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PARTITIONS IN CARTESIAN SYSTEMS

VACLAV HAVEL, Brno
(Received December 4, 1964)

In the opening part of [2], O. BORUVKA described his theory of set partitions which
he enriched in the sequel of [2] by a study of one binary operation in a given set.

Analogously, it is possible to apply this theory of set pertitions to the case of a set
with one v-ary operation (v any ordinal) or, more generally, to the case of a map of
a cardinal product of a family of sets onto a given set. This last topic forms the ob_]ect
of study in the present paper.

1. Chainings and bindings. Let S be a fixed non-void set and &(S) the semilattice
of all partitions in S with the usual ordering. If # = (#'),., is a family of partitions
in S then we define a chaining in # between two 2-blocks A, B as any finite sequence
of P-blocks A = Ay § A, Y,...04,_,8A,=B. If nis even and each member
with even index is a #°-block for a fixed t € I, then the sequence 4 = Ay, 4;,..., 4, =
= B will be called a binding of #"-blocks between A, B with cementing #-blocks
Ay, As, ..., A,_;. We shall also say that A, B are chained or bound, respectively.

We begm with two elementary lemmas.

Lemma 1. Let 2 = (', #?) be a pair of partitions in S. Then every chaining
in @ between two P'-blocks A, B becomes a binding of P'-blocks between A, B if
the #%-blocks are omitted.

Lemma 2. Let 2 = (#'),¢; be a family of partitions on S. Then to each chaining
between A, B € Z* (for a fixed t €I) there exists a binding of #*-blocks between A, B
with cementing blocks belonging to the initial chaining.

The proof of lemma 1 is clear. For the proof of lemma 2 it suffices to insert
a #%-block B, {§ A; N A, between all consecutive 4;§ A, of a given chaining.
Such a B, € #° must exist because now the partitions are on S. In such an enlarged
chaining between A4, B omit all #-blocks not in &* to obtain the required binding
between A4, B.

1y Cf. [9] for the notions used. The set of Z-blocks is {P|P€ #*, 1 € 1}. By § we denote the
non-empty intersecting of two sets.



Let # = (#'),.; be a family of partitions in S. Then the partition sup 2 € &(S)
has the following characteristic property [3, pp. 16— 17]: Each sup #-block is a union
of a maximal set of #-blocks chained in 2. The partition inf # € &(S) exists iff

for each ¢ € I there exist A, € 2' such that () 4, + 0. If inf & exists, then every inf 2-
eJ

block has the form () B, + @ with B,e #', tel.
eJ
2. Cartesian systems. Let I be a fixed index set. Put I'y = I'U {0} where 0 ¢ I'. ?)
Let (S,),, be a family of non-void sets and f : []S, — S, a surjection.*) Then C =

= ((Sa0)aes f) Will be called a Cartesian system or briefly a system (cf. [12], pp.
38—39).

If0 + S, < S, for all oy and if f’ is a restriction of f with domain []S;, where
So = f/(I]S:), then €' = ((Sap)aes f*) Will be called a subsystem of C.

A map ¢ between two systems € = ((S, )ops fo)» C* = ((S%)eer/*) is a family
(04,)z0 Of maps o, : S, — Si for all ay; ¢ will be called regular if 6,,a = 65a for
all ae S, N Sy; o will be called a homomorphism if 60f((a,).) = f*((0.2.).) for
every choice a, € S, for all a.

A partition 2 in a system C is defined as a family (2,,),, Where 2,, is a partition
in S,, for all a. If, moreover, 2, is a partition on S,, for all &y, then we speak about
a partition on C.

Let ¢ = (0,,),, be an epimorphism between the systems € = ((Sg)ep f), C* =
= (S})ap f*)- We say that the partition 2 = (2,,),, on Cis induced by o if for each a,
the 2, -blocks are o, 'a for all a € Sy,

A partition 2 = (2,,),, in a system C is said to be generating if, for each choice

A, € 2, for all a, there exists a 2 y-block 4, containing f(]]4.,).

If 2 = (2,,),, Is a generating partition in a system C, then we define a subsystem
C' = ((Siy)ap f') in C corresponding to & as a system such that, for every a,, S;, is
is the union of all 2, -blocks, and that f’ is the portion of f with domain [[S,.

-1

The results for regular partitions in a Cartesian system may be specialized to the
most customary case of any C with all S, equal to a fixed set S and S, < S.

