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Časopis pro pěstování matematiky, roč. 89 (1964), Praha 

GLOBAL DIFFERENTIAL GEOMETRY OF SURFACES 
IN AFFINE SPACE 

ALOIS SVEC, Praha 

(Received May 4, 1963) 

For a surface in the affine space A3 a certain tensor is defined, this tensor 
being the fundamental object for surfaces with non-planar points. 

S. SASAKI has proved the following theorem (see [1], Theorem 4, p. 81): In the 
Euclidean space E3, let two surfaces S, S' and a diffeomorphism C : S -» S' be given. 
If the first and second tensors are equal at the points pe S and C(p) e S' for each 
peS, then the surfaces S and S' are globally equal, i. e. there exists an isometry 
5 : E3 -+ E3 such that 3(p) == C(p) for each pe S. In this paper, I define a certain 
tensor field on a surface of the affine space A3, and prove a theorem which is analo-
guous to that of Sasaki. 

1. REPRESENTATION OF GROUPS X* AND L* 

Let Ln = l}n be the linear group, i. e. the set of matrices (A\) with det (A\) =# 0. 
F being an n-dimensional vector space with a base e\ let 2T denote the obvious repre­
sentation of the group Ln in F given by e1'= Avel. Let l}n be the second extension of 
the group Ln, i. e. the set of elements (A\\ Ay, Av

jk) with multiplication as follows: 

(1.1) (Ai, Atp Atjk) . (Av, AVy, AVyk>) =- (Ai, Atp A^) ; 
A1" — AvAv' A1" — AVj'Av' 4- Av'Av 

^uk ^ Aijk AVj>k, + A£ AjkAVy 4- Aj A.ifc.4,-^/ + Afc AX}A%>V +.. -A£jkAr , 

here we denote -4J/' -= -4|'-4j' etc. 
Now let an n-dimensional vector space with a fixed base be given, denote it by 

E, F, G, H, K, the vectors of the base being denoted by e\ ...,k\ Let 

(i.2) M = (®5E) e (®4P) e (®4G) e (®3H) > 

where ®*K -= K ® . . . ® K (i times), and ® (©) denotes the tensor product (direct 
sum). Further, denote by eiJ"'k = el ® e* ® ... ® e* the base of the space E ® 
® . . . ® £ . 
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Proposition 1. The transformations 

(1.3) eiJr" = A\^,,,ei'J'rV\ / • 
first _ ATS* %2l J'J'r's't' , > irst fVr's't' 
J — ̂ r's't'^Vj'^ ^ Ai'r's't'J > 

giJ" = AiJ
r(A

r,A',, + Ar,A\., + A',A',t) eVi''w + Aft„gi,J'rV , ' ; / ' 

hir' = {A\.j.(Ar,A'„ + Ar,A',, + Ar,A'„) ^ A\.A'rA\.,,} e1'"''''' + '"" " 
+ A\.(Ar,A',, + A*M\,;. + A^.,,)/iW'' + 

+ (A\'.,A\.y - A?j.Ar,s) gl'J'r''' + A?,,htv'' 

give rise to a representation Sf of the group L3 in M. If ' . ? * . . 

(1.4) N = (®3F) 0 (®2F) or P = (®4£) © (®3F) >t 

then the transformations 

(1.5): F = A%,ff., . . .. • ' " ; . .,»; ; 

' • er?-=(A\.A\., + Ar.A\., + A\.A\.s)f
r''''' + ^ ^ 

or . . . - , . • • . . 

(1.6) : r;e
iJr' = Aijy„ei'J'r's', ••. . .:•. - -..*.. 

