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Casopis pro p&stovani matematiky, roé. 88 (1963), Praha

PERIODIC SOLUTIONS OF KIRCHHOFF’S NETWORKS

VAcLAV DoLEZAL and ZDENEK VOREL, Praha
(Received August 13, 1962)

In this paper some conditions for the existence of periodic solutions of
Kirchhoff’s networks introduced in [1], are presented.

The concepts and symbols used in this paper will have the same meaning as those
introduced in [1].

Let D be the set of all (complex) one-dimensional Schwartz distributions. Let
fe D andlet us define on K (the set of all infinitely differentiable functions ¢(f) with
compact support) the functional f(~1) by the relation

)
(fD, g) = (f, - J :wgo(‘c) d + < f :oqo(t) dt) j iw(po(f) d:) +C J :p(f) ar,

where ¢o(t) is a fixed function belonging to K, which satisfies the relation {2, @o(z) .
.dr =1, and C is a constant.

It can be easily verified that the following statements are true: a) f(" e D,
b) (f&Y = f, ¢) two distributions defined by (1) for the same f and any @y() and C
differ by a constant, d) (f) = f + K, K being a constant, ¢) if f € D is regular
then f(=1) is also regular, the corresponding function being [ f(z) dz + K.

In view of statements b), d), €) f(=1) will be called the primitive distribution to f.

If P(¢) = a,&" + a,-,&""' + ... + ao (a; being numbers), let us define the oper-
ator P(D) on D by the equation P(D) x = a,x™ + a,_x"~" + ... + a,x. Defining
the sum and the product of two operators defined on D in the usual manner, it can be
easily verified that the product of any two operators Py(D), Py(D) is commutative.

If fe D, T > 0, let the functional f be defined on K by

(2) (fTs (P(t)) = (f: ‘P(t + T)) *
Obviously, fr € D and Dfy = (Df)r, (exp at); = exp ot — T).

The distribution f € D will be called T-periodic, if f = fT_.— Let D be the set consist-
ing of all T-periodic distributions. It is clear that if f, g € Dy, then f + g, af, f’ € Dy
(« being a number).
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Lemma 1. Let o be a number, ® > 0, f € Dy with T = 2njw; if & + inw for n =
=0, +1, +2, ..., then there is an x € Dy satisfying the equation
3) D-—a)x=f.
Moreover, if f is regular, then x is also regular and the corresponding function x(r)
has a local integrable derivative (in the usual sense) almost everywhere.

Proof. First note that equation (3) has solutions, since the distribution
@) x = e*(e~f)~ D
satisfies (3)- Moreover, it can be easily shown that every solution of (D — «) z = 0 has
the form z = Cexp at, C beinga constant.

Let x satisfy (3); then we have (D — «) x; = fr, and, consequently, (D — a).
.(x = x7) = 0. Thus, x — x; = Cexpat. Let us put x = x + Kexpat with K =
=— C(1 — exp (— «T))~?; evidently, X is a solution of (3) and we have

X — Xy = Cexpat + K(1 — exp(— aT))expat = 0,
i.e. X is T-periodic.
The proof of the second statement is obvious. .
From Lemma 1 the subsequent statement follows immediately by induction.

Lemma 2. Let o > 0, P(&) % 0 be a polynomial of the n-th degree each root of
which is different from the numbers ivo, v = 0, +1, +2, ..., and let f € Dy with
T = 2n/w; then there is a unique distribution x € Dy satisfying the equation

(5) P(D)x =f.

Moreover, if f is regular, then x is also regular and the corresponding function x(t)
has the (usual) locally integrable derivative of the n-th order almost everywhere.