3. Generating partitions in Cartesian systems. We shall denote by # = (#'),.; an
arbitrary family of partitions in a given system C = ((S,,)s, f), and put #* = (2,,)
for all ¢ and 2,, = (2,,). for all «,. 4)

The set S(C) of all partitions in C will be ordered C as follows: For 2! = (2L),.,
P* = (PL),, in &(C) set 2' < 2 iff #L < 22 in &(S,,) for all ay. Then S(C)

becomes a complete semilattice: For each family 2 of partitions in C there is a parti-

a0

2) In the following text, a, B, y, ... vary over I', while ag, B, 4, ... va;'y over I,.
3) TT denotes the cardinal product in the sense of [6, p: 15].
4) ¢ varies over the same index set 1.
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tion sup & = (sup #,,),, € S(C); on the other hand, the partition inf # need not
exist. The existence of the partition inf 2* is equivalent to the existence of inf 2, for
all ay; then inf 2 = (inf #,),, € S(C).

. 'Theorem 1. Let ¢ be an epimorphism between systems C = ((Sap)ars ), C* =
= ((S2)eo» f*)- Then the partition # = (2,,),, in C, induced by o, is necessarily
generating.

Proof. Let A, € 2, for all a. Then for each « there is an element a; € S; such that
= o, 'a}. Each element b € f([]4,) has the form f((a,),) for some a, € 4,. Thus

aob = 04 f((a.).) = *((0.9.).) =}"‘((a:‘),), and b € S, is contained in a5 * f*((ay),) =
= B. This yields f([J4.) = B

Theorem 2. Let C* = ((S3),,, f*) be a subsystem in a given system € = ((S;)aes )
and ? = (2, ),, a generating partition in C with correspondmg subsystem C' =

= ((S:,o),o,f) such that S § S, for all ay. If one puts 9,0 = 2,,] Sz, for all a,
then P = (9,0 o iS @ generating partition in C. °)

Proof. Let A, € 2,, A, § S; for all a. The partition is generating, so that a #,-
block 4, 2 f(nA )exists. If a, € S; N A, for all o, then f((a,),) € f(]_[S"‘) A f(HA =

€ S3 N A, because C* is a subsystem of C. Thus Sg § 4o, and consequently # must
be generating.

Theorem 3. Let # = (2"°), be a family of generating partitions in C = ((Syg)eos f)
and C' = ((S)eo)ees f*) the corresponding subsystem with regard to #* (for all 1).
Then N\S,, * O for all a, implies the existence of the partition in # € &(C), and

this partition is generating.
Proof. The assumption NS, + 0 for all «, implies the existence of inf 2 € S(C).

Let 4, € inf #,, for all ay. Then for all ay, ¢ there exist 4,;, € 2, such that 4,, =
= nA‘ As 2 is generating, there is a P-block 4}, 2 f([]4.) for each «. Therefore

S (HA J S ﬂf (HA ) s nA e inf 2, so that the partition 4 is generating.

Theorem 4. Let # = ('), be a family of generating partitions in a given system
C = ((Su)eps f) With I’ ={1, ..., n}. Then sup P is generating.

Proof;s) Choose x,, y, € S, in the same sup #,-block for all a. The existence of

5) The symbol o [ B is used to denote a packing in the sense of Boriivka, i.e. for a partition
consisting of those blpcks of a given partition & which intersect a given set B. Cf. [2, p. 23].
) Cf. [11, pp. 190—191].
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a chaining in 2, between two #,-blocks, of which the first contains x, and the
second y,, may be expressed as the existence of a sequence

* — —_—
( ) Xa = Zg,0> Za,15 ++*> Zayry = Va

of elements in S,. The elements z, ;_;, z,, must be contained in the same P**-block
for some #**e P, (for all k = 1, ..., 1, and all o). From this one deduces, in turn
that there exist 2 -blocks such that

F(2105 Z205 - -5 Zuo)> f(Z115 Z205 - --» Zno) belong to the same £3:!-block, #3'! from 2,
F(Z115 Z205 -+ -5 Zuo)> F(Z125 Z205 - - -» Zqo) belong to the same 2}:2-block, 212 from 2,

F(Z1,0,~15 2205 ++ > Zn0)s S(Z1ry> Z205 - - +» Zno) belong to the same 2y "-bl;)ck,
2" from 2.

These and analogous relations for further sequences (*) (« = 1, ..., n) yield that

F(Z105 2205 « > Zu0)s S(Z1r,> Z20s - -+» Zno) belong to the same  sup 2L*-block
k=1,...,r1

F(Z1r, 2205 -+ Zu0)s J(Z1r15 Z2rps - -+» Zno) belong to the same  sup PZ*-block
k=1,..,r2

F(Z1r0s Z2rg> + o> Zne1umm 15 Zn0)s S (Z1r1> Z2225 +++» Zn=1,r0-1» Znr,)) belong to'the same
sup 2y*-block
k=1,...,rn
Thus, finally, f(xy, ..., X,), f(¥1> - ., ¥s) both belong to the same block of the partition
sup ( sup .?5"‘) < sup P, as it was required to prove.
a=1,..,0 k=1,..,r

Remark. I do not know under what further conditions theorem 4 holds also for
infinite index set I'.

