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Časopis pro pěstování matematiky, roč. 93 (1968), Praha 

ON THE PROOF OF A THEOREM OF V. G. BOLTIANSKIJ 

PETER STEFAN, Praha 

(Received June 5, 1967) 

The proof of sufficient conditions for optimality of the time-optimal control 
problem is simplified and completed. 

INTRODUCTION 

In his book [1] BOLTIANSKU has formulated and proved two theorems giving 
sufficient conditions for optimality of the time-optimal control problem (Theorems 
IV. 4., p. 226 and IV. 7., p. 238). We are going to deal with the first of them; it will 
be referred to as ThB. (The second theorem is a non-trivial consequence of the first 
one.) 

The proof of ThB is based on the following proposition: Let Ak and Bn be suffi­
ciently smooth manifolds with boundary of dimension k and n respectively. Suppose 
that k S n and that <P : Ak -> Bn is a ^-mapping. Denote S the set of singular 
points of #. Then <P(S) is a set of the first category in Bn. 

For the proof of this proposition the reader of [ l ] is referred to [2] if k < n, and 
to [3] if k = n. However, in the proof of ThB this proposition can be replaced by the 
following well-known fact: If k = n9 Ak is an open subset of Rn and Bn = Rn

9 then 
<P(S) has a zero Lebesgue measure. Particularly, we need not speak about manifolds 
with boundary. To show it is the objective of this paper. 

(In his interesting paper [3] Dubovickij deals mainly with the non-trivial case 
k > n. He shows that in this case <P has to be a Cfc~n+^mapping.) 

ASSUMPTIONS AND NOTATIONS 
FORMULATION OF LEMMA 1 

Denote J£(Rk
9 Rn) the space of all linear mappings of Rk into Rn with its usual 

topology. We shall write simply 3?(Rn) instead of S£(Rn
9 Rn). Furthermore, we shall 

identify the space J£(R9 Rn) with Rn by means of the canonical isomorphism. Denote 
QA the rank of the operator A e &(Rk

9 Rn). 
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Let H be a neighborhood of x € Rk. The derivative DF(x) of a function F : H -* Rn 

is an element of J?(Rk
9 R

n) (if it exists). Also, if k = 1, F(r) will be written instead 
of DF(t). If, for example, H c Rk x i*1 x IT and x = (x1? x2, x3), then D2F(xx, 
x2, x3) denotes -the partial derivative of F with respect to the second variable at the 
point x. It is an element of &(Rl, Rn) ([4]). 

Consider the following time-optimal control problem: 

(1) x = f(x, u) , 

where f: G x U -> Rn is continuous, G is open in Rn, and U is a Hausdorff" space. 
Suppose that the derivative Dtf(x, u) exists for all (x, u) e G x U and that 

Dxf: G x U -* &(Rn) is also continuous. 
We consider only the piece-wise continuous strategies u defined on a compact 

intervalin R. If the strategy u : <tl5 f2> -+ U is fixed, the trajectory x is a solution 
of (l), i.e. it is a continuous function defined on some interval I" <= (tx, t2y which 
satisfies (1) at all points of continuity of u. If I = (tx, t2y, denote the pair of x and u 
by (x, u)\\ and call it a process. 

ThB is an immediate consequence of the next lemma (see [1], p. 225): 

Lemma 1. Let M be a piece-wise smooth subset of G of dimension less than n. 
Let co : G -* R be continuous in G and have a derivative Dco(x) at all points x e 
e G — M. Suppose that the inequality Dco(x) of(x, u) _" 1 holds for all xeG — M 
and for all ueU. Then, for every process (x, u)\\ we have t2 — tx _• co(x2) — co(xx), 
xt = *(*,), i = 1, 2. 

We shall recall now the definition of a piece-wise smooth set, introducing simul­
taneously some useful notation. 

A set K is called an s-dimensional polyhedron iff K is a convex compact polyhedron 
in Rs with a non-empty interior. A mapping cp : K ~* jRn is said to be of the class C1 

iff cp is the restriction of a C1-mapping \j/ defined on an open neighborhood of K. 
It is easy to see that for £ e K the value of D^(£) e <£(RS, Rn) depends only on cp; 
we can therefore denote it by D<p(£). A Catnapping cp is called regular iff qDcp(^) = s 
for all £ e K. 