/<" = ( 4 ^ , , - ^ ? ^ 

gii?e rise to a representation 0tx or 0t2 in N or P respectively. 
The projection nl of the representation £f into the space ® 3 # is isomorphic fo 

® 3 ^, the projection TC2 into the space (®4F) © (® 3H) isisomorphicioAhe represen­
tation 2T ® SlX9 and, finally, the projection 7c3 into the space (®4G) © (®3if) is 
isomorphic to the representation' ̂  ® 0t2. ) 

Let an n-dimensional differentiable manifold Vbe given, let V*+1 be its rc-th exten­
sion. Let t be an /^-tensor on Vwith values in M. ila7 Ua, being two coordinate neigh­
bourhoods in the base V of the principal fibre bundle V4 and the coordinates of the 
tensor t being defined by the equation ^ • ». • j 

(1.7) . t = tiJrste
iJr't + tirstf

i"t + t'iJrsg
iJr' + tirsh

ir', 

we obtain 

(1.8) U'j'r's't' — ^Vf'r's't'^ijrst. + A-r's'f'AvjiUrs't + . • " : . ?" / '.;, 

+ -4i'j'(-4t/Ar/5^ -h ,Ar/A.5>tf 4- .A5/A t/r/) tij>si+ • . 

+ {A\.y(A
r,Ar,, + Ar,A'„ + A',A'„) - Ar.,,A

r?.r} tMi ' 

, : - A'r's't' _ jirst f , J - f . ^ j s 4. ArAS -U: Ar AS .} t 

*' __' j - J " *' -J- r>4rs _4* — .4" A1 \ t 
Li'j'r's' — AVj'w's,lirst ^ V^r's'^Vj' * ^Vj'*±r's')lirs>* 

t _ Airs t ; \ 
*i'r's' •rxVr's"'irs > 
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wheгe 

(1.9) A\. 
õul 

" дuľ ' 
, _ ðV • _ ðV 

(1.9) A\. 
õul 

" дuľ ' J ðu' aы* J дui
 ÕUJ õuk 

The projections 
(1.10) nit = tirsҺ'n, 

Ъгt = tin,f"' + í(raA'™, 

are successively a (®3«^")-tensor, a (^" ® ^J-tensor and a ( ^ ® ^2)-tensor. 

2. LOCAL DIFFERENTIAL GEOMETRY OF SURFACES 

Let A3 be an affine space, F3 its vector space, D & two-dimensional differentiable 
manifold and t(p, D) its tangent vector space at the point p. The mapping (r, n):D ~+ 
-» A3 x V3 with the projections r : D -+ A3 and n : D - • V3 is called a normalized 
surface if (dr)p is an isomorphism between T(_>, D) and (dr)p x(p, D) and we have 
n(p) £ (dr)p r(p, D) for each p e D. 

Let us restrict ourselves to two coordinate neighborhoods Uai Ua> (Uar\ Ua> 4= 0) of 
the manifold D. In the neighborhood Ua (with the coordinates u% the normalized 
surface is given by the equations 

(2.1) dj0 = raftre + bafin , O> = p«r_ + qji 

with the integrability conditions 

v2-2) fya/n = 0 , R7pa = -2balfipyl, 

V [ A ] « + &aW^7] = 0 > VL*««] + rf«6«« * 0 > 
VC/rPa] + «_«#] = 0 • 

In the intersection Ua n LJa/, we obtain 

V^-V i a'/?' ~" AycL'fi'1 ap ^a'fi'^ap » 

ba>r = A$rb«, P&^Agtf, qa> = Aa
a,qa 

and the normalized surface (r, n) determines globally a linear connection and three 
tensors on D. Locally, the surface is uniquely determined by the connection and the 
tensors just mentioned. 

Let another normalized surface ($, m) : D -> A3 x V3 be given. If r(p) = s(p) e A3 

for each p e D, we say that (s, m) arises from (r, n) by a change of the normalization. 
The class of the normalized surfaces, each of them arising from the others by a change 
of the normalization, is called a surface. 
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In the neighborhood Ua> the change of the normalizat ion of the surface ( r , n) is 
given by 

(2.4) 11 = <p*rB + <p . *f i , q> # 0 . 

For (r, *n), we obtain 

(2.5) ^ ^ F ^ + ^ % , , *ba/, = <pba/,, 

*pf = <P~ \pl + <P*q« - ay - c/rL - b„qf<f), 

*<?«* = 4 « ~ <?'&«<. ~ (p"1^. 

Let us introduce the object 

(2-6) V = (r«, ray n), s((?ff) = 0 . 

