Casopis pro péstovani matematiky

Jan Kadlec; Alois Kufner

Characterization of functions with zero traces by integrals with weight functions. I.

Casopis pro péstovdni matematiky, Vol. 91 (1966), No. 4, 463--471

Persistent URL: http://dml.cz/dmlcz/117586

Terms of use:

© Institute of Mathematics AS CR, 1966

Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to
digitized documents strictly for personal use. Each copy of any part of this document must
contain these Terms of use.

This paper has been digitized, optimized for electronic delivery and stamped
O with digital signature within the project DML-CZ: The Czech Digital
Mathematics Library http://project.dml.cz


http://dml.cz/dmlcz/117586
http://project.dml.cz

Casopis pro p&stovini matematiky, ro&. 91 (1966), Praha

CHARACTERIZATION OF FUNCTIONS WITH ZERO TRACES
BY INTEGRALS WITH WEIGHT FUNCTIONS I

JAN KADLEC and Arois KUFNER, Praha
(Received December 2, 1965)

INTRODUCTION

Let 2 be a bounded domain of the Euclidean N-space Ey and let o(X) be the
distance between the point X € Q and the boundary dQ of the domain Q. We assume
the boundary 0R fulfils locally the Lipschitz condition only.

We define the space L, (@) for p = 1 and « real as the set of functions defined
almost everywhere in Q such that the norm g

0.1) 4]y oy = [ Js dx]”"

is finite.

If k is a natural number then W{*)(Q) denotes the Banach space of all functions u
(defined almost everywhere in ) with the generalized derivatives

olil

Du=—2
axit ... oxiy

(i=(ipiz..in) |i| = Z i, iy — non- negative integers) of the order [i| less or

equal to k such, that D'u e Lp Q) for i, 0 £ |i| £ k. We take the norm

(0.2) [ullwoo, v = [hi (U Diulf, @]
in WR(Q). ~

From the well-known inequality of Hardy it follows
(0.3) [Pl .- S ltlwo, o (0= i] k)
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under certain conditions on u, 2 and «. Here c is a positive constant independent on u.
Let us denote by V'the space of functions with the finite norm

k
L e )] L A

then it follows from (0.3), that ull, < c|u|pw, (9> i-6: V> WR(Q).

Put °W = *W*)(Q) where °W*)(Q) is the closure of the set 2(Q) in the norm (0.2).
Here 9(8) is the set of all infinitely differentiable functions with compact support
in Q.

In this paper, we show the other characterization of the space °W than this latter
one (i.e. as the closure of 2(2) or as the “space of functions from W(Q) with zero
traces of functions and its derivatives up to the order k — 1 on the boundary 0Q2”)").
To characterize °W it is sufficient to introduce an equivalent norm of the type (0.4)
(except for some singular values of « — see the part II of this paper). Then we can
show that the set of functions for which this new norm is finite is equal to the closure
of 9(Q), i.e. V = °W with equivalent norms.

As a special case of our results follows e.g. this theorem: For the function u to be
in °W{V(Q) is necessary and sufficient that

M L (0) and “eLy@).
0x; 0

13

This fact has its applications in the theory of differential equations.

1. BASIC NOTIONS AND AUXILIARY ASSERTIONS
1.1 In the following, we shall consider bounded domains of the type R(®-! i.e.
domains, for which the following conditions hold:

1. There are m coordinate systems [x;, X,y] (With x, = (X,3, X,2, .-+ X, 5—1))
and m functions a, = a/x;) (r =1,2,...,m) defined on (N — 1)-dimensional
cubes A, = {x/ | |x,| < for i = 1,2,..., N — 1} such that for every point X € 02
there exists r such that X = [x;, x,v] and x,y = a,(x;).

2. Functions a,(x]) fulfil the Lipschitz condition for x| € A,.

‘3. There exists > 0 such that the “cylinders”

B, = {[‘x;, xn]| %1 €A; a(x) — B < x,y < a(x)}
lie in  and “‘cylinders”
C, = {[x,, xw] | xr € A,; a/(x) — B < x5 < a(x}) + B}
cover the boundary 99 and intersection of 2 and C, is equal to B,. We assume f < 1.

1) Let us remark that in some cases traces in the usual sense do not exist.
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1.2 Function a,(xﬁ) fulfils the Lipschitz condition and so we have for X € B, that
the distance o(X) of X to 92 is equivalent to the distance of X to dQ in the direction
of the coordinate axis x,y, i.e.

(11) le(x:’-’ er) = ar(x:-) - er = CZQ(xr’ er)

(see for example [3]). So we can in the local coordinate system [x;, X,y] write
[a/(x}) — x,x]* instead of the original weight function ¢*(X).

