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1. DEFINITIONS AND NOTATION |

Let &'y, & , be complex Banach spaces, x, , ...,; u, t, ... its elements and || x{|, || »
norms of x € &y, u € &,. Let H be an index set and % ;,, j = 1,2, h € H, be Banach
spaces with norms H . || j.n- We suppose, that there exist continuous linear transforma-
tions P;;, j= 1,2, heH, of Z; onto %;,. Further we suppose that there exist
subspaces Z; , of &; isomorphic with Z’; ,. Let us denote by S; , the corresponding
isomorphisms. Hence

~ - .
SinZjn="Zjn o8 Xjp=S8;,Zj,.

J

We shall assume that H = (0, ko) and that for an arbitrary vector x; € &'; there

holds the expression x; = lim %, 4, where %;, = S}, P;;x; € T ;.»- Let us note, that
h=0
in applications Z'; , are usually finite dimensional spaces.

Let & be a complex Banach space. Then 2’ denotes the adjoint space of continuous
linear forms on Z. The space of all bounded linear operators from Z into the Banach
space Z,, topologized by the norm ||T| = sup |Tx|s, xe %, Txe Z,, will be

IIxllz=1
denoted by [Z, Z,]. We put [Z] = [Z, Z].

Let Te[Z, Z,]. Then T’ denotes the adjoint operator, i.e. the operator T’, for
which y" = T'x" < y'(x) = x'(Ty), where y = Tx and xe %, yeZ,, x'e %],
y' €Z'. Evidently T' e [Z}, Z'].

If Tis a linear (not necessarily) bounded transformation, then 2(T), 2(T) « &
denotes the domain and %#(T), #(T) = %, the range of this transformation.

The following eigenvalue problem

(1.1) Tx = px

') An announcement of the main results was made in the preliminary communication
“A principle of dehomogenization for eigenvalue problems”, Comment. Math. Univ. Carol. 6, 2
(1965), 199—210. - '
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shall be investigated together with the “approximate” eigenvalue problem
(1.2) Tyxy = 1, ,

where T, T],a;e elements of &, &, and the symbols &, &, denote the corresponding
pair of the spaces Z';, ' 5, j = 1, 2. In agreement with this notation we also omit
theindex j, j = 1,2,in P} ;.

The problem (1.2) can be considered as an approximation of the problem (1.1) only
if the closeness of the operators T and T, is guaranteed. This closeness we shall
define later. Then the eigenvalue problem (1.2) will be called the approximate problem
of (1.1) and the eigenvector x, of T, an approximate eigenvector corresponding to the
approximate eigenvalue u™, The closeness of the operators mentioned will be defined
by using the terms usual in the theory of approximate methods, in particular in the
net method of approximate solution of differential equations.

Convention. The positive constants independent of /i € H will be denoted by the
unique symbol ¢ without the distinguishing indices.

Definition 1. Suppose that T maps 2(T) = %, into &, and T, maps 2(T;) = &,
into &5, Let M, < &, and M, N D(T) = M + 0. Let P4 = M, = UT,).
Finally let r be a positive integer. If the inequalities

(13) IP2Tx — T,Pyux]> < ox) b

where c(x) < c|x|,, hold for all vectors x e .#, we shall say, that T, have the approxi-
mation order r on the set .##/ < & with respect to the operator T.

Note, that the approximation order r depends on #, %, &, 4 ¥, and T.

Let ye &, and put y, = P, ,y; thus y, € P, ,%,. Let u, u™ be solutions of the
equations ’

(1.4) Tx=y, Tx® =y,

where the operators T and T, map 9(T) c %, into &, ‘and YT, < &, yinto X,
respectively.