A curvilinear polyhedron L = cp(K) of dimension s in Rn is, by definition, a triple 
(L, cp, K) where K is an s-dimensional polyhedron, cp : K -> #" is a regular injection 
and Lis a subset of JR", L = cp(K). We shall call it simply the polyhedron L, or poly­
hedron L = cp(K) provided there is no danger of misunderstanding. The points of 
the set L c Rn will be referred to as the points of polyhedron L. Similarly, the union 
of a family of polyhedra is the union of the corresponding family of subsets of JRW etc. 

Let us keep for a while the meaning of letters L, cp, K and s. Let XGL,£ = cp" x(x) 
and A = Dcp(£). Then .Ai*5 is a vector subspace of dimension s in JRB; it will be denoted 
by Lx and called the tangent space of Lat the point x. 

Definition 1. A set M c G is called a piece-wise smooth set of dimension less 
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than n in G iff M is a union of a locally finite family of curvilnear polyhedra of 
dimension less than n. 

Of course, M need not be a piece-wise smooth set in some G' 3 G. 

PROOF OF LEMMA 1 

We shall take advantage of the following form of the theorem on continuous 
dependence on the initial conditions for equation (1): 

Theorem 1. Let (x, u)\\ be a process and G' c G be an open neighborhood of the 
point-set 

(2) [x] = *«/„ f2» . 

For a fixed strategy u let us denote H the set of all initial conditions (x, f) e G x 
x (tx, t2y such that the trajectory y(i) = y(t, x, f), y(x) = x can be defined on the 
entire interval <tu t2} and assumes its values in G'. Denote \\/(x, f) = y(tu x, f). 
Finally, let a be a finite subset of (tt, t2} containing tx, t2 and all points of discon­
tinuity of the strategy u. Then 

1° H is open in Gr x <*!, *2>. 
2° \J/ : H -> G is piece-wise smooth with respect to a. (See Definition 2.) 
3° The linear operator A(x, f) = D^x, f) e JSf(R") is regular for all (x, f) e H. 
4° The following formula is valid: 

(3) D2\j/(x, f) = — A(x, f) o Dxy(x, x,x) if f £ a . 

The proof of the theorem follows the standard pattern. For example, it can be 
easily obtained by a slight modification of the proofs of Theorems 7.1. and 7.2. 
in [5]. For the sake of completness a proof of relation (3) will be given here, because 
it is not contained in [5]: We have y(t, x, x) = y(t, y(s, x, f), s) and particularly 
ij/(x, x) = \j/(y(s, x, f), s). Hence, D2\//(x, x) = D1\j/(y(s9 x, x), s) o D3>?(s, x, x) and it 
sufficies to put s = f because D3y(f, x, x) = — Dxy(x, x, x) (see the proof of Theorem 
7.2. in [5]). 

Next, the definition of a piece-wise smooth function will be given: 

Definition 2. Let I be a compact interval in R and a be a finite subset of I con­
taining its end-points. Let Q be open in Rk x / . Denote S = n n (Rk x (I — <T)), 
which is an open subset of Rk x jR. A function <P : Q -> Rn will be called piece-wise 
smooth with respect to a iff the following conditions hold: 

1° 4> is continuous. 
2° #5 : Q -> Rn is a ^-mapping. 
3° The mappings x -> 4>(x, f) are of the class C1 on the corresponding sets Q(t) 

for all t e a . (Or, equivalently, for all tel.) 
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Here Q(t) denotes the section of Q, i.e. 

(4) Q(t) = {x e Rk : (x9 t)eQ}. 

Besides Theorem 1, we shall need some consequences of the following well-known 
theorem of advanced calculus: 

Theorem 2. Let Q be open in Rn and $ : Q -+ Rn be of the class C1. Let S = 
= {£GQ :QD<P(1;) < n} be the set of all singular points of <P. Then |#(S)| = 0. 
(\X\ denotes the Lebesgue measure of the set X.) 