Lemma 3. Let M( p) be a square matrix whose elements are polynomials in p, and f
a vector over D; let d(p) = det M(p) % 0 and N(p) be the matrix adjoint to M(p),
(i.e., M(p) N(p) = N(p) M(p) = I det M(p), I being the unit matrix). Furthermore,
let q(p) be a common factor of d(p) and all elements of N(p), and let d(p) = q(p) .
-d(p), N(p) = a(p) N(p); then:

1. If the vector ¢ over D is a solution of the equation d(D) & = f, then the vector
x = N(D) ¢ is a solution of

(6) MD)x =f.
2. If the vector x; over D is a solution of (6), then there is a solution &, of the
equation d(D) &, = f such that x; = N(D) &,

Proof. From the equation M(p) N(p) = N(p) M(p) = 1d(p) it follows that
M(p) N(p) = N(p) M(p) = I d(p). 1) Let & be a solution of d(D) ¢ = f; then for the
vector x = N(D) ¢ we have: M(D) x = M(D)(N(D) &) = (M(D) N(D)) ¢ = d(D)¢=
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= f. 2) Conversely, let the vector x, be a solution of (6); choosing a solution &, Of
d(D) &, = f and putting x, = N(D) &,, we have M(D) x, = f. Consequently,

@) M(D)y =0 with Y =X = X.

Multlplymg (7) by N(D) one gets

(8) dD)y=0.

Let now u be a solution of d(D) u = y and put 7 = M(D) u. Then we have
©)  8D)n= ND)(MD)) = (VD) MDY u = AD)u = y.

Moreover, by (7),
(10)  d(D)n = d(D) (M(D)u) = (d(D) M(D) u = (M(D) d(D)) u =

= M(D) (d(D) w) = M(D) y = 0.
Thus, according to (9) we have x; = x, + y = N(D) & + N(D)n = N(D) (50 + 1),
where d(D) &, = f, d(D) n = 0by (10); hence d(D) (&, + 1) = f ‘which completes the
proof. ' o : '

Let us now consider Kirchhoff’s networks. (See [1].)

Let M = (G, R, L, S) be a K-network; the vector g over D will be called the solution
of M on the entire time-axis corresponding to the vector e over D, if

A1l c(Lg" + Rq' + Sq) = c'e for every cycle c'h,

A2 a'qg=0.

Note. The vector e has the physical meaning of the vector of impressed electro-
motive forces, g of the vector of electrical charges passed through individual bran-
ches. S o . o
In the same manner as in [1] it can be shown that A 1, A 2 are equivalent to the
equation
(11) X'(LD* + RD + S)Xw=X'e
with ¢ = Xw, X being a constant matrix the columns of which form a complete set of
linearly independent solutions of a‘¢ = 0.

Theorem 1. Let N be a K-network, and e a vector over D such that 1'e € Dy for
every loop I'h; further, let det X'(Lp* + Rp + S)X #+ 0 for p = inw, n =0,
+1, +2, ... with @ = 2n/T. Then there is a unique solution q over Dy corresponding
to e.

Moreover, if in addition N is a passive K-network and l'e is'a regular distribution
for every loop I'h, then the solution g over Dy is a vector having regular distributions
as its components.

Proof. Put M(p) = X'(Lp* + Rp + S)Xand let d(p) det M(p); then obviously
d(p) % 0. Further, it is clear that X e is a vector over Dy. If the vector £ over Dy is the
solution of d(D) ¢ = & = X'e (which exists due to Lemma 2), then according to
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Lemma3w = N (D) ¢ is a solution of (11), which is obviously a vector over Dr. From
this it follows that g = Xw is also a vector over Dy.

Suppose that 7 is another solution of A 1, A 2 over Dy; then clearly the vector w
fulfilling the equality g = Xw is also over Dy. Thus, from (11) we have M(D).
.(w — W) = 0, and, consequently, d(D) (w — w) = 0; but due to the assumption on
roots of d(p) no solution of the eq. d(D) z = 0 belongs to Dy, unless z = 0, so that
w — w = 0. The first statement of Th. 1 is proved.

