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GLOBAL DIFFERENTIAL GEOMETRY OF SURFACES
IN AFFINE SPACE

Avors Svec, Praha
(Received May 4, 1963)

For a surface in the affine space 45 a certain tensor is defined, this tensor
being the fundamental object for surfaces with non-planar points.

S. Sasak1 has proved the following theorem (see [1], Theorem 4, p. 81): In the
Euclidean space E;, let two surfaces S, S’ and a diﬁ‘eomorphism C : S - S’ be given.
If the first and second tensors are equal at the points p € S and C(p) € S’ for each
pe S, then the surfaces S and S’ are globally equal, i. e. there exists an isometry
3 : E3 — E, such that 3(p) = C(p) for each pe S. In this paper, I define a certain
tensor field on a surface of the affine space 45, and prove a theorem which is analo-
guous to that of Sasaki.

1. REPRESENTATION OF GROUPS L2 AND L3

Let L, = L, be the linear group, i. e. the set of matrices (4}) with det (4;) % 0.
F being an n-dimensional vector space with a base ¢’ let 7~ denote the obvious repre-
sentation of the group L, in F given by e’ = A!'¢’. Let L} be the second extension of
the group L, i. e. the set of elements (4}, 4jj, 4;) with multiplication as follows:

(1'1) (Aé', Au’ uk) (A tj' ’k) - (A u’ uk
Al = AVAL, AL = A7V AL +A‘A:,,
,,,, = A" Al + AVALAL, + AT ARAL + AF ALALL + AL AL,

here we denote 4} = A} 47 etc.

Now let an n-dimensional vector space with a fixed base be given, denote it by
E, F, G, H, K, the vectors of the basé¢ being denoted by ¢/, ..., k'. Let
(1.2) M = (®°E) & (®*F) ® (8*G) ® (®°H),

where @ K = K ® ... ® K (i times), and ® (@) denotes the tensor product (direct
sum). Further, denote by ¢’"* = ¢’ ® ¢/ ® ... ® ¢ the base of the space E ®
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Proposition 1. The transformations

(1'3) eijrst = A:J;s:s t,e; l'f’s"' .

first - A':s: t’Ai e el jrs't + A:r,s.ts t'fl ‘r s’t’
gijrs = A ’_,(Ar‘As’ , + A; .+ A As ‘) ei’] r's’t’ + A:J;f” i'f'res’ ’ . ',...(' ..v.
K" = {4} (A’,A‘ + 4;,A:,,, -i-"AI;A;,,,) = ALAS AL} €T +

+ A AL A + AGAL, + ALAL) TV 4

+ (Ars Al _ Ar; ’A”)gi'jrs + A:’::s:h' r's’

give rise to a representation & of the -grou‘p Lin M. If

(14) N = (®°F) ® (®°E) or P =(®'E)®(®F),,
therg the transformations _
s f"‘ AT LA
| = (Ao Al + A 700 4 AT
or T -
1.6) oLl = Al{;",s,e'grs L R ST t
. fir.v = (A:fs'Ag'j' _ A?J’Af:s') ei'j';-'so Af':, firyi_g' . ,L’.ih o

give rise to a representation &, or #, in N or P respectwely

The projection 7, of the representation & into the space ®3H is lsomorphlc to
®37, the projection =, into the space (®*F) @ (®>H) is isomorphic to. the represen-
tation 7 ® #,, and, finally, the projection 5 into the space (®*G) 6)( °H) l‘S
isomorphic to the representation' " ® Z%,. o

Let an n-dimensional differentiable manifold ¥ be given, let V**! be its k-th exten-
sion. Let t be an &-tensor on V with values in M. U,, U, being two coordinate neigh-
bourhoods in the base V of the principal fibre bundle V* and the coordinates of the

tensor t being defined by the equation . N
(1°7) . t= tijrszeijr” + tirsrfirs‘ + t:’jrsgij's + tinhi"9

we obtain

(18)  tijuger = Al bgatijnee + ApeAbiptyg + -~

+ A (AL Ao+ A :.,, + A A:,)t,,,,,+ . .

+ {di (A ALy + ALAS, + A’,A:,,,) — ALy p AT} Ly
- ti'r’s'g' - A:’:‘s t:tu,_“ + A; (Ar' + Ar s g' + A’A ") tu-:, , .
tl'J r's’ = Ai ;' r ;’tirst + (Ar s'A"j; » - A’i"‘j'Ai ) txra’ h

_Axrs
lrs i'r's’ xrss
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where
. ou’ : o*ul ; o3ut
1.9 Ay =—, A = ——, Aivjw = ——7r—.
(19) F I oud put KT out oul ou
The projections
(1’10) 7zlt = tirxhi" ’
Myt = tirsrfi'“ + tirshirs’

7I3t = t,ijrsgijn + tirshi’s

are successively a (®°7 )-tensor, a (7 ® %, )-tensor and a (7 ® #,)-tensor.