Definition 2. Let the equations (1.4) have unique solutions u € 9(T), u™ € 9(T,)
Jorgiven ye M, = X,. Let p be a positive integer. We say, that T, has the accuracy-
order p on the set M, with respect to the operator T, if there holds the inequality

(1.5) ' “P,’,,u —u®| < o(y) h7,

where ¢(y) < c||y|..
Evidently the accuracy-order depends on &, A5, &, 4, &, and T.
In definitions 1 and 2 there are given two significant characteristics of an approxim-
ate operator with respect to the investigated operator T. There are some relations
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between the approximation-order r and the accuracy-order p if the operator T has,
say, some smoothness properties. For example, in the net method for the differential
operator L, where

Lu= — 4 [k(t) d—‘{l +q(®)u(t), u©0)=a, u(l)=4,
dt dt

in the space (<0, 1)) of functions continuous with their derivatives of order p the
accuracy-order p is equal to the approximation-order r, if ke ¥77!(<0, 1)) and
g€ 67*({0, 1)) (see [5]). On the other hand, there is shown in [5] that a fixed
operator L, in &), may be an approximate operator with respect to two different
operators L, L, in &, where the corresponding approximation-orders are identical
in a class of sufficiently smooth coefficients. For example if the coefficients of L, are
smooth and the coefficients of L, are discontinuous, then for the accuracy-orders the
inequality p; = p, is true, however p, =+ p, in general.

In definition 2 the equations were supposed to fulfil the unicity conditions.
This definition is not convenient for the studying of eigenvalue problems.

Definition 3. Let 1, be an eigenvalue of the operator T from 9(T) < % into  and
let x;,...,%, 1 <5 < + 00, be corresponding linear independent eigenvectors. We
say, that an operator T, from 2(T,) = &, into &, has the accuracy-order p in & for
the proper value u, with respect to the operator T, if for every proper ‘vector x; there
exist proper values yS-':z, t =1,...,1; of the operator T, and corresponding proper
vectors x{) such, that the inequalities

(1.6) [ Px;, —zlaﬁx;’:)” S olx) b7, o(x;) £ c|xy],

o — uﬂ-’})l Sch?, j=1,..,s, t=1,.,1,

hold for appropriate complex numbers «;, and positive integers ;.

Convention. Let M and C be linear transformations from 2(M) < &, and
9(C) c %, into %, and similarly M,, and C, from 9(M,) = &, and 9(C,) = &,
into %'5,. The pair {M,, C,} will be called an approximate scheme for M and C,
shortly a scheme.

Definition 4. Suppose that the equations
(1.7) Mx = Cv, Mpx® = C,P, v

have unique solutions u € 2(M) and u™® € 2(M,). We say, that the scheme {M,, C,}
has the accuracy-order p in &'; with respect to the problem (1.7), if there hold the
inequality

(18) [Pus = 4] S ) he, ) < el
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Definition 5. Suppose that there exist the inverse operators M~* and M, ' and
that #(M~!) = 9(C) and (M, ') = 2(C,), where M, M,, C, C, are linear operators
mapping 2(M) = &, and 9(C) < &, into &, and D(M,) < X, ,and 2(C,) = Xy,
into &, respectively. We say that the schema {M,, C,} has the accuracy—order P
for the characteristic value 1, of the problem

(1.9) Mx = ACx,

if M, 'C, or C,M, ! has the accuracy-order p for the proper value o = 45 ' with
respect to the corresponding operator M~!C in &, or CM™ ! in &,.

Convention. We write {M,, C,; 4o}, if we want emphasize the fact, that the
scheme {M,, C,} is used for the construction of the characteristic value A,.

2. EIGENVALUE PROBLEMS

In this paragraph we introduce some assumptions and properties of operators M
and C which work in our eigenvalue problem

(2.1) Mx = ACx.

It is assumed that M and C are linear, generally unbounded, operators from P2(M) <
< %, and 2(C) c &, into &,. Further it is assumed that 2(M) and 9(C) are dense
n%,.

Together with the problem (2.1) we shall investigate the problem

(2.2) o Mx® = 20Cx™

where M, and C, fulfil the same conditions.

Our purpose is to determine the accuracy-order of the scheme {M,, C,; A} for the
problem (2.1) under the assumption that the accuracy-order of the scheme {M,, C,}
in the sense of definition 4 is known.

