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A “BANG-BANG“ PRINCIPLE IN THE PROBLEM
OF &-STABILIZATION OF LINEAR CONTROL SYSTEMS

PavoL BRUNOVSKY, Bratislava
(Received October 26, 1965)

In [1], the concept of e-stabilizing control for two-dimensional linear control systems
was introduced.

In the same way it may be introduced for systems of arbitrary dimension.

Let us have a linear control system

n = % = Ax + Bu + ¢p,

where x is an n-vector of state variables, u an m-vector of control, p an n-vector of
perturbations, A, B — n x n, and n X m constant matrices, respectively. Further,
let there be given two convex compacts P < E,, Q < E, (E, being the k-dimensional
Euclidean space).

By perturbation we shall denote a measurable function p(f) on (t,, o), satisfying
p(f) € P for a.e. t € {ty, ). By control we shall denote a measurable function u(x),
defined on E, and satisfying u(x) € Q a.e. in E,.

Denote ”x" the Euclidean norm in E,. Let X < E,. Denote co X the convex hull
of X, o(X, %) = inf |y = x|, S(X.8) = [y e Eu: e(X.3) < 8}.S(X) = {f() s v X)

ye

for an arbitrary function f, definéd on X.
Let u(x) be a given control. x() will be called a solution of (1) on an interval I,
if it is absolutely continuous on I and satisfies a.e. on I the relation

%(1) € Ax(t) + BU(x(1)) + & p(¢)

where

Ux)=N N cou(S(x,8) — N)
©6>0 mes N=0
and p(t) is an arbitrary perturbation, defined on I.
The reason for the generalization of the notion of solution is the fact, that as
controls discontinuous functions of state variables are allowed (cf. [3], [4]). For
continuous u(x), the former definition is equivalent to the classical one.
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In the following we shall apply the fact, that x(t) is a solution of (1) if and only
if it is a solution of the contingent equation

) %€ Ax + BU(x) + &P
(of. [1], [4))

A control u(x) will be called e-stabilizing, if a compact region G containing the
origin exists such that if x(f) is a solution of (1) with x(t,) € G, then x(t) e G for
t 2 to; the region G will be called (u, ¢)-invariant.

Clearly a product of two (u, &)-invariant regions (with u fixed) is (u, €)-invariant
again. Hence, to every e-stabilizing control u the smallest (u, €)-invariant region G(u)
exists in the sense, that it is contained in every other (u, &)-invariant region.

Therefore, we may estimate the quality of the e-stabilizing controls according to
their smallest (u, ¢)-invariant regions.

Let ]xl be a given norm in E,. Denote ]Gl = max lx] for an arbitrary compact G.

G

Let u,, u, be two e-stabilizing controls. u, will be said better then u, (1, worse
than u), if |G(u,)| < |G(u,)|.

For two-dimensional systems under sufficiently general assumptions for ¢ > O
sufficiently small the best ¢-stabilizing control has been proved to exist and constructed
in [1].

In [2], the n-dimensional controllable systems are treated. It is shown, that for
special P and ¢ > O sufficiently small a control u(x) exists such that the origin itself
is a (u, e)-invariant region and, moreover, the system (1) is asymptotically stable
under an arbitrary perturbation.

If Q contains the origin in its interior and (1) is controllable, i.e. if among the
vectors by, ..., A" by, by, ..., A" by, ..., by, ..., A" 'b, (by, ..., b, being the
column vectors of B) are n linearly independent, then for ¢ > 0 sufficiently small an
e-stabilizing control exists. This may be demonstrated as follows:

From [5] it follows, that the unperturbed system
(3) X = Ax + Bu

may be done asymptotically stable by a linear function u = Cx and, hence, there
exists a positive definite quadratic form ¥ = }(Wx, x), W being symmetric, which is
* a Lyapunov function for (3), i.e. the form

Y} _ (Wx, (4 + BC)x) = (W(A4 + BC) x, x)

dt |,
is negative definite. Henceforth, it satisfies the inequality
(W(A4 + BC)x,x) < q|x||*, 4 <0.
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Calculating dV/dt according to the system (1) we have

. %I:- = (W(A4 + BC) x, x) + (Wx, ep) <
e}

< x| + €| W] - [P] =] = (alx] + e[ 2] [2]) [~ -

From this it may be seen, that for & > 0 an n(e) > O exists such that n(g) > 0 as

e—0and ¥ < 0if V(x) = n(e). If ¢ > 0is small enough, 2Cx € Q if V(x) = n(e).