In order to prove the second statement, let us first recall the fact that due to the
assumption of passivity of 9t (see [1]) the elements of the matrix
(12) A(p)=(X'(Lp + R + Sp™) X)™*,
which belongs to 9,, have a pole of at most first order at infinity. But M~'(p) =
= d~'(p) N(p) = p~* A(p), so that each element of M~*(p) is regular at infinity;
hence, if n is the degree of the polynomial d(p), then the degree of each element of
N(p) does not exceed n. If now I'e is a regular distribution for every loop I'h, then
obviously the elements of X'e = & are regular distributions; consequently, by Lemma
2, the elements of £ are regular distributions with the corresponding functions having
the n-th (usual) derivative almost everywhere. Therefore, w = N(D) £ has regular
distributions as its elements, and the same is true for the vector g, g.e.d.

It might seem that the assumptions of Th. 1 could be relaxed if one replaced the
condition “det X*(Lp?> + Rp + S) X # O for p = inw; n = 0, +1, £2,...” by the
condition “d(inw) # 0 forn = 0, +1, +2,...”, where d(p) is the polynomial obtain-
ed from d(p) by removing the greatest common factor of d(p) and all elements of
N(p). But this is not true. In order to show it let us first prove the following assertion:

Lemma 4. Let M(p) be an r x r matrix (r Z 2), having polynomials as its ele-
ments, N(p) the adjoint matrix, d(p) = det M(p) % O; if « is a root of d(p) with
multiplicity k = 1, then there is an integer m fulfilling the inequality 0 < m £
< k — 1 such that N(p) is divisible by (p — o)™ (i.e. each element of N(p) is divi-
sible by (p — &)™) and such that at least one element of N(p) is not divisible by
(p _ “)m+ 1.

Proof. The identity N(p) M(p) = I d(p) yields det N(p) . det M(p) = [d(p)]’, i.e.
det N(p) = [d(p)]"~*. Let N(p) be divisible by (p — &)™, m* = 0; then obviously
det N(p) is divisible by (p — «)" with m = rm*. On the other hand, from the previous
equality it follows that m = (r — 1) k; consequently, rm* < (r — 1)k, ie, m <
< k — 1. qge.d.

Now, from Lemma 4 it follows that the polynomials d(p) and d(p) have the same
roots, i.e. the conditions d(inw) % 0 and d(inw) # 0 are equivalent.

Recalling Th. 4.5 in [ 1], we can state the following assertion:

Theorem 2. Let Rt be a dissipative K-network, T > 0; further, let e be a vector
such that there is a vector g over Dy with g’ = e. Then N possesses a T-periodic
solution q. Moreover, two T-periodic solutions of N differ by a constant vector.
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Proof. Let M(p), d(p), N(p) have the meaning introduced in the proof of Th. 1. By
Th. 4.5in [1], the matrix A(p) = (X'(Lp + R + Sp~') X)~* exists and every element
of it has no poles in the half-plane Re p = 0 nor at infinity. Hence, d(p) £ 0.
Denoting g(p) the greatest common factor of d(p) and all elements of N(p), and put-
ting d(p) = ¢~ (p) d(p), N(p) = 77 '(p) N(p), then from the identity M~'(p) =
= d~'(p) N(p) = p~* A(p) it follows easily that d(p) has no roots on the imaginary
axis except the root p = 0, which, if it exists, is simple.

Now, using Lemma 2 one obtains that the equation d(D) ¢ = & = X'e possesses a
T-periodic solution. Actually, if d( p) does not have the root p = 0, the existence of ¢ is
a direct consequence of Lemma 2. If d(0) = 0, put d(p) = p d*(p). Then, of course,
there is a T-periodic ¢ fulfilling the equation d*(D) ¢ = X'g, and, consequently, the
equation D d*(D) ¢ = d(D) ¢ = X'g’ = X'e.

Putting finally w = N(D) &, then w is over D and is a solution of (11); thus ¢ = Xw
is over Dy and is a solution of N.