2. LOCAL DIFFERENTIAL GEOMETRY OF SURFACES

Let A5 be an affine space, V; its vector space, D a two-dimensional differentiable
manifold and (p, D) its tangent vector space at the point p. The mapping (r,n): D -
— A3 x V, with the projections r : D — A and n : D — V; is called a normalized
surface if (dr), is an isomorphism between t(p, D) and (dr), 7(p, D) and we have
n(p) ¢ (dr), «(p, D) for each pe D. _

Let us restrict ourselves to two coordinate neighborhoods U,, U, (U, n U,. * 0) of
the manifold D. In the neighborhood U, (with the coordinates u”), the normalized
surface is given by the equations

(2'1) aarﬁ = :ﬁrz + baﬁn » aan = p:rz + Qan
with the integrability conditions
22 by = 0, Ripe = —2bygsPyy
Vb + bapdyy = 05 Vigday + Plabpr. = 0.
VisPay + quaPp =0
In the intersection U, n U,., we obtain
(2.3) Ilg = AlZRTY, — A%, ALy,
ba’ﬁ' = A:I';ﬂ’baﬁ > pg" = A:"‘[;pg s o = A:’Q«z

- and the normalized surface (r, n) determines globally a linear connection and three
tensors on D. Locally, the surface is uniquely determined by the connection and the
tensors just mentioned.

Let another normalized surface (s, m) : D — A, x V; be given. If r(p) = s(p) € 4,
for each p € D, we say that (s, m) arises from (r, n) by a change of the normalization.
The class of the normalized surfaces, each of them arising from the others by a change
of the normalization, is called a surface.
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In the neighborhood U,, the change of the normalization of the surface (r, n) is
given by

(2.4) n=9r,+¢.*n, ¢%0.

For (r, *n), we obtain

(25) *1.23 = F:y + (pvbap > *baﬂ = (Pblﬂ’
*pf = o= '(p} + ¢%q, — 8.0° — &L — b0’ oY),
*qe = o — ¢°by, — 07 10,0 .

Let us introduce the object

(26) 890 = (rqa r-a» n) s 8(00‘) =0.
Obviously,
(27) *800 = (p—laea ’ se’a" = A:"’ﬂ"g(l“ )

&, is a globally defined tensor on D. Furthermore, consider the following objects:

(2'8) Tooap = €oobap >

(29) Tooupy = 20ol@rbap + T'ighy, + 4, bay),
(2.10) sop = Eolbualgp — byl%)
(211) Tosapy = Towapy Lo = Toeod@yTap + Tapl5e + bagh}) -
Obviously,
(2.12) Tieoras = Toopapy = 0,
Teorstr = Tootapty = Tyaatpn = Tootatpin = 0

, = T v ’ =0
elotlap eotfap) = logap — Loapor = V>
Titorapy = Tocr[amy = Tooratpyy = Tooutaipinn = 0.

Proposition 2. Consider the space K @ M and the representation I ® & of the
group L, in this space. Then

(213) T = Toavaﬂv (ka ® eﬂaﬂy) + Taaaﬁv (ka ® f“ﬂw) +
+ Tooras (K ® g°) + T,y (K¢ @ h™)

is a (7 ® &)-tensor globally defined on D. The projections

(2'14) an = T@‘“ﬂ (ke ® hcuﬂ) kJ i
(2'15) RZT = TQMﬂ‘}' (ke ® faaﬂv) + Tesz (kﬂ ® haaﬁ) 5
(2.16) 7T = Toguag (K @ g7) + T, (K @ 1)
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are successively a (®*7 )-tensor(the so-called asymptotic tensor), a (7} ® I ® 921)
tensor and a (7 ® I @ R,)-tensor.

-

Proposition 3. For two normalized surfaces (F, n), (r;*n): D — A3 x V,, we have
T = *T. .

3. DEFORMATION *OF SURFACES

Let us consider two normalized surfacés (r, n), (s, m): D - A; x V. We say that
the surfaces r, s : D — A5 are in an affine deformation of the second order if for each
pe D there is a non-singular affine collineation A(p) = ¥ : 4; — A3 such that
(¥(p), r) (p) = s(p) and A(p) (r(D)) and s(D) have an analytic contact of the second
order at the point s(p). In U, < D, let (r, n) be given by. (2.1) and (s, m) by the equa-
tions

(3-1) = (T + Gop) 5c + (beg + Bug) m,
‘ 6m—(p,+P‘)s+(q¢+Q)m

Without loss of ’gen"erality, We may Suppose &,, = £,, = (s,, S,, m). The osculating
affine collineation ¥ is of the form

(3.2 Ur=s, Ar,=s,, Un=7's,+ °m, 7 %0,

and we have : . , r
(33) e Uy = 0,85 + Byys, + By, ' ‘
(3.4) By = Wby — Gly, Pop = b,y — (bap + Byy) . i

A necessary and sufficient condition for r and s to be in a deformation is the ‘exis-
tence of = # 0 and =’ such that ’

EX) N Gap = Whaps Bup = 7thyy — bap .