1.3 Let us remember the inequality of Hardy

(1.2) lef(t)kt"‘”dtg <m> I | ()7 ¢ at

which takes place for § > p — 1, if lim f(t) = 0, and for < p — 1if llmf(t) = 0.

t— o

Inequality (1.2) follows from Theorem 330 in [1]. The value 8 = p — 1 is singular
and in this case we shall give some modification of (1.2) in part II of this paper.

1.4 We shall use function F,(X) (h > 0) with the following properties:

A. F(X)e2(Q).

B. F(X) = 1for Q(X) 2 h(so we have D'F,(X) = 0 forl | > 0and o(X) > h).
C. 0 S F(X) =

D. |[D'F(X)| < c(i)h“”' for |i| > 0 (rh < 1).

The existence of such a function F, has been shown in [2].

1.5 For the bounded domain (2 there is a constant c; such that ¢*(X) = ¢;**(X)
for oy = a,. By (0.1) we have

(1.3) “““L,,., < cyfule,., i€ Lys < Lys for a;2a.

2. EQUIVALENCE OF °W AND V

The main result of this paper is the following

Theorem 1. Let Q € N, o(X) = dist (X, 0Q) and °W be the closure of 2(Q) in
the norm (0.2). Let

= {u|DlueL, 4@ for 0=|j| <k}

with the norm (0.4). Then
W=V

foreverya + ip — 1, wherei = 1, 2,..., k. Thenorms(0.2) and (0.4) are equivalent.
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Proof. I) We prove that |u], < c|u|wa, . for u €W, ie. that °W < V. From
the density of 2(R2) in °W it follows, that we can assume u € 2(2).

The cylinders C, from 1.1 form a covering of dQ. Let us denote by C,,+, such an
open set that wr1 < Q2 and Q@ =Y B, + C,,,. Let functions (pie@(Ci) (i =

r=1
=1,2,...,m + 1) form the corresponding decomposition of unit on Q.

Consider one fixed coordinate system [x}, X;y] and the corresponding function ¢,.
Then ¢,€2(C;), ucP(Q) and so u; = up;€ P(B;). We have |u;wo, ,c,) S
< Clulwe, . cor

Further we omit the index i.

Let |j| < k and put v = D/u.

a) If |j| = k, we obviously have [[v]., . = [#]ww, .oy
b) Let |]| = k — s, where k = s = 1. We have to prove

Iy e-moin = cltlwenr, o
where we take by (1.1)

21) Il .y = [ o 20 L) = 5] ax =

B

a(x’)
= f dx’f Iv(x" xN)Ip [a(x') _ xN]m-sp dxy .

A a(x")=§B

The inner integral, after substitution t = a(x’) — xy, we can write as
f(x’) =J |v(xl, a(xr) _ t)]p =P dt ,
0

where we use u € 2(B) and so v = Diu e 9(B), ie. v(x, a(x’) —t) =0 for t
sufficiently close to zero and for t 2 f. The integral #(x) we can estimate, using the
inequality of Hardy (1.2) where we put f(f) = o(x’, a(x’) — t)and § — p = a — sp.
From the properties of function v(x’, a(x’) — t) it follows, by (1.2),

5 () |,

for B+ p — 1,ie. a % sp — 1. To estimate the latter integral, we substitute f(f) =

= (0v[oxy) (x',a(x’) — t) and p— p=a — (s — 1) p in (1.2). This function f(z)
again vanishes in the neighbourhood of 0 and o and a # (s — 1) p — 1; we obtain
by (1.2)

f,(x’) = (!ar - sI; + lf)p (l“ - (s ‘pl) p+ ll) f
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The integral on the right hand side we estimate in the same manner and finally we
obtain (repeating this procedure s-times)

s—1 p P
xl
4 )—;Ho(|a—(s-—z)p+1])
N a(x’)
=c1J‘
a(x’)—p
Because o £ ip— 1fori=1,2,..., k.

Now we have &*v[0x} = D*u where |h| = k and, integrating the latter inequality
by x’, we obtain by (2.1)

(22)  [Du]f, . ey S €1 f |D*ulPla(x") — xy]*dX < csfulfoo, @
B

P
t*dt =

(a a(x) — 1)

(x xy) [a(x) — xy]Fdxy.

a s

0=lilsk).

The inequalities (2.2) take placeforu = u;, i =1,2,...,m.Iff weputu = ug, ., =
= U, ., We obtain (2 2) again because @, has its support in C,+; < Q and the
weight function is bounded, continuous and sharp posmve on C,+;. From (2 2)
finally follows the inequality

lueily < Csfulwen, ua
where by (1.1) we take the weight function Q(X) instead of [a,(x") — x,y] on every C,.

m+1

Further, u = Y u@;, an so we have
i=1

"“”V = C4"“" W0 (D)

for every u € 2(Q). From the density of 2(£2) in °W it follows that the latter inequality
holds also for u € °W, and so °W < V. .

