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GEOMETRIC STRUCTURE WITH HILBERT’S AXIOMS
OF INCIDENCE AND ORDER

IvaN KoLAR, Brno
(Received June 26, 1965)

1. According to well known results [3, chap. 5, 6], the projective axioms of
incidence are naturally induced in a projective three-dimensional number space P(K)
over any skew-field K, and conversely, for any geometric projective space P there
exists a uniquely determined skew-field K = K(P) such that P is isomorphic to the
number space P(K) with respect to the relation of incidence. If P is an ordered project-
ive space, i.e. the relation of division (or separation) [5, p. 365] is introduced in P,
then the skew-field K(P) may be ordered, and conversely, if K is an ordered skew-
field, then the relation of division is naturally induced in P(K). Finally, if the Dedekind
axiom holds in P, then K(P) is the field of all real numbers, and also conversely. This
bijection between projective spaces and their algebraic models may sometimes be
used for solving of some geometric problems.

In this paper, we shall investigate analogous models for structures with Hilbert’s
axioms of incidence and order. We shall use Pasch’s construction of projective
extension introduced for another purpose in [1]. The terminology and notation in
this paper are the same as in [5], as far as possible. In particular, L(ab) denotes the
line determined by distinct points @ and b, and B(a, b, ) means that the point b
lies between the points a and c.

2. A set S (of points) with two classes of subsets (lines and planes) and a ternary
.relation B (the betweenness relation) satisfying Hilbert’s axioms of incidence and
order (cf. [2] or [, chap. I]) will be termed an ordered incidence space.

A subset € < S is called a convex set, if
(a) Cis open (the definition of open sets is analogous to [5, p. 64]),
(b) if @, be Cand B(a, c, b), thence C.

The following theorem is easily verified.

Theorem 1. Let C be a convex set in S. If lines and planes in C are introduced as
non-empty intersections of lines and planes in S with C, and if the betweenness
relation on C is defined by restriction, then C is an ordered incidence space.
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3. Now, let P be an ordered projective space. On choosing a plane P, in' P, one
may introduce on A = P \ P the structure of an ordered incidence space in the
classical manner [5, p. 370]. Then A is called an affine space over the skew-field K(P).
By theorem 1 we have

Theorem 2. Every convex set in an affine space over an ordered skew-field is an
ordered incidence space.

4. In this section, we shall show that every ordered incidence space S may be
naturally imbedded into an ordered projective space. The correctness of following
definitions and the proofs of following assertions may be found in [1, §3 —§9].

Let L, % L, belines in $ lying in the same plane P. The bundle determined by them
is defined as the set of all lines L with the following properties:

(a) if L ¢ P, then there exist planes P; such that L, L; = P;fori = 1, 2,

(b) if L = P, then there exists a line L; ¢ P belonging to the bundle and a plane P,
such that L, Ly < P;.

The set of all bundles will be denoted by §. If L, meets L,(#%L,) at a point p, then
the bundle determined by them is the set of all lines passing through p, and conversely,
to every point p € S there corresponds exactly one bundle with this property. Thus
one obtains a mapping Y : § — S called the natural injection of § into S. Any element
of Y(S) or of Cy(S) will be termed a proper or improper point, respectively.

For any line Lor any plane P in S, the subset (L) or y(P) in y(S) will be called
a proper line or proper plane, respectively. It will be said that an improper point lies
on a proper line Lor on a proper plane P, if  ~!(L) belongs to its bundle or y ~'(P)
contains a line belonging to its bundle, respectively. A proper line L or a proper
plane P with all improper points lying on it is called an extended line Lor an extended
plane P.

The projective lines in S are introduced as the intersections of two distinct extended
planes. If a projective line contains a proper point, then it is an extended line; in the
opposite case the projective line is called improper. The projective plane determined
by an element p € S and a projective line L, p ¢ L, is defined as the set of all elements
lying on the projective lines L(a p), a € L. If a projective plane contains a proper point,
then it is an extended plane; in the opposite case the projective plane is termed impro-
per. Projective lines and planes determine on § the structure of a projective space.

