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COURT’S CONJECTURE ON n + 2 POINTS IN [n]

*  SaHiB RaAM MANDAN, Kharagpur (India)
(Received October 8, 1963)

1. Conjecture. Let A; (i =0,1,...,n + 1) be n + 2 distinct points in an [n]
such that no n + 1 of them lie in a prime or hyperplane and therefore any n + '1
then form the n + 1 vertices 4; of a simplex S(4,) (j # i) and p; be the harmonic
polar, or simply polar, prime of 4; w.r.t. S(4;) as defined and used in several earlier
works ([7]; [8]; [11]; [13]; [14]; [16]—[22]; [24]; [25]; [27]). The Court’s con-
jecture is [3]: “The n + 2 primes p; are such that any n + 1 of them form the
n + 1 primes p; of a simplex S(p;) (j # i) perspective to S(A;) formed by their
n + 1 corresponding points A;. The centre and prime of perspectivity are in each
case the remaining point A; and the remaining prime p;. The constants of the
n + 2 perspectivities considered are equal, their common numerical value being
n + 2.” (cf. [2a]).

2. Proof. It is just a proposition of incidence alone and can be easily established by
using symbols of the points A; by the same letters as used by Baker ([2], p. 115),
Coxeter [4], Room [5] and Mandan ([6]; [7]; [9]; [12]; [23]; [26]). These symbols,
since the n + 2 points are in [n], must be connected by a syzygy, which, by proper
choice of the symbols, may be supposed to be Y 4; = 0. Thereafter no further multi-
plication of these symbols by an algebraic symbol is legitimate, save by one the same
for all. We suppose the n + 2 symbols not to be connected by any further syzygy,
the n + 2 points not being in an [n — 1] (cf. [15]).

The polar prime p; of a point 4; w.r.t. the simplex S(4;) then ([6]; [7]) contains

the <n ; 1) points A; — A, or A, — Afj, k # i), and is determined by any n
2

independent points of the type by fixing either j or k. Thus the <n ; ) points

A; — Ajor A; — A, lie by (" ; l)s in the n + 2 primes p, such that just n primes

pass through each point, and the n + 1 primes p;(j # i) form a simplex S(p;) whose
n + 1 opposite vertices are the n + 1 points A; — A;. Hence the simplex S(4,)
with vertices at the n + 1 points Afj # i) is obviously perspective to S(p;) with
vertices at 4; — A, from the point A; as their centre of perspectivity. Again the edges
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AjA; of S(4;) meet the corresponding edges joining the corresponding vertices
A; — Aj, A, — A, k # i) which lie in the prime p; by definition thus giving us the
desired prime of perspectivity of the two simplexes under consideration.

The join of the points A4;, A; meets the prime p; in the point A; + mA, such that
A; + mA; is a linear relation of n independent points A; — A, (with j fixed) of p;.
That is, A; + mA; = Y m(A; — A,;). This identity must reduce to the given syzygy

k

Y'4; = 0. Hence m;, = 1 and m = n + 1. The cross or anharmonic ratio or simply
biratio of the 4 points 4;, A;, A; + mA;, A; — A}, called the constant of perspectivity
of the 2 perspective simplexes S(4;) and S(p,), is therefore given by their parameters 0,
o, m, —1 when considered as the 4 points 4; + rA; with r as their parameter, and
is then found to be equal to m + 1 = n + 2 as required.

3. Dual. The dual proposition would now run as follows: “Given n + 2 primes in
an [n], if for each one we construct the harmonic pole w.r.t. the simplex determined
by the remaining n + 1 primes, the n + 2 points thus obtained are such that any
n + 1 of them and their n + 1 corresponding primes form 2 simplexes which are in
perspective. The centre and prime of perspectivity are the remaining point and the
remaining prime, the constant of perspectivity in each case being equal to n + 2.

4. Orthocentric group. The vertices of an orthogonal simplex and its orthocentre
in an [n] form an orthocentric group of n + 2 points such that any n.+ 1 of them
form an orthogonal simplex with the remaining point as its orthocentre ([19]; [21];
[22]; [24]). The orthic axes of the triangles of an orthogonal simplex lie in the polar
prime, called its orthic prime, of its orthocentre w.r.t. it [22]. Hence we have .

