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Časopis pro pěstování matematiky, roč. 91 (1966), Praha 

PARTITIONS IN CARTESIAN SYSTEMS 

VACLAV HAVEL, Brno 

(Received December 4, 1964) 

In the opening part of [2], O. BOR&VKA described his theory of set partitions which 
he enriched in the sequel of [2] by a study of one binary operation in a given set. 

Analogously, it is possible to apply this theory of set pertitions to the case of a set 
with one v-ary operation (v any ordinal) or, more generally, to the case of a map of 
a cardinal product of a family of sets onto a given set. This last topic forms the object 
of study in the present paper. 

1. Chainings and bindings. Let S be a fixed non-void set and S(S) the semilattice 
of all partitions in S with the usual ordering. If 0> = (0>l)leI is a family of partitions 
in S then we define a chaining in 0* between two ̂ -blocks A, B as any finite sequence 
of ^-blocks A = A0 $ At &.,. # An„t $An = B. If n is even and each member 
with even index is a ̂ r-block for a fixed x e J, then the sequence A = A0, A2,..., An = 
= J8 will be called a binding of ^-blocks between A, B with cementing ^-blocks 
Al9 A3,..., 4»-f We shall also say that A, B are chained or bound, respectively. 

We begin with two elementary lemmas. 

Lemma 1. Let 0* = (0*1, 02) be a pair of partitions in S. Then every chaining 
in # between two 0l~blocks A9 B becomes a binding of 0x~blocks between A, B if 
the 02~blocks are omitted. 

Lemma 2. Let 9 =- (0*%ei be a family of partitions on S. Then to each chaining 
between A9 B € 0X (for a fixed xel) there exists a binding of 0>x-blocks between A, B 
with cementing blocks belonging to the initial chaining. 

The proof of lemma 1 is clear. For the proof of lemma 2 it suffices to insert 
a #f-block Bj $ Ax n Alt+1 between all consecutive Aj # Al+1 of a given chaining. 
Such a Bt € 0>x must exist because now the partitions are on S. In such an enlarged 
chaining between A9 B omit all ^-blocks not in 0X to obtain the required binding 
between A9B. 

l) Cf. [91 for the notions used. The set of ^-blocks is {P|P 6 01, i 6 I}. By $ we denote the 
non-empty intersecting of two sets. 
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Let 0> = (0l)LeI be a family of partitions in S. Then the partition sup 0>e(S(S) 
has the following characteristic property [3, pp. 16 — 17]: Each sup ^-block is a union 
of a maximal set of ^-blocks chained in 0>. The partition inf0*e®(S) exists iff 
for each t e I there exist At e 0l such that fl At 4= 0. If inf 0? exists, then every inf 0*-

ieJ 

block has the form f) Bt =j= 0 with B, e 0\ i e I. 
teJ 

2. Cartesian systems. Let F be a fixed index set. Put F0 = F u {0} where o $ F. 2) 
Let (Sa)ao be a family of non-void sets and / : J]Sa -* S0 a surjection.3) Then C = 

a 

= ((^ao)ao'/) w*" ^e Ca^ed a Cartesian system or briefly a system (cf. [12], pp. 
38-39). 

If 0 =# Sao £ Sao for all a0 and if/' is a restriction of/ with domain J*]Sa, where 
S0 = f'(Yls'a)>then c ' = ((Sao)ao,/') will be called a subsystem of C. 

a 

A map a between two systems C = ((Sao)ao,/0), C* = ((S*0)ao,/*) is a family 
(<rao)ao of maps <rao: Sao -* S*0 for all a0; a will be called regular if aaoa = a^a for 
all aeSaon Sfio; a will be called a homomorphism if <r0/((aa)a) = /*((^"a«a)a) for 
every choice aa e Sa for all a. 

A partition 0 in a system C is defined as a family (^ao)ao where ^ a o is a partition 
in Sao for all a0. If, moreover, ^ a o is a partition on Sao for all a0, then we speak about 
a partition on C. 