In order to exploit this assumption the eigenvalue problems (2.1) and (2.2) need be
transfered into the unhomogeneous problems of type

(2.3) Mx = Yy, th(h) = Vy.

Such procedure is suitable especially for that reason that using it, one can omit
some assumptions which are usually laid on M and C and which are as a rule too
restrictive. For example the symetry or positive definiteness. This method has also
practical use. Using, e.g., K¢llogg’s iterations, the original eigenvalue problem is
transfered into the system of countable unhomogeneous equations. As solution of
this system of unhomogeneous equations the exact proper elements can be obtained.
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If we restrict the infinite system to finite number of equations, we obtain some
approximate proper elements. The method just described is often used for solution
of timeindependent problems of reactor physics [1], [3].

Though on this place the iterative process mentioned only forms an auxiliary
apparatus we shall demonstrate it here in such a form which it applies directly in
practical problems.

At first, we introduce some properties of the investigated operators and using these
properties we demonstrate some relations needed.

Suppose Te [Z], where & is some Banach space, has a dominant eigenvalue p,,
i.e. po € o(T) and the inequality
(2.4) Ill < lllol
hold for every Ae a(T), A + po.

Let the symbol I denote the unity operator in 2 and R(4, T) = (Al — T)‘ the

resolvent of T. Let go be such that for K n o(T) = {uo} holds for K = {A| |2 — p,| <
(2.5) B, = | R T)4x.
i J e,

It is known ([4] p. 306) that the operators By, By, = (T — pol) B, k = 1,2,.
form the main part of Laurent expansion of the resolvent R(4, T) in a nelghbourhood
of the singularity po. Thus

R(2, T) ‘—‘kzoAk('1 — po)* +kZ1Bk(A — 1o)X,

where A4, € [Z].
Suppose that x’, ', x,, y», z, € &’ and that for every vector x € Z there hold

(2.6) lim x,(x) = x'(x), 11m yu(x) = lim z;(x) = y'(x) .

Finally let there exists a positive integer s, 1 < s < + oo such that
2.7) X(Bx®) +0, y(BxX) +0, B,x® =0,

where x(® e & is a suitable element.

Theorem ([2]) Lét Ho be a dominant proper value of the operator Te [Z] and let
the conditions (2.6) and (2.7) be fulfilled. Then lim ||x(,y — Xo| = 0, lim A, = 5 ',
n— o n— oo

where xo = [x'(Bx®)]™! Bx® = ug'Tx, and where

™ (0)
(28) . ‘x(,,, = -’x—o—,
x(T"x(®)
’ n,.(0)
(2.9) Ao = y(T"x)
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If, moreover, o is a pole of the resolvent of order q, then we have

-q+1
n—q+1u5nTn _ Ko

lim o,
(g — 1)

n—>o0

and in particular for q = 1
lim yg"T" = B, .

n—wo

In [2] it was shown how the iterative process (2.8) and (2.9) need be modified for
problems with unbounded operators. This modification will be used for transfering
the problems (2.1) and (2.2) into systems of unhomogeneous equations.

Suppose, that there exist the bounded inverses M~*and M, ' that M~' € [Z,, 2]
and M, ' € [Z, % ;). Further let 2(C) > ZM™") and 2(C,) > #(M, ). Then
the problems (2.1) and (2.2) are equivalent with the problems

(2.10) x=AM"1Cx, x® = AWM, 1Cx®
and (putting y = Cx and y, = C,x™®) also with the problems
(2.11) y=ACM™ 'y, y,=2i0C,M;y,.