Now we shall investigate the possibly less familiar notion of the Goldie composi-
tion & of two partitions. Let o, # € &(S). Then o O # is a partition from &(S)
defined as follows: The elements a, a’ € S belong to the same o  #-block iff there
exists a finite sequence a = ag, ay, ..., a,,a,4,, = a’ of elements in S such that
ay, @y @z, As; ...; 4,, A,+, belong to common %-blocks, and ay, az; a3, as;-..;
... dy—1, a, belong to common &f-blocks. Another formulation is that the & O %#-
blocks are the maximal unions of mutually bound #-blocks with cementing &f-blocks
(cf. §1). '

Now return to a system € = ((S,,)us» ), and for partitions ' = (g’ao oo 1 = 1,2
in C define the composition ¢ by 2% O 2! = (22 © 2L ).,

Theorem 5. Let ', #* be generating partitions in a system € = ((Se)eor /) With
I'={l,...,n}. Then # = $* & P is also generating.
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Proof.”) For each o choose two elements a,, a, in the same 2,-block. Then for
each « there is a finite sequence a, = a,,9, d4,15 --+> A, Gqr+1 = 4, Of elements in S,
such that consegutive members belong to common 2'-blocks or #2-blocks. As I is
- finite, it may be supposed without the loss of generality that all considered sequences
have the same length not depending on «. Therefore f(ayo, ..., auo), f(@11, i du1)
are in the same 2g-block, f(ayy, ..., ay), f(ay2, - .-, a,;)are in the same #2-block, ... ,
f(ay .. u)s f(a4,41, .. a,,41) are in the same 2§-block. By definition of <,
flay, ..., a,), f(ai, ..., a,) must lie in the same 2y-block, as required.

Remark. I do not know the modifications of Theorem 5 necessary to make it apply
to the case of an infinite index set I".

4. Factor systems. Let # = (£, ),, be a generating partition on a given system
€ = ((S40)zr f)- A factor system C/2 is defined as a system ((2,,).,, f/?) Where f|2
is a surjection of [, onto #,, determined by f/2((4,),) = A, where A, € 2, for

all x and A, is a 2,-block which contains f(]]4.,).

The concepts of a cover, refinement, cut, pairing, etc. (in the sense of Borfivka, [2],
4§ 15.2-4) may be extended to Cartesian systems if they are simultaneously imposed on
all §,,. :

Theorem 6. Let # = (2,),, be a generating partition on a system C = ((Sy,)a0» f)
with C/9‘ C = ((SL ) f)- Let ' = (#P.,)s, be a partition on C' and P* =
= (P})., the cover of P enforced by #'. Then %' is generating iff P* is generating.®)
Proof. Let &' be generating. Choose A¥ € 27 for each «, and show that there
exists a #*-block 45 2 f([TAY). Each A4}, consists of all £, -blocks contained in

some 2, -block A, (for each a,). As &’ is generating, for A, € 2, there must exist
a .?(',-block Ag which contains f” (HA”) If A} consists of all Pg-blocks contained

s, then f’ HA") S Ay implies fHA;') < A§. Conversely, let #* be generating.

If A, € 2, for all , it is necessary to find a Z-block Ag 2 f'([ A7) Because 2* is

generating, there exists a Py-block A} = f (HA*) where again A} is the union of all

2,-blocks contained in A” (for each «). From f(HA") < Aj it follows again
S (140 = 45.

Theorem 7. Between the systems € = ((S,)u f)> €* = ((SX)err f*) there exists

an epimorphism ¢ = (6,,),, iff there is an isomorphism ¢ = (g,, )., between a certain

7y Cf. (7, § 11.

8) Let & e&(s), # E@(d) If # €€(S) has the blocks which are unions of all &/-blocks
<ontained in the same #-block, then € will be termed a cover of & enforced by #. — If 2 € &(C),
2’ €&(C/P) (cf. § 4) then 2 will be termed a cover of # enforced by #” if each 27 is the cover
of P4, enforced by Z;,.
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factor system C' = C/.@ and C*. This g is such that g,, maps each P,,-block Az,
onto 6,,A, € Sx. (for all o). :

0" “@o

Proof. Let o be an epimorphism between €, C*. The partition 2 on C induced by ¢
is necessarily generating (theorem 1). Now determine a surjection g: C[# — C*. For
each oy, 0,, sends A,, € 2, onto ay, € Sy with oA}, = A,,. Thus @,nAs, = Ouyls,
for all a,, € A,,. Choose a, € 4, € 2, for all «. Then f((a,),) € f([[4.) < f]?(4.).) €

a

€ 2, so that 0o f|2((4.)e) = 00 f((a2).) = f|#(e.A,).) and ¢ is even an isomorphism
between C/#, C*. Conversely, let C/2 be an arbitrary factor system of C modulo the
generating partition 2 on C. Let ¢ be the surjection between C and C/# such that
gy € Opolyy = Agy € Py, for all oy, According to f((a,),) € f([T4s) = f]2((4a)s) € Pos

there is also 0o f((4).) = f|?((4s)s) = f|?((6,4,).), 5O that o is an epimorphism
between C and C/2. If there is an isomorphism between C/# and C*, then there is also
an epimorphism between C and C*.