Let g, be another T-periodic solution of N, and let w, be defined by g; = Xw,; it
is evident that w, is over Dy and that M(D) (w; — w) = 0; consequently d(D) (w; —
— w) = 0. The constant vector, however, is the unique 7-periodic solution of the
latter equation, which completes the proof.

For further investigations, the following well-known Lemma will be useful:

Lemma 5. 1. Each f € Dy has a finite order.

2. If f € Dy then there are uniquely determined numbers c,, n =0, +1, +2, ...
such that
00
(13) f= ) ce™, w=2T;

moreover, there is a positive number M and an integer k such that
14) el S M|n*, n= %1, £2,...

3. If a distribution f € D admits the representation (13) with coefficients fulfilling
the inequality (14), then f € Dy.

The Lemma just given permits us to state the following simple assertion:

Theorem 3. Let the assumptions of Th. 1 be satisfied and lete = Y. ¢, exp (inwt)

be a vector over Dy; further, let A(p) = X(X'(Lp> + Rp + S) X)™' X". Then the
unique T-periodic solution q of N corresponding to e is given by

(15) g= Y A(inw)c,exp (inwt).
Proof. Let
(16) w= Y {X\Li*n*0® + Rino + S) X}~ X'c, exp (inot) ;
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since the elements of the matrix {...} ! in (16) are rational functions of n, then, using
statements 2 and 3 of Lemma 35, it is obvious that series (16) converges and that w is
a vector over D;. At the same time, we have ¢ = Xw which is also over D . But

u=X(LD*>+ RD + S) Xw =
= Y X'(LD? + RD + S) XM~ (inw) X'c, exp (inwt)

n=-ow

with M(p) = X\(Lp* + Rp + S) X. Carrying out the derivatives in the latter equa-
tion one obtaines immediately u = X'e; the uniqueness of w guaranteed by Th. 1
completes the proof.

In Theorems 1, 3 the “regular” case, i.e. d(inw) 0 for n =0, +1, +2, ... was
considered. Let us now consider the singular case, i.e. if d(inw) vanishes for some
n, o being related to the given period T by w = 2x/T. Since the system (11) is linear
and the decomposition (13) is true for every T-periodic distribution, we will restrict
ourselves for the sake of simplicity to the case that e = c exp (iw,t), ¢ being a con-
stant vector. Referring to Lemma 3 it is obvious that in this case every solution g of
A 1, A 2 is a vector whose components are regular distributions. Then the following
statements are true.

Theorem 4a. Let N be a passive K-network, M(p) = X'(Lp*> + Rp + S) X, d(p) =
= det M(p) = 0 and let N(p) be the adjoint matrix to M(p).If iw, + 0 is a root of
d(p) with multiplicity k = 1, then all elements of N(p) have the common factor
a(p) = (p — i)™

Moreover, let N(p) = q(p) N(p) and let ¢ + 0 be a constant vector; if

A. N(iwo) X'c = 0, then there is a nontrivial solution g = h exp (la)ot) (h being
a constant vector) of N corresponding to e = c exp (iw,t);

B. N(iwo) X'¢c = 0, then every solution q of 9 corresponding to e = c exp (iwot)
is a vector, whose elements are not bounded on (— ©, oo).

Theorem 4b. Let St be a passive K-network, and let M(p), d(p), N(p) have the
same meaning as in Th. 4a; if p = 0 is the root of d(p) with multiplicity k = 1, then
either 1. p*~* or 2. p*~2 (provided k = 2) is the highest power which is a common
factor of all elements of N(p). Moreover, if ¢ + O is a constant vector, then the follow-
ing statements are true:

1. If we put N,(p) = N(p)/p*~" in case 1, and if the equality
(17) N0 Xc=0

is satisfied, then there is a constant non-zero vector ¢, which is a solution of M cor-
responding to e = c.If (17) is not satisfied, then every solution of R corresponding to
e = c is a vector whose elements are not bounded on (— o0, o).
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2. If we put N,(p) = N(p)/p*~? in case 2, and if there is a constant vector k such
that the equalities-

(18) Ny(0)X'c =0, N3(0)X'c+ N,(0)k=0
are satisfied (the prime in N, denotes the derivative), then a constant non-zero
vector q exists, which is a solution of W corresponding to e = c.If (18) are not satis-
fied, then the elements of any solution of N corresponding to e = ¢ are not bounded
on (— o0, o).