Now let a;, i = 1,...,4, be distinct elements in § on the same projective line.
Choose a proper point p not on this line; then the projective lines L(a;p) are extended
lines, and one may introduce the relation of division between a, corresponding to the
relation of division between the lines y~*(L(a;p)). Now, § is an ordered projective
space, and the pair ('5, ) will be called the projective extension of S.
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From the preceding construction there follows immediately

Theorem 3. Let S,, i = 1, 2, be ordered incidence spaces, and ¢ : $; = S, an injec-
tion such that«p(S,) is a convex set in S, and ¢ is an isomorphism between S, and
@(S,) (see item 2). Let (S;, Y;) be projective extension of S,. Then there exists a uni-
que isomorphism @ :S, — S, such that Go Yy = Y, 0 @.

5. Assume that there exists an improper plane I in S. On A = S \ [ introduce the
structure of an ordered affine space according to item 3. Since I is improper, there
is Y(S) = A. After introducing on y(S) the structure of an ordered incidence space
according to item 2, the mapping { becomes an isomorphism between S and l/J(S).
Indeed, it is immediate that lines and planes in S and () correspond to each other;
the assertion for the betweenness relations is obtained as follows. Denote by B the
betweénness relation in y(S); according to item 4, B(a, b, c) means that for a proper
point p ¢ L(ab) the lines y~'(L(pa)) and y~'(L(pc)) divide y~*(L(pb)) and
¥~} (L(pl,)), where {I,,} = L(ab)) N I. Since I, is an improper point, all points on
the line ¥ ~'(L(pl,,)) lie on the half-plane determined by ¥ ~'(L) and y ~*(p). In this
situation it is clear that the mentioned division is satisfied if and only if B(y~'(a),
Y ~Y(b), ¥ "(c)). Obviously Y(S) is a convex set in A. Thus

Theorem 4. If there exists an improper plane in S, then S is isomorphic to a convex
set in an affine space over an ordered skew-field.

6. Assume that Dedekind’s axiom holds in S. Then the existence of an improper
plane follows from lemmas 1—3.

Lemma 1. Every extended line L contains an improper point.

Proof. An arbitrary proper point a on the proper line L determines two half-lines L,
and L, on y ~*(L). Since P is a proper plane containing L, and p a proper point on P
and not on L, denote by # the pencil on ¥ ~*(P) with vertex y ~'(p) from which the
line y ~*(L(ap)) is excluded, and by &, the subset in 2 formed by lines meeting L;,
i = 1, 2. If there were in £ no line not meeting y ~ (L), then (%', Z';) would be a cut
in 2 without a boundary element, because there is no “last” point on L, and L,.
But this is in contradiction with Dedekind’s axiom.

Lemma 2. Every improper point p lies on an improper line.

Proof. Take an extended plane P and an extended line Lsuch that pe L, L = P,
Y (L) determines two half-planes P, and P, on ¢~ !(P). Denote by £ the pencil
of projective lines on P with vertex p from which the line L is excluded, and by &, the
subset in 2 formed by lines containing elements of y(P,), i = 1, 2. If there were no
improper line through p, then (%,, ;) would be a cut in & without boundary
element, which is a contradiction?).
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Lemma 3. Every improper line lies on an improper plane.

The proofis analogous to the preceding ones.

7. If Dedekind’s axiom does not hold in S, then improper points need not exist,
as shown by following construction. Let Q or R(Q = R) denote the field of rational
or real numbers respectively; then the projective number space P(Q) (see item 1) is
a subspace in P(R). In P(R) there are planes containing no rational point, e.g. the
plane I = xy + ax; + a®x, + a3x; = 0, where o is a transcendental number?),
since from ry + rya + r0% + rya® = 0, r; € Qit follows that r; = Ofori = 0, ..., 3.
According to item 3 we introduce on A = P(R) \ I the structure of an ordered
affine space. Since I contains no rational point, there is P(Q) = A.On defining in P(Q)
the betweenness relation by restriction from A, one obtains an ordered incidence
space whose projective extension contains no improper point. Thus we have the
interesting metageometric

Theorem 5. The assumption “If p is a point and La line both on a plane P, p¢ L,
then there exists at least one line on P passing through p and not meeting L’ cannot
be deduced from Hilbert’s axioms of incidence and order.