Let a = (<xao)ao be an epimorphism between the systems C = ((S^)^,/), C* = 
= (S*0)ao,/*). We say that the partition 0 = (^ao)ao on C is induced by a if for each a0 

the ^ao-blocks are aaoa for all a e S*0. 
A partition 0 = (^ao)ao in a system C is said to be generating if, for each choice 

Aa e 0a for all a, there exists a ^0-block Al0 containing /(Il4*)-
a 

If 0 = (0ao)*ois a generating partition in a system C, then we define a subsystem 
C = ((Sao)ao,/') in C corresponding to ^ as a system such that, for every a0, Sao is 
is the union of all ^-blocks, and that/ ' is the portion of/ with domain f]Sa. 

a 

The results for regular partitions in a Cartesian system may be specialized to the 
most customary case of any C with all Sa equal to a fixed set S and S0 c S. 

3. Generating partitions in Cartesian systems. We shall denote by 0> = (0l)l6l an 
arbitrary family of partitions in a given system C = ((S^)^,/), and put 0l = (^ao)ao 

for all i and 0>ao = (^ao)t for all a0.
 4) 

The set S(C) of all partitions in C will be ordered C as follows: For 0l = ( ^ ) a o , 
&1 = (KXo in ®(C) set ^ = ^ 2 iff 0\o = ^a

2
0 in S(Sao) for all a0. Then S(C) 

becomes a complete semilattice: For each family 0> of partitions in C there is a parti-

2) In the following text, ott0,y9... vary over F, while a0, 0O, y0,... vary over r0. 
3) O denotes the Cardinal product in the sense of [6, p; 15]. 
4) i varies over the same index set /. 
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tion s u p # = (sup 0*^^.6 ®(C); on the other hand, the partition inf^ need not 
exist. The existence of the partition inf 9 is equivalent to the existence of inf &aQ for 
all a0; then inf & - (inf 0*^ € S(C). 

Theorem 1. Let or be an epimorphism between systems C = ((S^)^,/), C* = 
«= ((S^,)^,/*). Tften t/ie partition 9 = (^o)^ iw C, induced by o, is necessarily 
generating. 

Proof. Let Aa e 0>a for all a. Then for each a there is an element a* € S* such that 
-4* = <fmXat- Each element 6 e/(n .4a) has the form/((a*)*) for some aa € Aa. Thus 

a 

o0b = °o /((««)«) = /*((<V0«) = /*((<•*)«). and b e S0 is contained in er"- /*((a*)a) = 
- B. This yields / ( I K ) ^ -*• 

Theorem 2. Le* C* =-= ((S^)^,/*) fee a subsystem in a given system C = ((S^)^,/), 
and # « (̂ «0)«o a generating partition in C with corresponding subsystem C = 

- P ^ W ' ) swc* "*a* S £ $ S«« /«"" «" «o- J / <»** J>"'s «̂o = ^«o ] S^ for all a0 

then 9 «- (^ao)^ «s a generating partition in C. 5) 

Proof. Let v4a 6 0>a9 Aa $ S* for all a. The partition is generating, so that a 0>o-
block A0 2 /Ql^«) exists. If a, e S* n Aia for all a, then/((aa)a) e / (ns«) n / ( T K s 

a a a 
r—1 

£ S } n . 4 0 because C* is a subsystem of C. Thus Sj $ _40, and consequently 0* must 
be generating. 

Theorem 3. Let 0 = (0>')t be a family of generating partitions in C = ((S^)^,/) 
and C « ((S^)^)^,/1) *Ae corresponding subsystem with regard to 0>l (for all *). 
Then f^i© # 0 for all a0 implies the existence of the partition in 9 e ®(C), and 

1 

this partition is generating. 

Proof. The assumption ftS'^ 4= 0 for all a0 implies the existence of inf 9 e ®(C). 

Let .4^ £ inf 0*^ for all a©. Then for all a0,1 there exist A1^ e ^ such that Aao == 
» fMi©* As ̂  is generating, there is a ^0-block Al

0 2 /(O^a) f° r e a c h *• Therefore 
i a 

/(EM*) s fi/CTI^*) s H-*o € inf ^o» so that the partition 9 is generating. 

