself is 
recurrent if and only if there holds for any closed subset A c X 

f{A)czA=>f{A)~A. 

See Proposition 5 — F in [1], 

2.3.6 Corollary — S. A compact semigroup S is recurrent if and only if its each 
closed subset is decomposable. 

See Proposition 5 — S in [1]. 

2.4.1 Theorem. Let e be a recurrent element of a compact groupoid G. If If, K are 
two closed connected subsets with the properties 

1) II u K = G, 
2) If n K = {e}, 
3) II2 n II * 0 * K n K2, 

4) II2 n K2 = {e2} 
then e is an idempotent. 

Proof. Property 1) implies that e2 lies either in II or in K. Suppose that it lies in K. 
Evidently e2 e II2 and hence If2 n K 4= 0 4= II2 n II. According to 2.L6 H2 is 
a connected set and hence e e II2 since e is a dividing point in G. Property 2) implies 
evidently eeK . If e^K2 then K2 <= K since K2 is a connected set (see 2.1.6) and 
K n K2 =t= 0. Obviously K is a closed subgroupoid and e e K — K2 which is a con­
tradiction since according to 2.3.3 the element eis not recurrent. Hence eeK2 which 
means that e e II2 n K2. According to Property 4, however, e = e2. 

2.4.2 Corollary —' F. Let the continuous mapping f of the compact space X into 
itself be recurrent at the point e. If II, K are two closed connected subsets with the 
properties 

1) H u K = X, 
2) II n K = {e}, 
3 ) / ( I I ) n I I + 0=f=Kn/ (K ) , 
4 ) / ( H ) n / ( K ) = {/(e)} 

then e is a fixed point of the mapping / 

2.4.3 Note. I f / i s a one-to-one mapping then Property 4, in the assumptions of 
the Corollary — F can be omitted. 

See Proposition 6 — F in [1], 

2.4.4 Corollary — S. Let e be a recurrent element of a semigroup S. If H, K are 
two closed connected subsets with the properties 

1) II u K = S, 
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2) H n K = {e}, 
3) H2 n if 4= 0 * K n K2, 
4) H 2 n X 2 = {e2} 

»7.en e is an idempotent. 
See Problem 6 - S in [1]. 
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