"Theorem 1. The simplex formed of any n + 1 of an orthocentric group of n + 2
points in an [n] is perspective to that formed by the n + 1 orthic primes of the
remaining n + 1 orthogonal simplexes formed of the given group of points, the
centre and prime of perspectivity being its orthocentre and orthic prime. The
constant of perspectivity is equal to n + 2.

5. Special case. When the n + 2 points of the copjécture are such that one of them
lies at the centroid of the simplex formed by the rest, the proposition becomes -

Theorem 2. Given a simplex, if for each of its vertices the polar prime is construct-
ed w.r.t. the simplex formed of its n remaining vertices and its centroid, the n + 1
primes thus obtained form a simplex homothetic to it, and the two simplexes have
the same centroid. Their homothetic ratio is equal ton + 2..

For the polar prime of the centroid of a simplex w.r.t. it lies at infinity, and when
a pair of perspective simplexes have their prime of perspectivity at infinity, they
become homothetic and their constant of perspectivity becomes their homothetic

" ratio ([3]; [13]; [14]).
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6. Self-conjugate (n + 2) ads. We know ([1], pp. 36 —46; [2], pp. 148 —149; [10])
that a pair of perspective simplexes are polar reciprocal for a unique quadric for
which their centre and prime of perspectivity are pole and polar. Analytically if we
take the simplex (S) formed by any n + 1 points of the conjecture as one of reference
and the remaining point as its unit point, the equation of the quadric, for which the
primes p; are respectively the polars of the points A4;, can be easily obtained ([1],

p. 46) as
m+2)Ex) =Cx)* (i=01,...,n).

This is a particular case for a; = 1 of the equation

(1 + Ya)Cax?) = Tax)®

which represents a quadric such that (S) reciprocates into a simplex whose vertex
corresponding to its vertex A; has its ith coordinate as x; = 1 + 1/a;, and the remain-
ing n coordinates being all x; = 1 (j # i).

The equation of the prime p; other than that corresponding to the unit point (its
equation being that of the unit prime ) x; = 0) is easily found to be } x; = (n + 2) x;.
Hence we have [10].

Theorem 3. There always exists a unique quadric Q for which the given n + 2
points A; in [n] form a selfconjugate (n + 2)ad such that the pole for Q of the prime
determined by any n of them lies on the join of the remaining two, and the cor-
responding n + 2 primes p; of the conjecture too form a dual self-conjugate
{n+2) ad for Q such that the polar prime for Q of the point determined by any n
of them passes through the [n — 2] common to the remaining two.

7. Remarks. The method of symbols adopted above can also be now usefully used
to re-establish certain results in the case of cevian simplexes [13].

My thanks are due to Prof. B. R. SETH for his generous, kind and constant encoura-
gement in my pure pursuits.
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Vytah
COURTOVA DOMNENKA O n + 2 BODECH V [n]

SAHIB RaM MANDAN, Kharagpur (India)

V ¢ldnku je dokdzdna domnénka, kterou o perspektivnosti dvojic ur€itych simplexi
vyslovil N. A. Court. Vysledek je jesté dualisovdn a aplikovan na pfipad ortocentric-
kych skupin bodi v euklidovském prostoru.

Pe3rome

MNPEAITIOJIOXKEHUE KYPTA O n + 2 TOUKAX B [n]

CATUB PAM MAHJIAH (Sahib Ram Mandan), Xaparnyp (Munus)

B cratbe JoKa3aHO NpeamosioxeHue, Bhickasansoe H. A. Kyprom (N. A. Court)
M Kacarolleecs MEPCHEKTHBHOCTH Iap ONpeNeNieHHBIX cuMIuiekcoB. Kpowme: Toro,
JoKa3aH emle ABOMCTBEHHBIN pe3ynbTaT, H INOKa3aHO NPHIOKEHHE K CIy4alo OpTO-
LEHTPUYECKHX CUCTEM TOYEK B EBKJIMOBOM NMPOCTPAHCTBE.
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