L
Hence, defining a control u(x) such that u(x) = Cx in some neighbourhood of the

surface V(x) = n(e) we obtain an e-stabilizing control with a (u, &)-invariant region
V(x) < n(e).

However, the question of the existence of a best e-stabilizing control is in general
open.

The main purpose of this paper is to prove a theorem, which enables us in the
problem of choosing a best e-stabilizing control to restrict ourselves on the so called
‘“bang-bang” controls and which, in analogy to a theorem in the optimal control
theory may be denoted as a “‘bang-bang” principle.

The ““bang-bang” principle, according to [6] may be formulated as follows:

If an optimal control exists, then there exists an optimal control, which is bang-
bang.

In [6], Q is a polyhedron and by “bang-bang” control there is meant a control
which acquires as values only the vertices of Q.

The bang-bang controls for more general Q (and even more general control
systems) are discussed in [7].

The ¢-stabilization bang-bang principle will be given as a corollary of a theorem
which we are going to prove.

According to [7] denote tend Q the least compact set the convex hull of which is Q.

Theorem. Let u be an e-stabilizing control with a (u, g)-invariant region G.
Then, there exists an ¢-stabilizing control ugy, acquiring its values only from tend Q
and such that G, = co G is a (ug, &)-invariant region.

The proof of the theorem will be accomplished in several steps.
Let x be a boundary point of a closed convex set C. Denote M, the set of all
normals of the support planes of C at x, i.e. M, = {y : ({, x) = max (¢, y)}.
yeC

Lemma 1. Let C < E, be a convex compact and let x € E,. Then
1° There exists a unique point q(x) € C such that ||x — g(x)| = o(C, x);
2° (x — q(x), 4(x)) = sup (x — q(x), y), (in particular x — g(x) € My, if xE C);

: yeC
3° |la(x)) = q(x2)|| S [|%1 = x2| for x4, x;, € E,
Proof. 1° For x € C we have clearly g(x) = x. If x€C, the existence of q(x)
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follows from the compactness of C. If there were two distinct points y, € C, y2 € C,
satisfying “x - ¥ ” = o(C, x), i = 1,2 then for the point %(yl + y,) we would
have |x — 3(y; + ¥,)| < e(C, x). This is impossible, as ¥y, + y2) € C.

2° If x e C, 2° is trivial. In order to prove 2° for x € C, suppose the contrary, i.e.
that a point y, € C exists such that

O] (x = a(x), yo) > (x — a(x), 4(x)) -

Denote y(x) = ayo + (1 — ) g(x). We have
L1569 = 517 = 2000 ~ a9 56) 9,
30) = q(x), y() € C for x € <0, 1). Due to (3) we have
5; [#(#) = *[*-0 = 2(v0 — a(x), a(x) —x) <0

from which it follows, that for o > 0 sufficiently small |y(a) — x| < [a(x) — x| =
= ¢(C, x). This is impossible, as y(x) e C for « €40, 1).

3° From 2° it follows (x; — q(x1), 4(x;) — q(x2)) = 0, (a(x2) — X2, q(*1) —
— g(x2)) 2 0. Adding these two inequalities, we obtain (x; — g(x;) + q(xz) - X,
q(xy) — q(x2)) 2 0, ie. (x; — x3, From the
last inequality it follows ||x; — x,|| = [a(x,) — q(x2)|| q.e.d.

Lemma 2. Let x be a boundary point of G. Then, for every y € M, an u, € tend Q
exists such that

@ (, Ax + Bu, + ep) < 0
for an arbitrary p € P.

Proof. First suppose that the theorem fails to hold for a boundary point of G,
say xo. Let Y € M. Then, for every u € tend Q we have

) . (¢, Axo + Bu + &p;) > 0,
where p, is such that (y, p,) = max (¥, p). Now, let u € Q. Then, we may choose
m+1 m+1

u;etend @, 4,20, i=1,2,. ,m+1, such, that 211—1 and u—ZAu
i=1
(cf. [8]). Hence )

m+1

(¥, Axo + Bu + ep,) = Y AW, Axo + Bu; + ¢p,) > 0,
i=1
i.e. (5) is valid for every u € Q.
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Due to the contingent equation existence theorem ([4], [9]) a solution x(?) of the
contingent equation