If Ce[%y, %] and C,e[Zyp %2,4), then M™'Ce[Z,] and M; 'C, e [Z, 4]-
Corresponding iterative processes are then defined as follows

(2.12) Mu("+1) = Cu(”, s u(,,+ 1) = l(")u(u-'.l) s u(o) = x(o) P
= y,'.(u(,,)) .
m) = >
z (u(n+l))
h
(2'13) M u(n+ 1) _ =C u(n) s u§n+1) — }'(h) (n+1) , uz )) — P1 hx(O)

FION. yn,h(“(n))
(n) ' (,(n=1) "
Zn,nUn

If CM~'e[%,] and C,M, "' €[%,,], the iterative processes are defined by
formulae

(2.14) Mo® =04y, i1y = VCo™, 1) = Cx(V,
V( y = yr,n(v(n))‘ -
n) — H
z,(Cv™)
0 h )
(2.15) M,,v(") = U(u) > v§..)+1; = V§..§C;. ", 020) = C,P;x(?,

(hy
(h) _ yn,h("(n)

(n)
Zp h(chv )
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It is easy to see that using iterations (2.12) and (2.13) or (2.14) and (2.15) respec-
tively, the problems (2.1) and (2.2) are transfered into the systems of unhomogeneous
equations of type

- wy _
Mug, =v,, MuQ) =oP.

The procedure just described forms the base of the method of dehomogenization. In
the theoretical considerations an appropriate choice of the initial element of iterations
enables us to derive some estimates needed.

3. AUXILIARY ASSERTIONS
Suppose Te [Z] and Te [Z,]. Define the operators

(3.1 S=u'T, Sp=nonTh,

where o and o , are dominant proper values of the operators T and T,. Moreover,
assume that po and o, be simple poles of the resolvents R(4, T) and R(4, T;).
Evidently S € [%] and S, € [%,] and for the spectral radii r(S) and #(S,) we have

(3.2) r(S)y=1, r(S)=1.
We shall consider the operators
(3.3) Q. =YSi, n=12,..
k=0

From the assumptions about the dominantness of poles po, fo, there hold the
relations Co N o(S) = {1}, Co, 0 o(S,) = {1}, where Co = p5'Co and Cp, =
= uosCos Let Cyp={ |2 =0}, Kip={4]A| S0} and K;4na(S,) =
= o(S,) — {1}. Hence ¢, < 1.

Let us put
(3.4) v,=Ly J FR(L, S,) di,
2nik=0 )z,
(3.5) w,= L » J JR(, S,)dA.
2ni k= Cin

Thus one can write @, = V, + W,.

Lemma 3.1. There exists a constant ¢ independent of n such that

(3.6) W <.
Proof. Easily one can see, that
w= L[ 1=Fgaus)ar.
2ni Ci,n 1-12

95



According to the inequality g, < 1 there follows the estimate

20,
I = 22 sup R, 5] = c.
1 Q1 4«

Lemma 3.2. Suppose [o 5 is a simple pole of the resolvent R(A, T;). Then we have
%) Vo=(n+1)By,,

where

B] b = 2‘1—‘"1 R(;u, Th) d)» .

Corollary 1. If u, = po ‘Tu,, then we have
(3.8) ' o = V(PySuo — SyPyuo) =
Ev"\idently this relation is non trivial especially, if
(3.9 By WPyuo * 0.

Proof. The relation (3.7) follows from the Cauchy theorem as a consequence the
simplicity of the pole g -
Further we shall prove the validity of (3.8). Since o, = Su,, we have

v = (n + 1) By (Pyuo — SiPyuo) .

On the other hand B, ,S, = S,,B,,,,. In the case By ,Pyu, = o the equation (3.8) is
trivial. In the case By P,uq + o the vector u§? = By ,P,u, is a proper vector of S,
corresponding to the proper value 1 and thus

B, 5SyPpuo = ShBl,hPh"O = By aPyg .

From those relations (3.8) follows immediately.
Note that one can write (3.8) explicitely as follows

(3.10) Byy(po ' PyTu, ~ ﬂ(;,}.ThPh“o) =o0.
Corrolary 2. Assume
(3.11) |5 *PyTug — pgaTiPyso|| < eluo) 7,
where uy = pg ' Tug, uy + 0, and c(u,) does not depend on h. Then the estimate
(3.12) . lim g Py Ty — pghTrPouo| < ch?

n-+wo

is true with a constant ¢ independent of h.
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Proof. It is easy to see that

to "TUPT  tug — po it VT Pyug = Py — Spt ! Pyg =

k

e

[st — S*1] Puo =.=io SHP,S — S,Py] uo
Lemmae (3.1) and 3.2 imply the inequalities
| zo SHP,S — SuPy) o) =
= ||(V, + W,) (PsS — SuP) uo| S ¢||PuSug — SyPyuo| < ch®.