8. From a more detailed analysis, which will be not presented here, it follows that
the ordered incidence spaces may be classified into six types characterized by
following properties of improper objects of their projective extentions:

a) there is no improper point,

b) there is exactly one improper point,

c) there is one improper line and no further improper point,

d) there are four improper points not on the same plane and no improper line,

e) there are four improper points not on the same plane, there is an improper line
and no improper plane,

f) there is an improper plane.

Ordered incidence spaces of all 6 types exist.

9. In the preceding sections the use of some non-planar considerations was
essential. In conclusion, we want to draw attention to the interesting problem of
considering analogous projective extentions of partial planes with order axioms by
means of appropriate configuration theorems.

1) Notice that if Dedekind’s axiom holds in S, then it holds also in S.
2) It evidently suffices to consider the field Q(a) instead R.
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Vytah

GEOMETRICKA STRUKTURIA S HILBERTOVYMI AXIOMY
INCIDENCE A USPORADANI{

IvaN KoLAR, Brno

V prdci se studuji uspofddané inciden¢ni prostory pomoci jejich projektivniho
rozifeni. V §5 se dokazuje, Ze kaZdy uspofddany inciden¢ni prostor, v jehoZ projek-
tivnim rozsifeni existuje nevlastni rovina, je isomorfni konvexni mnoZiné v afinnim
prostoru nad n&jakym uspofddanym t&lesem (ne nutng komutativnim). V §7 je pak
ukdzdno, Ze nevlastni rovina nemusi obecné existovat. Pfi tom se ziskdvad i metageo-
metrickd véta S: Tvrzeni,,Nechf p a L jsou bod a pfimka v roviné P, p ¢ L, pak bo-
dem p lze vést alespori jednu pFimku, kterd lefi v P a neprotind L nelze odvodit
pouze z Hilbertovych axiomt incidence a uspofdddni.

Pesiome

TEOMETPUYECKAS CTPYKTYPA C AKCHOMAMU MHIIMJAEHTHOCTU
" IIOPAIKA T'MJIbBEPTA

MBAH KOJIAPX (Ivan Koléif), Bpuo

B paboTe u3y4aroTCH YIOPANOYESHHBIE UHIMICHTHBIE IIPOCTPAHCTBA IPU TOMOLIM
HX MPOEKTHBHOrO pacumdpeHusa. B § 5 moxasano, 4TO BCAKOE YHOPAHOUYECHHOE MHIM-
JEHTOEe MPOCTPAHCTBO, B MPOEKTHBHOM PACUIMPEHUH KOTOPOTO CYILECTBYeT HecoO-
CTBEHHAS TJIOCKOCTD, H30MOP(HO BHITYKIIOMY MHOXECTBY B adurHOM mpocTpan-
CTBe HaJ HEKOTOPBHIM YHOPAIOYCHHBIM TejoM. B § 7 mokasano, uro HecoOcTBEeHHAs
IJIOCKOCTh B 001IEM ciTyuae He JOJDKHA cyliecTBoBath. IIpu 3T0M nosnyyeHa MeTareo-
MeTpuYeckas Teopema 5: YTeepxkaenue: ,,[Iycms mouxa p u npamas L aexncam 6 naoc-
xocmu P, p ¢ L; mozoa uepes p npoxooum no Kpaiineii mepe 00HA NPAMAA, AeHCAAS
8 P u nenepecexaroyjan L'* — HEBO3MOXHO BBIBECTH TOJIBKO A3 aKCHOM MHIMICHTHOCTH
1 nopsazaka Nwis6epra.
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