Obviously, 

(2-7) %. = ^"X^, £ ^ = 4 W ; 

e ^ is a globally defined tensor on D. Fur thermore , consider the following objects: 

(2-8) TQaafi = eQabafi , 

(2.9) TQaafiy = ee<r(ayba/r + F^by£ + qy bafi), 

(2.10) Tf
Qamfi = e e £(b t aF^ - b ^ , 

(2.11) TQaxah = Tcea^y F*t — TQtaJdyr
e
afi + F^Fyf? + bappZy) . 

Obviously, 

(2*12) T(Q<r)*fi = ^Vdtan ^ ° > 

T(c<-)a/?y = Te<T[a^]y = TQaaipn = T^.j^jy] = 0 , 

*<?i>T]a,e = TQOXi<3t^ = T ^ ^ — TQafiax = 0 , 

•* e ^ a ^ = ^ M l y = ^*Ta[/.y] = T ^ - ^ ^ = 0 . 

Proposition 2. Consider the space K ® M and the representation F % 9> of the 
group L?2 in this space. Then 

(2.13) T = Te„x,y (k° ® fy~*7) + j ^ (fe« ® y ^ v ) + 

+ T«U/> (fce ® 0™*) + T e „ , (fc« <g> fc*^) 

i s a ( ^ <g> Sfytensor globally defined on D. The projections 

(2.14) % T =T; f f a / t ( f c» ( g ) ^ / ' ) ) 

(2.15) n2T=T
ec*i>y(ke®f™l>i) + Teaall{k°®h°"1), 

(2.16) TC3T -~ T ^ (fc« ® J - * ) + T ^ ^ ^ ^ 
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are successively a (®4^~)-tensor/ (the so-called asymptotic tensor), a(gF: ®,.&" <g) 0k^~ 
tensor and a ($~ ® 2T 0 dt^tensor. 

Proposition 3. For two normalized svkfaces (i% n), (r, *n): D ~> A3 x V3, we have 
T=*T. 

3. DEFORMATION OF SURFACES 

Let us consider two normalized surfaces (r, n), (s, m): D -* A3 x V3. We say that 
the surfaces r, s : D-».A3 are in an affine deformation of the second order if for each 
p e D there is a non-singular affine collineation 2t(p) = 21 : A3 ~» yl3 such that 
(2l(p)0 r) (p) = s(p) and %(p) (r(D)) and s(D) have an analytic contact of the second 
order at the point s(p). In Ua cz D, let (r, n) be given by (2.1) and (s, m) by the equa­
tions 

(3.1) d«sfi = (rip+Gafi)se + (bafi + BaP)m, 

dam = (pa +" Pa) s£ + (icl + Qa) m . 

Without loss of generality, we may suppose ee<r = se<T = (sg, sff, m). The osculating 
affine collineation 21 is of the form 

(3.2) 2(r = s , 2Tra = s a , %n = 7iese + %m , TC + 0 , 

and we have 

(3.3) _ 2IOV> = ^ + * ^ s g + <f>a/?m, 

(3.4) # i = ^ 6 ^ - G ^ , ^ = ^ - ( ^ + Ba/,). 

A necessary and sufficient condition for r and s to be in a deformation is the exis­
tence of 7i =(= 0 and n7 such that 

(3.5)^ fi^ = nybaP., £a/? = 7rba/r - ba/r. 

From (2.612) we obtain: A necessary and sufficient condition for r and s to be in a 
deformation is the,existence of normalizations such that 

(3-6) ««- = « „ , Glf = 0, Bxf = 0. 

If r and s are in a deformation, we have 7i3T
(r) = 7t3T

(*}, where T(r) is the tensor T 
associated with the surface r. Conversely, let 7r3T

(r) = TL3T^\ From (3.6X) we obtain 
Bafi = 0, and then 

from T(r)
a/ry = T$afiy. Choose Q = 1 or Q = 2 and let T 4= '<?. Then the preceding equa­

tion reduces to 
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But this is a necessary and sufficient condition for the -existence of a q>7 -such that 
Glp = <pybap. After a convenient change of the normalization (2.4) with <p = 1 of 
the surface r we obtain *ry

afi = Ty
afi ± Gy

a$. 