II) We shall prove V < °W.

Let ue V and put u,(X) = u(X) F,(X), where F,(X) is the function from the
section 1.4. The function u, has a compact support in Q (see property A) and from
the property B it follows u(X) — u,,(X) = u(X) (1 — Fy(X)) = 0 for such XeQ
that o(X) = h.

We have ue V and so D'ue L, - jps(@)- By (1.3) is D'ueL, () for 0 <
< |j| £ k, it means that u e W5(Q), i.e.

(2.3) Ve WiQ).

We have obviously also u, € W*)(€).

We shall prove |[u — u,|po, @ =0 as h = »0. Put P, = {XeQ|oX) < h};
we can integrate u — u,, only over P, because uy(X) = u(X) as X ¢ P,
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‘Let |i| < k. Then

D(u — ) = D'[u(l — F,)] = (1 = F,) D'u + Y. cmD™uD"F,
- m+n=i

" and so Inz1
(24) [|D(u — wnlle, oy < (1 = Fy) D'u||1, sy + Lma]| D"uD"Fil1, .y -

From 0 £ F,(X) < 1 it follows |t — Fy(X)| < 1 and so

23) ID'(t = F)lf i [ [Pl ) X 0
Py
as h — 0, because u € W) Q) and so D'ueL, (Q) and further mes(P,) > 0 as

h - Q.
Form+n=i,]n|glweput

Funlh) = |D"uD"F,|5, o) = f |D™u|? | D"F,|? o*(X) dX .
Py

With respect to the property D (see section 1.4) we have | D"F W|? < c®(n) h~I"P and
further X € P,, i.e. ¢(X) < h and h™"? < o7 1"IP(X). We have n = i — m, li <k,
and so |n| = |i| — |m| < k — |m| and (see section 1.5) o ~"I7(X) < ¢ 0~ *~ImDr(X).
So we finally obtain the inequality

|D"F,[P 0%(X) < ceo®~*Imbr(x) ’

and the following estimation
Fualh) S f |Dmul? g+ 1mDr(x) X - 0
Pn

as h — 0 because u e Vand so D™u € L, ,_ - |m))»(2) and further mes (P,) —» 0 for
h — 0. If we consider moreover (2.5) and (2.4) we obtain

- k
tim [u = wl, o0 = lim [ [0 = ]z, 17 = 0.
k-0 © k0 il=0

To given ¢ > 0 we can take a fixed h > 0 so that |u — u,]w, .o < €2. Let us
denote by (u,), the regularisation of the function u, (see e.g. [4]). The function u,
has a compact support in Q and so (u;); € 2() and for sufficiently small § is also
u,, — (u,), small in the norm W®(€) (for « = 0!). Now u, and (u,), vanish in the
neighbourhood of 62 and the weight function has no influence on functions with the
same compact support in 2. So we can choose d so small, that |[u, — (u)s]wao, @) <
< gf2. .

To an arbitrary function u € ¥ and given & > 0 we found a function v = (u,), €
€ 9(Q) such that u ~ v|pw, (o) < & It means ue°W an so V = °W. By part I
of this proof we have ¥ = °Wand so the theorem is proved.
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3. REMARKS

3.1 Theorem 1 takes place for every value of the parameter a except o; = ip — 1
(i=1,2,.., k). It is obvious a; = O for i = 1,2, ..., k and so Theorem 1 holds for
a < 0.

Now, let « £ —1 and let f(¢) be defined in (0, 1) and such that

lef(t)lp t*dt < oo and lef’(t)|ﬂ t*dt < o0 .
0o 0o

If p > 1 then

|7t + B) — £(1)| = = th’(s).s“/".s"““’ ds| <

t+h
J 7/(5) ds

t+h 1/p t+h
([ s [ e
t t

The right hand side of the latter inequality converges to zero as h — 0 uniformely
with respect to t. So f(¢) is uniformely continuous in (0, 1) and there exists the limit

limf(f)y=a.

=0+

On the other hand the integral [§ | f(t)|? t* dt s finite and for « < —1Lis [§ ©*dt = oo.
So we necessarily have a = 0.

So f (t) has in the point ¢t = 0 a trace which vanishes, i.e. a zero trace.

Now, let u € W*)(Q), « < —1. In the local coordinate system (see section 1.1) the
function v(x}, 1) = u(x}, a(x}) — t)is an element of the space WA, x (0, p)) with the
weight function ¢*.

Put f(f) = D’uv(x}, 1) for |j| = 0,1, ..., k — 1. From our considerations this result
follows: The function Dv for 0 < | j| =< k — 1 has for almost all x} e A; limits on
the hyperplane t = 0 equal to zero; so we obtain for the function u this assertion:

The function Du for 0 < |j| £ k — 1 has zero traces on 02.