Theorem 4. Lei #> « (^*)t fee a family of generating partitions in a given system 
C «• ((SgJ^,/) wirfc F =« {1,».., n}. Tfcen sup #> is generating. 

Proof.6) Choose xm ym e Sm in the same sup ^Vblock for all a. The existence of 

5 ) The symbol J / [ J is used to denote a packing in the sense of Bor&vka, i.e. for a partition 
consisting of those Mocks of a given partition s* which intersect a given set B. Cf. [2, p. 23]. 
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a chaining in &a between two ^-blocks, of which the first contains xa and the 
second ya> may be expressed as the existence of a sequence 

(*) ** = z*,o> z«,i,..., z«,r« = y« 

of elements in Sa. The elements zatk~l9 zak must be contained in the same P*'*-block 
for some 0**k e 0>a (for all k = 1,..., ra and all a). From this one deduces, in turn 
that there exist ^0-blocks such that 

/(zio> z2o> • • •> z«o)>/(zii> z2o> • • •> z»o) belong to the same ^0

j l-block, 0>\>x from 0>o> 

/(zii, z2o> • • •> z«o)>/(zi2> z2o> • • •> z«o) belong to the same ^0'
2-block, 0l

o

a from # 0 , 

f(zltn~u z 2 0,..., zn 0),/(z l r i, z 2 0,..., zn0) belong to the same ^J*ri-block, 
&Yl from 0>o. 

These and analogous relations for further sequences (*) (a -= 1,..., n) yield that 

/(zio> z2o> • • •> z»o)> /(zirt>
 z2o> • • •> z»o) belong to the same sup ^0'*-block 

fc=-l,...,n 
/(zin> z2o> • • •> z«o)> /(zin> z2r2> * • •> z»o) belong to the same sup i^'*-block 

ЛZ1ГІ>
 z2r2> •••> zn-l,rn-t> Zno)>f(Zlrt>

 z2r2> •••> Zn~Urn-t>
 znrn) ЬeІ0Пg tO tћe SarøЄ 

sup ^0'*-block 
k-*l,...,r„ 

Thus, finally,/(xt,..., xm)9f(yl9..., yn) both belong to the same block of the partition 
sup ( sup 0n

o'
k) ^ sup ^ 0 , as it was required to prove. 

Remark. I do not know under what further conditions theorem 4 holds also for 
infinite index set F. 

Now we shall investigate the possibly less familiar notion of the Goldie composi­
tion O of two partitions. Let «*•, Jf e S(S). Then s/ O 01 is a partition from ®(S) 
defined as follows: The elements a, a' eS belong to the same si O ^-block iff there 
exists a finite sequence a = a0, at,..., ap, aP + 1 = a' of elements in S such that 
ao> ai> a2> a$> •••; «r>ar+i belong to common J^-blocks, and al9 at\ a3,a4;...; 
...; ar~l9 aP belong to common ^/-blocks. Another formulation is that the #/ O 9t-
blocks are the maximal unions of mutually bound ^-blocks with cementing ^-blocks 
(cf.§l). ' 

Now return to a system C -= ((S^)^,/), and for partitions &% = (̂ «0)*o> * = 1> 2 
in C define the composition O by 0>% O 0>l = (#£, O ^ i , )^ . 

Theorem 5. Let &l
9 0>% be generating partitions in a system C « ((S«o)«0>/) witfl 

r = {1,.. . , n}. Tften ^ = 01 O ^ »« «'s0 generating. 
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Proof.7) For each a choose two elements aa9 a'a in the same ^a-block. Then for 
each a there is a finite sequence aa = aa>0, aa>1,..., aar9 a a r + 1 = a'a of elements in Sa 

such that consecutive members belong to common ^-blocks or ^2-blocks. As F is 
finite, it may be supposed without the loss of generality that all considered sequences 
have the same length not depending on a. Therefore/(a10,..., an0),f(aiu ..;, anl) 
are inthe same ^J-block, f(alu ..., ant)9 / (a1 2 , . . . , an2) are in the same ^0-block,..., 
f(air9..., a„r), f(air+l9..., a„ ,+ 1) are in the same ^J-block. By definition of 0, 
f(al9..., an)9 f(a[,..., a'„) must lie in the same ^0~block, as required. 