For the proof the following Lemma will be useful.

Lemma 6. Let P(p) be a polynomial, o a number; then

(19) P(D) (te*) = (P'(2t) + t P(a)) €.
(20) P(D) (*¢") = (P"(x) + 2P'() t + P(er) 1) €.
(The proof is cbvious.)

Proof of Th. 4a. Let iw, = 0be aroot of d(p) with multiplicity k = 1. Then due to
the assumption on passivity of 9 (see [1]) it follows that Z(p) = p™* M(p) € P,
consequently, M~*(p) = d~'(p) N(p) = p~* Z™*(p) with Z™*(p)e P,. Since each
pole iw (w real) of Z~*(p) is simple, it follows that all elements of N(p) necessarily have
the common factor ¢(p) = (p — iwe)*™*.

A: Let d(p) = q(p) d(p). (Evidently d(p) has a simple root iw,.) Choosing arbitra-
rily a constant vector 7, let

(21) ¢ =

— cte’®! 4 e’ with ¢ = X'c.
d'(iwo)

Using Lemma 6 one obtains

~

A(D) & = —— (d'(iwo) + t d(iwy)) €™ + 1 d(itg) € = Te'™" .

d'(iwo)
According to Lemma 3 the vector x = N (D) ¢ is a solution of the equation
(22) M(D) x = c exp (iogt) ,
ie. of (11). Using (21), for x one obtains:
(23) x = N(D) | = 1 et e’ ) =

d'(io,)
= 1 (N'(iwo) + t N(iwo)) ce’®* + Niwo) ne'®* =
d,(ia)o)
== ! N'(iwo) ¢ + N(iwg) n' e .
d'(iw)

Since ¢ = 0 implies ¢ = 0 it follows from (22) that x cannot be a zero vector; hence
statement A is proved. Observe also that according to Lemma 3 every solution of (22)
with the form x = h exp (iw,t) can be represented by equation (23).
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B: Let g*(p) be the greatest common factor of d(p) and all elements of N(p), and
let d(p) = q*(p) d*(p), N(p) = q*(p) N*(p). Then from Lemma 4 it is obvious that
KN(iwo) X'c + 0if and only if N*(iw,) X'¢ + 0. From the considerations made above
(properties of matrices belonging to Y,) it follows further that d*( p) has no zeros in
the open right half-plane, the zeroes iw, w #+ 0 on the imaginary axis are simple and
the zero p = 0 (if it ex1sts) is of multiplicity at most two. Thus, each solutlon of the
equation d*(D) ¢ = ¢ exp (iw,t) has the form

(24) f — teiwot + neimot + Z rkeimkt + Z P,,(t) gont + bt ,
k n

- c
d'(iwo)
where 7, r,, b are constant vectors, w, + w, and P,() are vector-polynomials,
Re o, < 0. According to Lemma 3 every solution of (22) hasthe form x = N*(D) é.
Hence, one has

1
d'(iw,)

where g is a constant vector and

9.2 = {zien

0,(1) being vector-polynomials, I a constant vector. For any choice of 7, 74, P(1), b,
however, the elements of z are bounded as t — 00, so that by (25) the elements of x are
not bounded and the same is true for ¢ = Xx. Thus Th. 4a is proved.