In this case we can automatically use Hardy’s inequality, repeat the considerations
of the first part of the proof of Theorem 1 and then we obtain

(2.6) wEQ) < V.
By Theorem 1 we have V < W*)(Q) — see (2.3) — and so
(2.7) W) =V (= "WRQ) for a< —1.

3.2 The same result we obtain also for o« > kp — 1: In part I of the proof of
Theorem 1 we take u, = ug, for u € W*(Q), where @, is the decomposition of unit
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(in local coordinates). The function u(x}, x;y) vanishes for x;y < a(x}) — B and
then f(t) = u/(x,, a(x;) — 1) = Ofort = B. Now we can again use Hardy’s inequality
(namely its second eventuality: lim f(¢) = 0) for « > kp — 1 and obtain (by the same

t—=> o
way as by part I of the proof of Theorem 1) the inclusion W,f',‘g(Q) < V. So ‘we can
write

Theorem 2. Let 2 € R*! and a ¢ (—1, kp — 1). Then

(2.9) W) = "W,2(Q) =V
where V = {u | D'u € L, o4 1i1)s(2); 0 < |i| < k}. Both norms (0.2) and (0.3) are
equivalent on W)(Q).

Proof follows from Theorem 1 and from the considerations of sections 3.1 and 3.2.

3.3 The assertion of Theorem 2 is in general not true for e e (—1, kp — 1). It is
possible that the function u € W*)(Q) or some of its derivatives have traces which
are not equal to zero identically (see [3]).
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. Vytah

CHARAKTERIZACE FUNKCI S NULOVYMI STOPAMI
POMOCI INTEGRALU S VAHOU

JAN KADLEC a ALois KUFNER, Praha

Bud 2 omezend oblast v Ey, jeji¥ hranice 6Q spliiuje lokdIn& Lipschitzovu podmin-
ku, a bud W*)(Q) Soboleviv prostor s vahou ¢%(X), kde g(X) je vzddlenost bodu
X € 2 od hranice 92; norma ve W*)(Q) je ddna vzorcem (0.2). Bud ddle 2(£2) mnoZina
funkei nekone¥né difetencovatelnych v Ey s kompaktnim nosi€em v Q.
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V préci je ukdzéno, Ze funkce z prostoru °W = W), definovaného jako uzdvér
mnoZiny 2(2) v normé& (0.2), 1ze charakterizovat té% pomoci jiného védhového pros-
toru V:

V={u|Dlu.og» *U(X)eL(Q); 0= |j| <k}
s normou (0.4). '

Ve vété 1 je dokdzdno, Ze pro a £ ip — 1, i = 1,2, ..., k, je °W = V, pficemz
normy (0.2) a (0.4) jsou na °W ekvivalentni.

Pomoci této véty je ve vét€ 2 ukdzdno, Ze pfo ac¢'(-—1, kp — 1) je dokonce
WpAQ) = Wp(Q).

PesomMme

XAPAKTEPUCTUKA ®VHKLUW C HYJIEBLIMU CIIEJAMHU
TP NMMOMOIM MHTET'PAJIOB C BECOM

SAH KAIJIEL (Jan Kadlec) u AJTOUC KY®HEP (Alois Kufner), Ilpara

Iycts Q — orpanuvyennas obnacts B Ey, rpaHuna 02 KOTOPOH YHOBIETBOPSET
JoKaJbHO yciosuio JInmumua, u mycts W*)(Q) — npocrpancreo CoGoesa ¢ Becom
0%(X), rae o(X) — paccrosinue Touku X € Q OT rpaHuIbl 02; HOpMa B IPOCTPAHCTBE
W¥(Q) onpenenena dopmysoii (0.2). Tlycrs, nanee, P() — MHOXECTBO (HHHT-
HBIX B Q QyHKIUHA.

B paGoTe noxa3saHo, 4To (pyHKIUK U3 IPOCTpaHCcTBa W = W;’f}(ﬂ), OIPEEIIEHHOTO
KaK 3aMbIkaHHe MHOXecTBa 2(Q) B HopMe (0.2), MOXHO 0XapaKTepu30BaTh C IO-
MOILBIO MPOCTPAHCTBA

V= {u|Dlu.o? *W(x)e L(Q); 0 < |j| £ k}

c Hopmoii (0.4).
B Teopeme 1 mokasmiBaeTcs, 4To A o £ ip — 1, i = 1,2, ..., k ©MeeT MecTo
ToxaecTBo °W = V u uro Hopmsi (0.2) u (0.4) paBHOCHWIBHEL 1A u € °W.

C noMoupio 3TOM TeopeMbl IokazaHo B Teopeme 2, uro mit a¢(—1, kp — 1)
Iake MMeeT MecTo ToxkzaecTso *W(Q) = W(Q).
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