For a simple proof see [6]. 
The next corollaries are trivial but useful consequences of Theorem 2: 

Corollary 1. The statement of Theorem 2 remains true for Q cz Rk, H n . 
(It sufficies to apply Theorem 2 to the function W9 where T(^l9 £2,..., £fc, %k+l9 ... 
..., Q = $(£u ..., 4) defined on the cylinder Q x JRW~* in Rn) 

Corollary 2. Using the notation of Definition 2, # : Q -» Rn is a piece-wise smooth 
function with respect to a. Suppose that k + 1 ^ n. Let 

(5) S = SXKJ S2, 

where 

(6) St = { { 6 Q : Q D * ( £ ) < n} 

and 

(7) s2 = u Q(t) x {*} . 
tea 

Then |#(S)| = 0. 
(Obvious.) 

Let us finally turn to the proof of Lemma 1. As shown in [1] it sufficies to prove 
the following assertion: 

Lemma 2. Let T be a family of (curvilinear) polyhedra of dimension less than n9 

which is locally finite in G. Let (x9 u)\\ be a process. Then in every neighborhood of 
xi = x(h) a point yt exists such that: 

1° There exists a process (y9 w)£ satisfying y(tx) = y±. 
2° The trajectory y : (tl9 *2> -* G of this process intersects only a finite number 

of polyhedra of T. 
3° 1/ y(t) e Le T for some t e <^, t2>, then the strategy u is continuous in t and 

y(i)$Lm. 

Proof. The set [x] c G (see (2)) is compact. Thus there exists an open, relatively 
compact set G'; [x] c G' c G' cz G. Then G' intersects only a finite number of 
polyhedra of the family F. Denote them by Ll9 L2,..., Lm. Assume that the sets 
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a c (tl9 *2>, H c. G' x <rl9 f2> and the functions y(f, x, f) and \j/ are defined as in 
Theorem 1. Let W = H^) be the section of H (see (4)). Then W cz G' is an open 
neighborhood of x^ Conditions 1° and 2° of our lemma are satisfied for every yx e W. 
Denote ft the set of these yt e Wfor which condition 3° is not fulfilled. Similarly, 
denote Nt the set of those y x e IVfor which 3° is not fulfilled provided the family F is 
reduced to {Lt}. Thus we have N = Nx u N2 u .. . u Nm. 

We have to prove that in every neighborhood of xx there exists a point yt e W — N. 
It is sufficient to show that |N f | = 0 for 1 ^ i ^ m. The subscript i once fixed will 
be omitted in the following. 

Let L = (p(K). We may assume that cp is defined and belongs to the class C1 on 
some open neighborhood K' of K. Let s be the dimension of L. Define a continuous 
mapping g : K' x (tl9 t2} -» G' x <t1? t2} by the formmula g(£, t) = ((p(£)9 t). 
Denote Q = g~x(H). Q is open in K' x <t1, t2> and the function # : Q -> G'; 
#({, f) = il/((p(£), t) = (ij/ o g) (£, i>) is piece-wise smooth in Q with respect to a. 

Let 5 be defined as in Corollary 2 (see (5)). It is sufficient to show that N cz <P(S). 
Consider now an arbitrary yx e N. Then y(t09 yl9 tx) = y0 e Lfor some t0 e <*1? t2} 
and at least one of the following relations holds: t0 e a or J ^ Q ) e Lyo. Denote l;0 = 
= <P-1(yo)- T l i e n yi = <Hyo> *o) = #(£o> *<>)• It can be immediately seen that yx e 
e <P(S) if t0 e a (see (7)). Suppose t0 e (tl9 *2> - a. Let A = D ^ ( y 0 , t0) e &(Rn) 
and B = D<!>(£0, t0) = Dty o g) (£0, *0) 6 if(K s + 1 , *»). To find the rank of B we shall 
determine the dimension of the vector space BRS + 1 cz Rn. According to the theorem 
on the derivative of a composed function we have immediately BjRs+1 == AL + 
+ {D2\j/(y09 *0)}v, where {a}v denotes the vector space spanned by a vector a. 
However, D2i/t(v0, t0) = -^4y(ro) (see (3)) and consequently, BRS+1 = ALyo + 
+ {Ay(t0)}v = A(Lyo + {y(t0)}v). Therefore, by the regularity of A (Theorem 1) we 
have QB = dim(Lyo + {y('o)}v). If now y±eN, then Lyo + {y{t0)}Y = Lyo and 
QB = s = n - 1. Hence, (£0, *0) e 5 (see (5), (6)) and ̂  = <f>(£0, f0) G <f>(5). 

Thus we have N c #(S), and, by Corollary 2, |N| = 0. This proves our lemma. 
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