Proof of Th. 4b. Let p = 0 be the root of d(p) with multiplicity k = 1. From the
identity M~ (p) = d™'(p) N(p) = p~* Z™*(p) and from the properties of the matrix
Z~(p) it follows that one of the subsequent three cases takes place: a) M ~!(p) has
no pole at p = 0, b) the pole p = 0 is simple, ) the pole p = 0 is of order two. Case

a), however, cannot occur due to Lemma 4. Hence, the first assertion of the theorem
follows.

(25) x = N*(iw,) cte’™ + gt + z ,

N'(iwg) ¢ + N(iw,) n} e + Y N(iwy) rie™™ + Y 0,(t) e + 1,
k n

The proof of assertion 1 is the same as the proof of A, Bin Th. 4a. Thus, let us prove
2. Denoting d(p) = d(p)/p*~? (d(p) has a double zero at p = 0), ¢ = X'c, and choos-
ing constant vectors k, h put

1
d'(0)
Using Lemma 6 it can be easily verified that ¢ fulfils the equation E(D) ¢ =c¢ By
Lemma 3, however, x = N,(D) £ is a solution of M(D) x = ¢. We have

P+ kt+h.

(@) =

(28) x =

&”1(0) + { 70 )NZ(O) ¢ + N,(0) k} t+

1 ” ~
+ {mN(o)c+N(0)k+N2(0)h}.
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But from (28) it follows that if (18) are satisfied for a certain &, then x is a constant
vector, q.e.d.

The proof of the last assertion is obvious from (28) and from the proof of B in
Th. 4a.

Note. The second equation (18) cannot be omitted, since det N,(0) = 0, whenever
case 2 occurs. (This follows easily from the identity det N(p) = [d(p)]"~*.)

In the subsequent considerations the following result will be helpful:

Lemma 7. Let M(p) =Ip*+ 1~2p +5S,I,R,S be positive semidefinite, w a real
number, v @ complex n-vector; then equation

(29) M(io)u = v
has a solution for u if and only if for every solution & of equation
(30) M(iw) £ =0,

Ev=0.

Proof. Let £ = o + it be a solution of (30); now M(iv) = (§ — w’L) + iwR =
= P + iQ, where Q is positive semidefinite for @ = 0, negative semidefinite for o < 0.
Now (30) can be written as

(31) Peo—Qt=0, Ptr+ Qo=0.
From (31) it follows that
(32) —7Pe+10t=0, ¢'Pt+0'Qs=0.

Obviously ¢'Pr = t'Po and, hence, by (32) one has 'Qt + ¢'Qo = 0 and by the
semidefiniteness of 0, 'Qt = ¢'Qo = 0. By Lemma 5,3 of [1] onehas Qo = Qz = 0
and by (31) Po = Pt = 0. Hence M(iw) & = 0. Thus the complex conjugate of a solu-
tion of (30) is also a solution of (30). From this and from the well-known fact that (29)
has a solution if and only if for every solution ¢ of (30), £'v = 0, the proof follows
immediately.

Theorem 5. Conditions A of Theorem 4a, (17) and (18) of Theorem 4b are equi-
valent to the condition that for every solution y of equation
(33) M(iwg)y =0,
(34) 7y X'e=0.

Proof. By Theorem 4a, 4b, conditions A, (17), (18) respectively are necessary and
sufficient for the existence of a solution of the equation,
(35) M(iw,) x = X'c.

Using Lemma 7 one can easily finish the proof.

Note. From the physical point of view this result is very plausible; in case A of
Theorem 4a the solution g = h exp (iwot) of N is not determined uniquely, since

(h + Xy) exp (iwgt), where y is a solution of (33), is also a solution of 9; now the
vector imyy exp (iwyt) corresponds to currents that may exist in the network without
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electromotive forces; eq. (34) states, therefore, that the total power produced by
these currents is zero.

In what follows condition A of Theorem 4a and condition (17) will be examined
more closely.