From this we easily obtain the estimate wanted.

Theorem 3.1. Assumptions:

(a) Operators Te[Z] and T, €[%,] have dominant proper values p, and p, ,
and these values are simple poles of resolvents R(A, T) and R(4, T,). Let ug € & be
a proper vector of the operator T corresponding to p,. Then we put u§’ = B, ,Pu,.

(b) There exists such a constant c that
ITl s c.
(c) There exists such a constant c that the estimate
(3.13) |PaTuo — TPyl < ch?
holds for he H.

(d) There exist linear forms £, € &}, h € H, with the following properties:
(di) There exists a constant ¢ such that

(3.14) [EA =
(dii) The relation
(3.15) 2u(Tixn) = Ho w%i(xn)

holds for arbitrary vector x, € &,

(diii) There exists a constant ¢ such that
(3.16) |24 (Patto)] 2 ¢ >0 .

Then the following assertions are valid:

There exists a constant ¢ such that

(3.17) l#o - Ilc,n! < ch?,
(3.18) 1Puo — u] < che .
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Proof. At first we shall prove the inequality (3.17). For this purpose we shall

derive an equation for the quantity Ay = pg' — pg ;. We introduce the vector

z8" = ul? — P,u, and substitute Pyu, + z§” for u$? in the equation ul? = pg ; Tud.

We obtain

28) + Pytg = pgpTyPako + poiTizy
or equivalently
(3.20) 2 — ugpTizd” = wy,

where

Wy = —Pyuo + ﬂg.il:’I;-Ph"o = l‘&;l(Tth — P,Tu,) — (#51 - ﬂ(;,:.) T,Pyu, .

By assumption g, is a simple pole of R(4, T,) and hence the equation (3.20) has
a solution iff

(321 up(wy) = 0
holds for every form u; € Z} for which
(3:22) uy(xy) = u&}.u;’.(T;.x;.)

for x; € 4. In particular the relation (3.22) must be fulfilled for the form £; having
properties (di) to (diii). From the equation (3.21) we get the expression for Au as
follows

- —Q;I.(Thph“o - PhTuO) = xlll(ThPhuO - PhTuO)

Au
BoRi(TPyuo) ﬂollo,h«%(P wllo)

Thus there exists a constant ¢ such that the estimate (3.17) is true.

Using (3.17) and (3.13) the inequality (3.11) can be easily proved and this inequality
implies (3.12) as a consequence of corollary 2 of lemma 3.2. The estimate (3.12) can
then be written as ||P,u, — B, ,P,uo| < ch® and this is the inequality (3.18) which
was to be proved.

4. ACCURACY-ORDER AND APPROXIMATE METHODS
IN EIGENVALUE PROBLEMS
In this paragraph we shall investigate the accuracy-order of an approximate
scheme {M,, C;; A} under the assumption that the accuracy-order of the scheme

{M,, C,} with respect to the unhomogeneous problem Mu = Cv is known.

Theorem 4.1. Assumptions:

1. Ce[T, X2), Cre[Zop X24)
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2. Theoperators M and M, from (M) c &, and D(M,) = &,  into £, and %, ,
respectively have inverses M~' and M, ' such that M~'Ce[%,] and M;'C,e
elZyn)

3. The operators T= M~'C and T, = M; 'C, have dominant proper values p,
and p, , and these values are simple poles of R(A, T) and R(A, T,,).

We put uy” = B, #P1 wuo, if ug is a proper vector of T corresponding to p,.
4. The operators T,, h € H, are uniformly bounded:
Inlse.