Remark. I do not know the modifications of Theorem 5 necessary to make it apply 
to the case of an infinite index set F. 

4. Factor systems. Let 0 = (0^^ be a generating partition on a given system 
C = ((Sao)ao,/). A factor system C\0 is defined as k system ((0ao\o,fl0) where f\0 
is a surjection of Y\0a onto 0Q9 determined by fj0((Aa)a) = A0 where Aa e 0a for 

« 
all a and ^40 is a ^0-block which contains /(f]Aa). 

a 

The concepts of a cover, refinement, cut, pairing, etc. (in the sense of Borfivka, [2], 
•§ 15.2-4) may be extended to Cartesian systems if they are simultaneously imposed on 
allSao. 

Theorem 6. Let 0 == (0^)^ be a generating partition on a system C = ((Sao)ao,/) 
with Cj0 « C ~ ((Sao)ao./'). Let 0' = (0'ao)ao be a partition on C and 0* = 
= (0to)ao the cover of0 enforced by 0'. Then 0' is generating iff0* is generating}) 

Proof. Let 0' be generating. Choose A*e0a for each a, and show that there 
•exists a #*-block A% 2 /(]HM*)* E a ck At0 consists of all ^ao~blocks contained in 

a 

jsome ^ao-block A"ao (for each a0). As 0' is generating, for Aa e 0a there must exist 
a #0-block A'Q which contains / '(TM3- I f At consists of all ^-blocks contained 

« 
in AQ9 then f'Y\A'a) s ,40 implies /[X4*) £ ^o- Conversely, let 0* be generating. 

* « 
If A!^ € 0a for all a, it is necessary to find a ^0-block A'Q 2 /'(EM*)- Because #* is 

« 
generating, there exists a #*-block A% 2 /(fl^*) where again Aa is the union of all 

a 

^".-blocks contained in A"x (for each a). From /flpl«) - A* il follows again 
f{X[A"^^A"0. 

« 
iTiaoreitt 7. Between *Ae systems C = ((Sao)ao,/), C* = ((S*)ao,/*) fhere ex/sfs 

<an epimorphism a -= (ffao)*o Wthere is an isomorphism Q = (eao)ao fotfweew a certa/H 
7)Cf. f7,§lj. 
8) Let ^ 6 6 ( 5 ) , &e &(**). If ^ e 6(5) has the blocks which are unions of all ^-blocks 

^ofitaliied in the same #-block, then f will be termed a cover of st enforced by &. - if 0 g @(C), 
'^' ®&(Cf&) <cf. § 4) then #* will be termed a cover of & enforced by 0" if each ,#£0 is the cover 
of ^«o enforced by 0 ^ , 
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factor system C = C\0 and C*. This Q is such that Qao maps each 0aoblock Aao 

onto a^A'^ G S* (for all a0). 

Proof. Let a be an epimorphism between C, C*. The partition 0 on C induced by o-
is necessarily generating (theorem 1). Now determine a surjection Q: C\0 ~> C*. For 
each a0, Qao sends Aiao G ̂ »ao onto a* G S* with <x~ M* = ^ao . Thus £ao,4ao = traoaao 

for all aao e Aao. Choose aa e Aa e 0a for all a. Then /((aa)a) ef(]jAa) £ f\HAX) e 

a 

e 0, so that Qof\0((Aa)a) = cr0 /((aa)a) = f\0(QaAa)a) and £ is even an isomorphism 
between C\0, C*. Conversely, let C\0 be an arbitrary factor system of C modulo the 
generating partition 0 on C. Let a be the surjection between C and C / ^ such that 
aao G (jaoaao = Aao G ̂ a o for all a0. According to/((aa)a) €f(Y\Aa) s f\0((Aa)a) e 0O, 

a. 

there is also <x0 /((aa)«) = f\^((Aa)a) = f\0((aaaa)a), so that a is an epimorphism 
between C and C/^». If there is an isomorphism between C\0 and C*, then there is also 
an epimorphism between C and C*. 