(6) . % € Ax + BU(x) + ep,

with x(t,) = x, exists. This solution satisfies the relation cont x(to) = Ax, +
+ BU(x,) + epy = Axo + BQ + &p,. From this and (5) we obtain (y, z) > 0 for
every z € cont x(t,). This is possible only if x(t) leaves G. But x(t) being a solution
of (6) is also a solution of (2) and, hence, of (1). Thus, according to the assumption,
it cannot leave G. This contradiction proves the validity of the theorem for x € G.
Now, let x, be an arbitrary boundary point of G,. Let y € M. Then, we may

choose x;€G, ;> 0,i=1,2,...,r, r S n+ 1such that xo = Y 4;x;, Y 4, = 1.
i=1 i=1

It is easy to show that x; should be boundary pointsof Gand y e M, ,i = 1,2,...,r
Hence, r points u;€ Q exist such that (Y, Ax; + Bu; + ep) < 0 for peP, i =

=1,2,...,r. Adding these inequalities we obtain (y, 4x, + B ) Au; + e¢p) < 0
r i=1
for p € P. Due to the convexity of Q, > Au; € Q. Applying the same argument as in
i=1 -

the first part of the proof, we conclude from this the existence of the desired u e tend U.

Lemma 3. Let u(x) be a given control and let x(t) be a solution of (1) on I. Let C
be a given convex compact. Then, r(t) = q(x(t)) is absolutely continuous on I and

(x(t) = (1), 7)) = O for a.e. tel.
Proof. The absolute continuity of r(z) follows from the absolute continuity of x(t)

and lemma 1, 3°. As r(t) is absolutely continuous, it has a derivate a.e. an I. Let the
derivative F(f) at t exist. Suppose (x(t) — r(t), #(?)) + 0. If

NG (<) = r(t), #1) > 0,

then we have (x(f) — r(z), h=*(r(t + k) — r(t))) > O for || sufficiently small. For
h > 0 we have (x(tf) — r(t), r(t + h)) > (x(f) — r(z)), H(t)). This contradicts lemma
1, 2°. If, instead of (7), the opposne inequality holds, we obtain a contradiction with
lemma 1, 2° for h < 0.

Denote V(x) = {uetend Q : (x — g(x), Aq(x) + Bu + &p < 0} for x€ E,.

Lemma 4. V(x) is non-empty and compact for x € E,. V(x) is an upper semicon-
tinuous_in the sense of inclusion set-valued function on E, (cf. [1], [4], [7]).

Proof. The compactness of V(x) is evident. From Lemma 2 it follows that V(x)
is non-empty. Let x, — x, u,€V(x,), u, > u. We have uetend 0, (x — g(x),
Aq(x) + Bu + ep)) = lim (x - q(x.), Aq(x') + Bu, + ep). Hence, (x — q(x),

Aq(x) + Bu + &p) < 0 1e u € V(x). This proves the upper semicontinuity of V(x)
(cf. [1]).
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Proof of the theorem. According to [10]'), from Lemma 4 it follows the
existence of a measurable function uy(x) such that uy(x) € ¥(x) for x € E,. We shall
prove that uy(x) is the sought e-stabilizing control.

Denote Uy(x) = N ) co u(S(x, 6) — N). For every x € E,, v € Uy(x) and peP

4>0mesN=0
®) (x — q(x), Ag(x) + Bv + ep) < 0

is valid.
In order to prove this suppose the contrary. Then, sequences {x,} — x and {p,}
exist such that

) (x» — g(x,), Aq(x,) + Buo(x,) + €p,) >n > 0.

The sequences {x,}, {uo(x,)}, {p,} are bounded, therefore we may choose a sub-
sequence x,, such that uy(x, ) — u*, p, — p*€ P. From (9) it follows (x — g(x),
Ag(x) + Bu* + ep*) = n > 0. This is impossible, as from the upper semicontinuity
of V(x) it follows u* € V(x).