5. For every h € H there is a form %, € X'y ;, such that

(W) Il s e,
(ii) (Toxn) = Hoafi(xn) for X, ey,
(i) there exists a constant ¢ such that
'.i’,’,(P,,u(,)’ 2c¢c>0.
6. The scheme {M,, C,} has accuracy-order p with respect to problem (1.7) in &,.
Assertion. The scheme {M,, C,; Ao} has the accuracy-order p for the characteristic
value A, with minimal modulus of the problem Mu = ACu.

Proof. Assumptions 1 to 5 guarantee the fulfilment of assumptions (a), (b) and (d)
of theorem 3.1. Thus it is sufficient to legalize only assumption (c) of theorem 3.1.
Let us put v = uy, where Mu, = AoCuq, A = pig ', 4o + o. Then the equations

Mu = Cc, Mu™ = C,Py
have unique solutions Tu, and T,P, ,u,. From assumption 6 it follows that

|PyTuy — T,Pyu,| < ch”.

But this is an inequality required in (c) of theorem 3.1. The assertion of theorem 4.1
is then a direct consequence of theorem 3.1.
If C is an unbounded operator the situation is more complicated.

Theorem 4.2. Assumptions:

1. The operators M and M, from 9(M) c ¥y and 2(M,) = %, , into X, and % , ,
have inverses M~ ' € [#,, %,] and M; ' € [Z2.0 Z1.4)-

2. #M™Y) ¢ 9(C) and R(M;") = 9(C,).
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3. There exist a constant ¢ such that

@) Iyl = eyl
for every y e RA(M™") and
(4-2) "Ch}’hnz = C"J’h"l

for every y,€ (M, ).
4. For every he H
(4.3) P MZ, c M'X,,.

S. TheoperatorsCM ™' €[%,] and C,M, * € [%, ] have dominant proper values p,
and o , and these values are simple poles of resolvents R(., CM~*) and R(4, C,M; ")

If v, is a proper vector of CM ™! corresponding to o, we put v)” = BZ)P, 4v,,
where

B3 = RG oMYA

i Ch,0

and
Cho = {'II |}~ - I‘o,h' = Ono} > Ky, = “I |/l - #ol < Ono} >
Ky 0 J(Cth—i) = {tto 4} -

6. For every u e (M ™") there exists a vector y, € &, , such that
CuPyju = P2 ,Cu + y,,
where ]|y,,]| < ch?. In other words, the approximation-order of C, is equal p whith
" respect to C in Z(M 7).
7. The operators C,M,; *, h € H, are uniformly bounded: ”C,,M,,_l” <c.

8. There are forms %, € %5 4, h € H, for which relations (i) to (iii) of assumptions
of theorem 4.1 are valid, where T, = C,M; .

9. The scheme {M,, I,} has the accuracy order p in X, with respect to the problem
“Mu=v,ve,.

Assertion. The scheme {M,, C,} has the accuracy-order p for the characteristic
value Ay with minimal modulus of the problem Mu = ACu.

Proof. Similarly as in the proof of theorem 4.1 it is sufficient to legalize the
fulfilment of the assumption (c) of theorem 3.1, since the other assumptions of this
theorem are fulfilled as a consequence of assumptions of theorem 4.2.

We shall consider vectors P,CM~'v, — C,M; 'P, v, he H, where v, =
= 2 CM™ vy, Ao = pot. '
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The assumption 9 implies the existence of a constant ¢ such that ||w,| < ch?,
where w, = P;,M " 'v, — M, 'P, ,v,. Using (4.3) we see that w, € #(M, '). From
assumption 3 we deduce the inequalities

(4.4) ez £ ef|wi]s < eh?.
Assumption 6 guarantees the validity of relations

PZhCM—lvo - ChM';._lPZhUo =
= Cy(M, 'Pyo + w,) — (CuM; ' Poyvo + yi) = Cowy, — ¥y »
from where
[|P2#sCM ™ vy — C,My "Poyo| < c|willy + |[ya]2 £ ch?

and that was to be legalized. The assertion of theorem 4.2 then directly follows from
theorem 3.1.

