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THE EXISTENCE OF A CONTINUOUS BASIS OF A CERTAIN LINEAR
SUBSPACE OF E, WHICH DEPENDS ON A PARAMETER

VAcLAv DoOLEZAL, Praha
(Received December 19, 1963)

In the article a theorem concerning the existence of a continuous basis of
the space of all solutions x € E, of the equation A(f) x = 0 is given.

Let A(t) be an r x r matrix which is continuous on {0, o) and let S, = E, be the
linear space of all solutions x of the equation A(f)x = 0 for a chosen ¢ = 0; the
question is whether there is a fixed set of continuous vectors P, = {x,(£), x,(%), ...,

., X;(1)} such that P, is a basis of S, for any ¢ = 0. The answer is contained in the
following theorem:

Theorem. Let A(t) be an r x r matrix which has a continuous n-th derivative
everywhere in {0, oo), n = 0; moreover, let an integer h <r exist such that
rank A(t) = h for every te {0, o). Then there is an r x r matrix M(t) which
possesses a continuous n-th derivative in <0, ) such that det M(f) % 0 in <0, )
and A(t) M(t) = [B()| 0], where B(t) is an r x h matrix with rank B(t) = h for
every t € €0, o).

Obviously, the last r — h columns of the matrix M(z) constitute the sought set P,.

Proof. Choose a T > 0. Since A(f) is continuous, a minor of A(f) with order h
exists which is different from zero on an interval <0, 6). By the same argument, for
each t € (5/2, T there is an open interval J, containing # such that a minor of A(f)
with order h exists which is different from zero on J,. The system of all intervals
{J}, te8/2, T), however, covers <3§/2, T); consequently, by Borel’s theorem,
there is a finite subsystem {J,,J,,...,J,} of {J,} with the same property. From
this it follows that there is a sequence of closed intervals I; = (t;, t7>, i = 1,2, ...
which has the properties:

a)t1=0t-<ti+1<t’3‘<t’{+1,i=12 , t; = 0,

b) for every i there is a minor A(t) of the matrix A(f) with order h such that
ldet A(f)] = ¢; > O for tel,.
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Using this fact it can be easily verified that forevery i = 1,2, ... thereisanr x r
matrix M(f) such that

1) M) is defined on I, possesses a continuous n-th derivative there and
det M(t) = & =% O on I;,

2) A(f) M{(t) = [B(t)i0], where B({f) is an r x h matrix with rank B(f) = k
onl;. .

Indeed, for every i there are constant regular r X r matrices C;, D; such that

C; A() D; = [’i‘%f)l‘fﬁ@]

A1) | 452(1)

where A{)(f) is an h x h matrix fulfilling the inequality |det A{)(f)] = ¢, > 0 for
every t € I,. Thus putting

M{(1) = [.__<____‘_"_<f>_)__‘_4‘_'1(_t_]

where I denotes the unit matrix, we can verify that the matrix M (¢) has the properties
stated above.

Consider now two neighboring intervals I; and I,,,. Denoting K; = (ti+ 1 t}") c
cI;n 1,4y, choose a number t;€K,; Then we have A(t) Mt = [B{t;)|0],
A(ts) M 4(t;) = [Bisy(r)) i 0]; consequently, there is a constant regular r x r
matrix F; such that

(1) M:{Ti) = Mi+1(’fi) F;,

and F; has the form
FDi 0
F.= 11 I

Let n(t) be a function which possesses a continuous n-th derivative on K; and
fulfills the inequality O < #(f) < 1, t € K;, and define the matrix H{f) on K; by

2 H{t) = M{t) + n(t) (Mis1(t) F; — M{1)).
Obviously, H l-(t) has a continuous n-th derivative on K; and due to the form of F;
we have A(f) H{f) = [B{f)|0] on K;, B{f) being an r x h matrix. Moreover,
H{z) = M{x).

Next, denoting the elements of M{t) by my(?), j,k =1,2,...,r, consider the
expression

6) L 0(n &) = |det [mu(d) + Exll-

as a function of r? + 1 variables t € K; and ¢ €(— a,4a), j, k= 1,2,...,r. Then
we have &(t;, 0) = |det M(1;)| = |&;] & 0. Since ®(t, £) is a continuous function of

F{) being an h x h matrix.
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its variables, there is an open interval K; < K; which contains t; and a number
8 > 0 such that

g, 3|,
@ < g < 2

2

for every te K;and (- 6,0),j, k= 1,2,...,1.