Theorem 8. Let 0>l = (^ao)ao; i = 1, 2 be generating partitions in a given system 
C = ((Saejao,/). If 01,02 are paired,10) then there exists an isomorphism Q = 
= (£ao)ao between C\0tand C\02 such that, for all a0, to each 0\o-block A\0 there 
corresponds by Qao the 02

o-block A2
ao \ A\0. 

Proof. Let C\0X, C\02 be paired factor systems. This means that, for all a0, 
each Aao G ^ a o intersects exactly one ^42

0 G ^*2
0. Thus for each a0 one has a surjection Qao 

under which A\0 -» A2
0 as before. Set Ba = A\ n A2 for each a. Thus f(Y\Ba) c 

^f(UA\)^f\0i((Ai
a)a)€0i

o; * = 1,2. It follows that f(J\Ba) £ f\0\(A% n 

n / / ^ 2 p 2 ) a ) , so t h a t / / ^ 1 ^ 1 ) , ) ^ / / ^ 2 ^ 2 ) . ) = C o / / ^ ( W i ) = / / ^ ^ < ) a ) a * 
required. 

Theorem 9. Lef ^ = ( ^ - J ^ be a generating partition on a given system C = 
= (S«ok>/)> <wd 0' =--- ( ^ ) a o a generating partition on C = C /^ = ((Sao)ao,/ '). 
Tftew there is an isomorphism Q = (O«ro between C\0' and the cover C* = 
= ((S*0)ao,/*) of C enforced by 0':li) For all a0, each A"aoe0'ao is mapped onto 
the union of all 0ao-blocks contained in A"ao. 

Proof. Let C, 0, 0' be given and C* be the cover of C enforced by 0'. Each 
A* G Sao consists of all ^ao-blocks contained in the same Aaoe0ao. Map each 
A'ao G 0'ao into the preceding A* G S* by a surjection Qao : 0ao -> S* (for each a0). The 
map g = (gao)ao is necessarily an isomorphism between C\0f and C*. Indeed, 

9) We speak about a factor system induced by a. 
1 °) Two partitions st, & e 6(S) are said to be paired if to each «a/-block A (^-block B) there 

exists exactly one ^-block A' $ A (j/-block B' $ B). Two partitions ^ \ ^ 2 in C are said to be 
paired if ^8l

0, ^ ^ are paired for all a0. , 
1*) This is to mean that C* = C/£**, where ^ * is the cover of 0> enforced by ^ ' . 
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choose Al e 0>'m for all a so that f'l0>'((A'X) = A0 e &'0. For each Aa e 0>m with 
A'm c ^ there i s / ' p ; )« - -40 £ ^ , and consequently/*^).) = </*((M:D*) = 
= Qo^o* as required. 
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Výtah 

ROZKLADY V KARTÉZSKÝCH STRUKTURÁCH 

VÁCLAV HAVEL, Brno 

Zobecněním algebraické operace na dané množině je surjekce tvaru J ] S* -» S0, 
aer 

kde Sm S0 jsou neprázdné množiny. Je provedena aplikace Borůvkový teorie rozkladů 
množin na takovéto zobecněné operace (do nové situace jsou přeneseny pojmy vytvo­
řujícího rozkladu a homomorismu a jsou nalezeny příslušné teorémy). Speciálně pro 
Sm m$(é* F), S 0 s S, dávají nalezené výsledky obecnější teorii než je obvyklá teorie 
rozkladů množin s algebraickou operací. 
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Резюме 

РАЗЛОЖЕНИЯ В ДЕКАРТОВЫХ СТРУКТУРАХ 

ВАЦЛАВ ГАВЕЛ (^с1ау Науе1), Брно 

Обобщением алгебраической операции на данном множестве является 
сырьекция вида \\ 8а -+ 5 0, где 5а, 5 0 — непустые множества. К таким обоб-

аеГ 

щенным операциям приложены основания теории разложения множеств О. 
Борувки (на новых началах определены понятия образующего разложения 
и гомоморфизма и выведены соответствующие теоремы). В частности, для 
5 в -= 5 (а е Г), 5 0 51 5, дают найденные результаты более общую теорию, чем 
обычная теория разложений множеств с алгебраической операцией. 
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