The accuracy-order of the scheme {M,, C,} for the eigenvalue problem Mu = ACu
can be investigated without the dominantness of the proper values p, and g 4.
A result in this direction is contained in theorem 4.3.

An important class of problems for which theorem 4.3. can be applied is formed
by positive irreducible operators CM ~1,

Suppose that the spectrum of the operator CM ™! contains a finite number of
simple poles u, ..., u; of the resolvent R(4, CM™1'), where ly jl = r(CM~') and
r(CM ™) denotes the spectral radius of CM ~'. Then to every y; there exists a complex
number v; such that y; + v; is a dominant point of the spectrum o(T}), where

(4.5) Tj=CM™ ! +vy]I.
For fixed j we put
(4.6) Di=vM+C, L=M.

Then evidently D;,L”! = T; and T; has a dominant proper value ¢; = p; + v;. For
solution of the problem

(4.7) LuJ=O'JD1uJ, O'.’=Q;1
theorem 4.2 can be used. It is easy to see that
(4.8) Mu_, = I,lj_lcuj,

where u; is a proper vector of the problem (4.7).

Theorem 4.3. Assumptions.

1. The operators M and M, which map 9(M) = X, and DH(M,) = &,,, into X,
and &, , have inverses M~ € [%2, Z1] and My ' € [0 %1 4]

2. AM™Y) < 2(C) and A(M; ') = D(C,).
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3. There exists a constant ¢ such that

49) Iyl = ellyl
for ye &M") and
(4.10) ICwlz < elyils
for yye M, ).
4. For every he H
(4.11) PyM™'%, < My '%, .

. 5. The resolvents R(A, CM™') and R(A, C,M, ') have s and s, = s(h) simple
poles pty, ..., g and uP, ..., uiQ), on the circles |A| = (CM~") and || = r(C,M; ")
respectively.

If v} is a proper vector of CM ™! corresponding to y;, then we put vy = B{\P,,v;,
where B{") is the unique coefficient of the main part of Laurent expansion of
R(2, C,M; ') in a neighbourhood of ™.

6. For every vector u € B#(M™"') there exists vector y, € &, , such that
CiPyu = Py Cu + y,
and
[7a) < eh”,
7. The operators C,M,; ', h € H, are uniformly bounded: |C,M; '|| < c.

8. There are forms £, ; € X3 4, h € H, such that

) [#5,54]l < ¢
(ii) gi’z,j.k(cth_lxh) = N;:h)x}lx,j,k(xh) s Xn€&y4,
(iii) |G iaPav)| Z e>0, j=1,..,s; k=1..,s,.

9. The scheme {M,,I,} has the accuracy-order p in %, with respect to the
problem Mu = v.

10. For every j,j = 1,...,s, there is a complex vj'such that the operators T; =
=CM™' + v, T,; = C,M,; ' + v;I, have dominant proper values p; + v; and
w" + v, for suitable k.

Assertion. The scheme {M,, C,; A,, ..., A,}, where A; = p;', j = 1,..., s, has the
accuracy-order p for the characteristic values 1, ..., A, of the problem Mu = ACu.

_ Proof. Let us choose j fixed and let us investigate operators T}, T, ; together with
problems

(4.12) Lu = ¢Du, Lyu, = o,D, u,,
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where Land D; are defined by (4.6) and
(4.]3) L’, = Mh N Dh,j = VJ-AI'. + Ch .

We shall prove that for constructing o; = ¢; *, where ¢ ;= Kj + vj, and correspond-
ing proper vectors, theorem 4.2 can be applied. From this the validity of theorem 4.3
will follow.

Similarly as in proofs of theorems 4.1 and 4.2 it is sufficient to legalize only the
fulfilment of the assumption (c) of theorem 3.1 for the operator T;.

Let us consider vectors P, T)v; — T, ;P,uv;, where v; = u,T’CM ~1p;. Assumption
10 guarantees the dominantness of p; + v; and p{® + v;. Assumption 9 gives a con-
stant ¢ such that |w,| < ch?, where w, = P;,M~'v; — M, 'P,p;. According to
(4.11) w, € Z(L;"). Assumption 3 implies the inequalities
(4.19) [Cawal2 = c“w,,"l < ch”.