. Proposition 4, A necessary, and sufficient condition for the surfaces r, s : £)«'-*• -43 

to be w an affinje deformation* of the second order is 7C3T
(r) = 7C3T

(s). 

4. SURFACES WITH NON-ZERO ASYMPTOTIC TENSOR 

Let two surfaces r,s : D -> A3 with T ( r ) = T ( , ) be given. If these surfaces are in an 
affine deformation of the second order, one may find normalized surfaces (r, n), 
(s, m) : I) -> A3 x V3 such that (3.6) holds in every Ua. Let us restrict ourselves to Ua. 
From t ^ 7 = T ^ , 7 ^ = 7 £ U we obtain 

(4.1) M2y = o, £ , y / ; = o. 

Let the rank of the matrix (baP) be = 1, and say, b^n 4= 0 for some fixed £, r\ = 1, 2. 
In (4.1) take a = a = & jS = x = IJ. If 9 4= g, we obtain Qy = P* = 0. 

Proposition 5. Assume that the surfaces r, s : D -+ A3 have the following properties: 
1° f(r) = T(s), 2° there is no pOmt ofrors such that all the tangent directions at this 
point are asymptotic. Then for each pe D there exist a neighborhood <9(p) c= D and 
an affine collineation %t(p) : A3-> A3 such that 

( % ) o ( r | % ) ) ( ^ ) = ( s i ^ ) ) ( ^ ) 

for each qef(p). ,,, ^ , > .. --, 

5. GLOBAL DliFFERENTIAL GEOMETRY OF SURFACES 

Let us consider the 12-dimensional space K12 (R being the real numbers) with the 
coordinates (rA, rA, rA> nA), A = 1, 2, 3. Let a set K c jR12 be given by the equations 

r\r2
2 - r\r\ = rjr| - r\r\ = 0 

and let F = K12 - K. 
The manifold D may be considered as the base of a fibre bundle B with the fibre 

type F, the structural group G 

xA = xA ; xA = afr* , det (aa) * 0 ; n* = nA , 

and the projection 71: B ~> D. Cover the manifold by the coordinate neighborhoods 
C/a; we have 7r""1(t/ac) = Ua x F. For two neighborhoods t/a, L7a, with Ua n C/a, # 0» 
let us introduce the identification 

rA = r^., rA = A*'ra,, /f* = nA. 
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In every trivial fibre bundle n i(Ug), define a two-dimensional distribution A by the 
vectors 

L - (51 Si rt Purt + bun\ I\jt -¥ b2tn\ rfi? + *.»*) . 

Following S. Sasaki, one may prove that the distribution A is globally defined and 
involutive. This enables us to formulate and prove the following two propositions. 

Proposition 6. On the manifold D9 let a connection Ty
afi and tensors ba^ Pf, qa 

satisfying (2.2) be given. Then there exists a uniquely determined normalized sur­
face (r, n): D -• A3 x V3 such that in every coordinate neighborhood Ua we have 
(2.1). 

Proposition 7. Let D be a manifold and i% $ : D -+ A3 be two surfaces with the pro­
perty that there is no point of r or s such that all the tangent directions at this point 
are asymptotic. A necessary and sufficient condition for the existence of an affine 
collineation % : A3 -• A3 such that (%r) (p) = s(p) for each pe D is T(r) = T(,). 
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Résumé 

GLOBÁLNÍ DIFERENCIÁLNÍ GEOMETRIE PLOCH 
AFINNÍHO PROSTORU 

ALOIS ŠVEC, Praha 

Je nalezen geometrický objekt, určující jednoznačně a globálně plochu trojrozměr­
ného afinního prostoru. 

Резюме 

ГЛОБАЛЬНАЯ ДИФФЕРЕНЦИАЛЬНАЯ ГЕОМЕТРИЯ 
ПОВЕРХНОСТЕЙ АФФИННОГО ПРОСТРАНСТВА 

АЛОИС ШВЕЦ (А1013 §уес), Прага 

Находится геометрический объект, определяющий однозначно и глобально 
поверхность трехмерного аффинного пространства. 

346 


		webmaster@dml.cz
	2012-05-11T20:48:14+0200
	CZ
	DML-CZ attests to the accuracy and integrity of this document