Theorem 8. Let #' = (P} ),.; i = 1,2 be generating partitions in a given system
€ = ((Suo)aps f)- If P, P? are paired,'®) then there exists an isomorphism @ =
= (a0 )s, between C|P and C|P, such that, for all oy, to each P -block A}, there
corresponds by g,, the Q”fo-block ALY Ay

0
Proof. Let C/2', C[#* be paired factor systems. This means that, for all a,,
each Al € 2. intersects exactly one A2 € 2. Thus for each a, one has a surjection g,
under which A} — A2 as before. Set B, = A, n A2 for each a. Thus f([]B,) <

< f([14)) = f|2'(4)).) e 2§ i =1,2. It follows that f(];]Ba) c f/.@"(‘ZA},),n
N f|P*((42)a), so that f|2'((A4;),) 1f/2*(42)e) = eof|P"((4a)e) = F]P*((0xAx)s) a8

required.

Theorem 9. Let # = (2,,)., be a generating partition on a given system C =
= (Sus)aes f), and &' = (2..),, a generating partition on €' = C[P = ((Sz))apr f')-
Then there is an isomorphism @ = (Qg)e between C'[#’ and the cover C* =
= ((SX)ap f*) of C' enforced by #':'*) For all ay, each A, € P,, is mapped onto
the union of all 2,-blocks contained in Ay,

Proof. Let C, 2, #' be given and C* be the cover of C’ enforced by #'.. Each
Ay € Sy consists of all #,-blocks contained in the same A, € #,,. Map each
Ay € P, into the preceding A}, € S, by a surjection g,, : 2, — S, (for each «;). The
map @ = (Qu)s is Necessarily an isomorphism between C’[#’ and C*. Indeed,

9) We speak about a factor system induced by o.

1%) Two partitions o, # € &(S) are said to be paired if to each /-block A (#-block B) there
exists exactly one #-block 4’ [j 4 («/-block B’ {j B). Two partitions 2, #2 in C are said to be
paired if 2L, P2, are paired for all «;.

') This is to mean that C* — C/2*, where #* is the cover of # enforced by #”.

7
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choosc A, e 2, for all a so that f'|?((4]),) = Age P For each A,e 2, with
< A thereisf'((4.). = 4o < Ao, and consequently f*((42), ) A, f*((e.4).) =
= Qvo, as requxred
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Vytah

ROZKLADY V KARTEZSKYCH STRUKTURACH

VACLAV HAVEL, Brno

Zobecnénim algebraické operace na dané mnoZing je surjekce tvaru [] S, — So,

ael’

kde S,, S, jsou neprdzdné mnoZiny. Je provedena aplikace Boriivkovy teorie rozkladt
mnoZin na takovéto zobecn&né operace (do nové situace jsou pfeneseny pojmy vytvo-
tujiciho rozkladu a homomorfismu a jsou nalezeny pfislu§né teorémy). Specidlné pro
S, = S(x€er),S, = S, ddvaji nalezené vysledky obecnijii teorii neZ je obvykld teorie
rozkladlt mnoZin s algebraickou operacf.



Pe3ome

PA3JIOXKEHUA B JEKAPTOBBIX CTPYKTVYPAX

BAIIJIAB I'ABEJI (Vaclav Havel), Bpao

O6oOumesneM anrebGpamdyeckoil omepanuy Ha [OAHHOM MHOXECTBE ABJISETCH
ceipbexuus Buga [ | S, — Sy, rae S,, So — Hemyctbie MHoxectBa. K Takum 0606-

ael .
LICHHBIM ONCpalMAM INPHUIIOXCHBI OCHOBAHHA TCOPDHHM PA3JIOXKCHHA MHOXECTB 0.

BopyBku (Ha HOBBIX HayajJax OMpeIesICHB MOHATHA OOpa3yIOLIEro pa3sIOoXEeHUSA
# roMoMopdu3Ma W BBIBEACHBI COOTBETCTBYIOLIME TeOpeMbl). B wacTHoOCTH, s
S,=S(xeTl), Sy £ S, marT HalOeHHBIE Pe3yIbTAaTH GoJiee OGIIYIO0 TEOPHIO, YEM
0oOBIYHasA TEOPHA PA3TIOKEHUN MHOXKECTB C anrebpandeckoit onepaunuei.
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