From definition of T; and T, ; using assumption 6 we obtain the relations

P2 Tp; — Dy ;L3 Poy; =
= PZ’I(C + va) M—lvj - (Ch + Vth) Mh_IPZ'lvj =
- ChPIhM_lUj - )’h - Cth_le,,vj .

All these considerations yield to the relations | P, T; — D, ;L; "Pyuv;]| < [[Cowil +
+ ||»4]| and consequently to the required inequality || P,,Tjp; — T;, ;P2sv;]| < ch?. In
other words the requirement (c) of theorem 3.1 is fulfilled. From this theorem we
conclude that

iy = 1] S (s + v)) = (P + v))| S ch?, |Pap; — BEPo|| < ch?

and these estimates show that the scheme {M,, C,; ;4,-'1} has the accuracy-order p
n& 2+
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Vytah

K TEORII PRIBLIZNYCH METOD
.V PROBLEMECH VLASTNICH HODNOT

Ivo MAREK, Praha

VySettuji se problémy vlastnich hodnot pro rovnice typu Mu = ACu, M,u, =
= A®Cu,, kde ue ¥, Mu, Cue¥; u,e &, Lyu,, Cyu,c¥, pii éemZ &, ¥ resp.
%1, ¥, jsou Banachovy prostory a M, C resp. M, C, linedrni zobrazeni zobrazujici
husté podmnoZiny & resp. &), do % resp. %,. Jmenovité se vySetfuje fdd pfesnosti
,,pibliznych** vlastnich prvka u, ,A” vzhledem k vlastnim prvkiim uréenym pomoci
operdatori La C. Jsou uvedeny postadujici podminky, jeZ zaruduji, Ze fdd pfesnosti
pro ulohu na vlastni hodnoty je roven fddu pfesnosti odpovidajici ulohy nehomogenni
(princip dehomogenisace).

PE3IOME

O IMPUBJJIMXXEHHBIX METOJJAX B 3AJAYAX
O COBCTBEHHBIX 3HAYEHU X

MBO MAPEK (Ivo Marek), Ilpara

B craTbe paccMaTpuBaIOTCS MPOGIEMBL O COOCTBEHHBIX 3HAYEHUSX U1 YPABHEHU I
tina Mu = ACu,tneu € &, Mu, Cu e % u &, % 6anaxoBbl npocrpancrBa u M, C —
JIMHEeHHbIe 0TOOpaXenus IUIOTHBIX obacteit onpenenenus u3 4 B #/. BMmecre ¢ aToit
3ajaueil pacCMaTpHBAaeTCs ,,IpUOIIDKeHHAs* mpobmema Mu, = AMC,u,, roe -
HeiltHpie omepaTopbl M,, C, 0TOOpaxaloT ILIOTHBIE MOJMHOXECTBA M3 OaHaxoBa
npocrpaHcTBa &, B 6aHaxoBo mpocTpaHCTBO ¥,. OCOOEHHO WMCCIIENOBaH MOPSIOK
TOYHOCTH ,,lIPUOIKEHHBIX® COGCTBEHHBIX 31MeMeHTOB u,, A® 3amaun M,u, =
= AWC,u, OTHOCUTENLHO TOUHBIX COGCTBEHHBIX 3JEMEHTOB ypaBHeHuss Mu = ACu.
IMpuBoaaTcs HOCTATOYHBIE YCJIOBUSA OOECTICYMBAIOIIUE PABEHCTBO IMOPAAKOB TOY-
HOCTH 3a[aui O COOCTBEHHBIX 3HAYEHMSX ¥ COOTBETCTBYIOLIEH HEOLHOPOIHOM 3a-
Jaui. DTH MCCIEOBAHUS SBJIAIOTCH 0a30#f TaK HA3BIBAEMOIO MPUHIMUIA INErOMOre-
HU32IMH.
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