From (2.61,2) we obtain: A necessary ‘and sufficient condition for r and s to be in a
deformation is the existence of normalizations such that

(3’6) Eec = €45 » GZﬁ =0 » Baﬂ =0.

If r and s are in a deformation, we have 7, T® = 7,T®, where T is the tensor T
associated with the surface r. Conversely, let 7,7®) = n3T®. From (3.6,) we obtain
B,s = 0, and then

sw(baﬁGZy - baszp- =0

from T, = TS, Choose ¢ = 1 or ¢ = 2 and let 7 * ¢. Then the preceding equa-

tion reduces to
“bapGyy — by Gop = 0.
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But this is a necessary and sufficient condition for the existence of a ¢”:sych that
Gls = ¢’b,g. After a convenient change of the normalization (2 4) with ¢ =1 of
the surface r. we obtain *I'; = I3, + G,

. ‘Proposition.4; A necessary.and sufficient condition for the surfaces r,s : D:— A3
fo be in an affine deformation: of the second order is m3T®") = m,T®.

4.:"SURFACES WITH NON-ZERO ASYMPTOTIC: TENSOR - °
.- Let two surfaces r,’s : D — A5 with T® = T® be given. If these surfaces are in an

affine deformation of the second order, one may find normalized surfaces (r, n),
(s, m) : D > Ay x V; such that (3.6) holds in every U,. Let us restrict ourselves to U,.

From T‘zp, = a(;i,,,, T e‘;i,ﬂ, T,},’,),,p, we obtam ‘

Let the rank of the matrix (baﬁ) be 21, and say, bg, * O for some fixed &, n = 1 2.
In(41)takea=0c=¢ f=1=11f¢p #g,weobtamQy-—P" =0.

Proposition 5. Assume that the surfacesr, s : D —» A, havethe following properties:
1° T® = T®, 2° there is no point of r or's such that all the tangent dzrectwns at this
point are asymptotic. Then for each p & D there exist a neighborhood (D(p) c Dand
an affine collineation U(p) : A3 > A; such that

(@(p)o (r [ (7)) () = (s] 0(p)) (9)

Sy b VA

for each q € 0(p).

5. GLOBAL DIFFERENTIAL GEOMETRY OF SURFACES

Let us consider the 12-dimensional space R2 (R being the real numbers) with the
coordinates (r4, r{, r3, n), A = 1,2, 3. Let a set K = R'? be given by the equations

1,2 21 _ 1.3 3.1 _
ryr; —rir; =r;r3 —rir; =0

Lahl

and let F = R!? — K.
The manifold D may be considered as the base of a fibre bundle B with the fibre
type F, the structural group G

¥ =x4; %} =alx}, det(al)+0; 7*=n*,

and the projection n : B — D. Cover the manifold by the coordinate neighborhoods
U,; we have n~}(U,) = U, x F. For two neighborhoods U,, U, with U, n U, * 0,
let us introduce the identification

~. ’ ’ ~A A
=, =4k, At=nt.
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In every trivial fibre bundle n~*(U,), define a two-dimensional distribution 4 by the
vectors '

EG = (5:’ 5:7 r:’ F‘“r: + blenz’ r;ar: + bZan’ p:r: + qanA) .

Following S. Sasaki, one may prove that the distribution 4 is globally defined and
involutive. This enables us to formulate and prove the following two propositions.

Proposition 6. On the manifold D, let a connection I'j; and tensors b, P a.
satisfying (2.2) be given. Then there exists a uniquely determined normalized sur-
face (r,n): D — A, x V3 such that in every coordinate neighborhood U, we have

@.1).

Proposition 7. Let D be a manifold and r, s : D — A5 be two surfaces with the pro-
perty that there is no point of r or s such that all the tangent directions at this point
are asymptotic. A necessary and sufficient condition for the existence of an affine
collineation N : Ay — A such that (¥,r) (p) = s(p) for each pe D is T = T®,
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Résumé

GLOBALNI DIFERENCIALN{ GEOMETRIE PLOCH
AFINNfHO PROSTORU

Avrors Svec, Praha
Je nalezen geometricky objekt, uréujici jednoznaéné a globdln& plochu trojrozmér-
ného afinniho prostoru.
Pe3rome

I'JIOBAJIBHAA JUO®PEPEHIIMAJIBHAA IT'EOMETPUA
IMOBEPXHOCTEN A®®UHHOI'O ITPOCTPAHCTBA

AJIOUC IIBEII (Alois Svec), [Tpara

Haxomurcst reoMeTpudeckuii 00BEKT, OIpeNeIsSIONMI OTHO3HAYHO M IJI00abHO
TOBEPXHOCTH TPEXMEPHOro addUHHOro MPOCTPAHCTBA.
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