On the other hand, since the matrix Q) = M;.,(t) F; — M) is continuous
on K; and Qr;) = 0, there is an open interval K¥ < K, containing t; such that
for every element g${(t), j k= 1,2,...,7 of Qf) we have |g$(s)] < & whenever
t € K}. Consequently, using (2), we have '

(5) » e < \get () < 224
2 2
for every te K; n K7.

Thus, denote K; n K = (f;+,, t:l) and choose a function #(z) which has a conti-
nuous n-th derivative and satisfies the conditions n(t) =0 for tedt;, ;41 0 <
< n(t) < 1for te(fi+1, tz,-), n(f) = 1 for te <, 1}y, ). Putting then

H(t) = (1 = n(1) M) + n(f) Mo y(1) Fi
where M,(t) = M) on I, My(f) = 0 elsewhere, k = i, i + 1, the matrix H(?) is
defined on the entire interval (t; t7,,> = I; U I, possesses a continuous n-th
derivative there and by (5) fulfills the conditions det H(t) % 0, A(r) H{t) =
= [B{t)i0] onI; U I;;y, where B(f)isanr x h matrix.

From the above considerations it follows that there is a sequence of closed intervals
L=, 8, i=12..,wherel,cl,};, =0}, <, <t;<fup,i=12..
f; - oo, which has the following property: Defining successively matrices M (1)
on {0, o) by
(6) M(t) = My(f) on I, , M;.,(t) = M;.,(t) F; on I,

= 0 elsewhere, = 0 elsewhere,
i = 1,2, ..., where each matrix F; can be obtained from matrices M(z;), M; (),
1;e€I;n I, as indicated above, and functions 7(1), i = 1,2, ... with a continuous
n-th derivative by 7;(f) =1 on <0,%,», 0 <#,({) <1 on (i, 1), 7,({) =0 on
{ty, ), and

(%) =1 on {fi_g,fie1)s 0<7ft) <1 on (fiys 1),
it) + i-1(f) = 1 on (%, t;~,) and 7(f) = O elsewhere,

then the matrix
© M = 570 310

has all the properties stated in the Theorem.
The assertion that rank B(f) = h is obvious; hence, the Theorem is proved.

468



Résumé

EXISTENCE SPOJITE BAZE
JISTEHO LINEARNIHO PODPROSTORU E,,
ZAVISLEHO NA PARAMETRU

VAcLAv DoLEZAL, Praha

V &lanku je dokazana véta o tom, Ze ke kaZdé &tvercové matici A(f), kterd je spojita
a ma pevnou hodnost na intervalu (0, o), existuje pevnd soustava spojitych vektort
P, = {x,(2), x,(2), ..., x,(t)} tak, Ze pro kazdé ¢t = 0 je P, bazi podprostoru viech
feSeni rovnice A(f) x = 0.

Pesome

CVIIECTBOBAHUE HEIIPEPBIBHOI'O BA3MCA
HEKOTOPOI'O JIUHEMHOI'O IIOIAIIPOCTPAHCTBA E,
3ABUCAMEI'O OT ITAPAMETPA

BALJIAB JOJIEXAJI (Véclav Dolezal), Ilpara

B cTaThe JDOKAa3BIBAETCS TEOPEMA O TOM, YTO JUIA KaXIOW KBAJPATHON MaTpH-
1t A(f), KoTOpast HellpephIBHA ¥ HMeeT QUKCHPOBAHHBIA parr Ha HHTepBaje 0, ),
cylecTByeT UKCHpOBaHHAS CHCTEMA HEPEPHIBHBIX BEKTOPoB P, = {x,(1), x,(?), ...,
ce xk(t)} Tax, 4To L Jiroboro ¢t = 0 cucreMa P, sBisgeTca 6a3ucoM MOAIPOCTPaH-
CcTBa BCeX pemennii ypasrenus A(f) x = 0.
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