Now, suppose that a solution of (1) leaves G. Then, a boundary point x, of G,
exists such that x(t,) = x, and x(t)€ E, — G, for te(to, t,). Let r(t) = g(x(?)).
For a.e. te (to, t,) we have

> S - 0l = 60 = ). S x0) = 1) (x() - .
Ax(t) + BU(x(t)) + &P — (1)) = (x(2) — r(t),

Ar(f) + BU(x(1)) + €P) + (x(t) — r(t), A(x(r) — r(t)) — (x(t) — (1), #(2)) .
According to (8) we have (x(f) — r(f), Ar(t) + Bu + ep) < 0 for every u e Uy(x(t)),
p € P. Due to this and Jemma 3 we have

2SO — O 5 (0 = 7). AGEO - ) < 4] [0 - O]
Hence (cf. [11], Theorem 2.1 of chap. I),
[x(t2) = r(t)] < [x(to) = r(to)| exp {204] (1 — t0)}
ie. x(t;) — r(t;) = 0, which contradicts the assumption. This completes the proof.

Remark. The requirements, desired by the theorem are satisfied by every control,
which is equal to uo(x) in a domain

= {x:x€E, — Gy, ¢(Gyp, x) < n},
n>0 bemg arbltrarlly small.

D) In fact, the existence of such a measurable function is proved in [10] for one-dimensional x.
However, the proof may be transferred without complications to functions of x of an arbitrary
finite dimension.
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Corollary. If Q is a polyhedron, then tend Q ist he set of the vertices of Q. From the
theorem the bang-bang principle follows:

For every s:stabilizing control there exists a bang-bang e-stabilizing control
which is not worse. In particular, if a best g-stabilizing control exists, then there
is a best e-stabilizing control, which is bang-bang. '
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Vytah

PRINCIP ,,BANG-BANG*“ V PROBLEME ¢-STABILIZACIE LINEARNYCH
SYSTEMOV RIADENIA

PavoL BRUNOVSK Y, Bratislava

V sthlase s [1] sa zavddza pojem e-stabilizujuceho riadenia a (u, €)-invariantnej
oblasti pre ststavy riadenia Tubovolnej kone&nej dimenzie. Riadenie u; sa nazyva
lepsim ako riadenie u,, ak minimdlna v smysle inkluzie (u,, ¢)-invariantnd oblast je
v istom smysle meniia ako minimdlna v smysle inklizie (u,, ¢)-invariantnd oblast.
Dokazuje sa veta, ktorej dosledkom je bang-bang princip:
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K TubovoInému g-stabilizujicemu riadeniu u existuje e-stabilizujtice riadenie typu
bang-bang, ktoré nie je horsie ako u. Specidlne, ak existuje najlepsie e-stabilizujtice
riadenie, potom existuje najlepsie e-stabilizujuce riadenie typu bang-bang.

Pe3zrome

MPUHIUII PEJEMHOCTU VIIPABJIEHUA OIS IMPOBJIEMbBI
e-CTABWIM3ALIMM JIMHENHBIX CUCTEM VIIPABJIEHUS

TTABEJI BPYHOBCKMU (Pavol Brunovsky), Bparucinasa

B coorBerctBuu ¢ [1] BBOOMTCA MOHSATHE &-CTAGWIH3HPYIOIUETO YIpPaBICHUS
1 (u, ¢)-MHBAPHAHTHON OOJACTH IJIA CHCTEM YIPABJICHHS MPOU3BOJBLHOM KOHEYHOM
pa3MepHOCTH. YIpaBlieHWE u; Ha3bIBaeTCsA JIyYIIMM IO CPaBHEHHWIO C yIpaBiie-
HUEM U,, €CIM MWHHUMAJbHAas IO BKIIOYEHHIO (uy, §)-WHBapHaHTHas 00JIacTh
B ONpPEIETICHHOM CMBICIE MEHbIE MUHHUMAJIBHON (U,, €)-HHBAPMAHTHOH OOIACTH.
Joxa3piBaeTcsl TEOpeMa, CIEACTBHEM KOTOPOM SBIAETCS NPUHLHUI PEICHHOCTH
yIpaBJICHUA:

715 BCAKOTO £-CTAOMIIN3UPYIOLIETo YIPaBJIeHUs U CYLUECTBYET peieiiHoe e-cTabu-
JIM3Mpyrolllee YIpaBiI€HHE, KOTOPOE HE XyX€ 4. B YacTHOCTH, €CIM CYyLIECTBYET
Hawiydliee e-cTabmin3upyeliee ynpaBlieHHe, TO CYLIECTBYET HaMWJIydlllee &-CTaGHIn-
3UpyIOlIee YIpaBJIEHHE, SBIISIONICECA PEJICHHBIM.
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