Lemma 8. Let 0 be a regular passive K-network, w, a real number, let M(p) =
= X'(Lp* + Rp + S) X, d(p) = det M(p) and N(p) be the matrix adjoint to M(p).
Let io, be @ root of d(p) with multiplicity k = 1'and let (p — iwo)*™* be the greatest
common factor of all elements of N(p), i.e. N(p) = (p — iwo)™* N(p). Then the
columns and rows of the matrix N(iw,) are solutions of (33).

Proof. From relations M(p) N(p) = N(p) M(p) = I d(p), where I is the unit
matrix, and from d(p) = (p — iw,)* " d(p), N(p) = (p — iwo)*~* N(p) one obtains
M(p) N(p) = N(p) M(p) = I d(p). Now substituting p = iw, and using the fact that
d(iw,) = 0 one can finish the proof.

The following well-known result will be useful: (See [4], pp. 35).

Lemma 9. Let M be an n by n matrix over the commutative field T and let N be
the adjoint matrix of M. Let 1 £ ¢ < n and let B be a ¢ by ¢ submatrix of N which
arose from N by deleting the rows iy, ..., i,_, and the columns ji, ..., j,_,; let C be
ann — ¢ by n — ¢ submatrix of M which arose from M by deleting the rows i, _, .,

.» i, and the columns j,_ 41, - .-, jo- Then det B = (det M)~ det C.

In [5] the following assertion was proved:

Lemma 10. Let U(p) be an n by n matrix the elements of which are entire analytic
functions, and let u(p) = det U(p); if « is a root of u(p) with multiplicity exactly
equalto k,0 < k < n, then the rank of U(x) is not smaller than n — k.

Lemma 11. Under the hypotheses of Lemma 8 the rank of N(iw,) is equal to the
multiplicity k of the root iw, of det M(p).

Proof. Since by Lemma 10 the rank of M(iw,) is at least n — k, there are at most k
linearly independent solutions of (33). By Lemma 8 the columns of N(iw,) form a
system of solutions of (33), the rank of N(icw,) thus being at most k. Now to prove our
Lemma it is sufficient to prove that at least one subdeterminant of order k of matrix
N(iw,) does not vanish. Thus let M*(p) be an n — k by n — k submatrix of M(p)
such that det M*(iwo) = 0 (cfr Lemma 10). By Lemma 9 there exists a k by k sub-
matrix N*(p) of N(p) such that

G det N¥(p) = [det MO~ det M¥(p)
for every p. As the elements of N*(p) have a common factor (p — iwo)*~ !, one can
write N*(p) = (p — iw,)*~* N*(p), where N*(p) is a k by k submatrix of N(»).
Further det N*(p) = (p — iwo)**™ " det N*(p), det M(p) = (p — iwo)" d(p), d(iwo)
being different from zero. Hence by (36) one obtains

(p — iwg)*~ D {det N*(p) — [d(p)]*~* det M*(p)} = ©
for every p. Hence det N*(iwo) = [d(iwe)[~* det M*(iw) + 0, g.e:d-
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Theorem 6. Under the hypotheses of Lemma 8 the rank of M(iw,) is n — k.
Moreover, the set of all rows (and also the set of all columns) of N(icoo) is a complete
set of solutions of (33).

Proof follows from Lemmas 8, 10 and 11.

Theorem 7. Let N be a passive K-network, M(p) = X'(Lp> + Rp + S) X. Let iw,
be a root of det M(p) and let e = ce". Let every solution y of (33) fulfil y'c = 0,
where ¢ = X'c. Let W be the linear subspace of the complex Euclidean space E, the
elements of which are solutions of (45), W' its orthogonal complement in E,,, i.e., the
direct sum W +'W' = E,.

If the rank of det M(iw,) isn — k, 0 < k < n, then dim W = k and there exists
a unique solution x* of (35) in W'. If x is a solution of (35), then x = x* + y, where
y € W, and conversely, if y € W, then x = x* + y is a solution of (35). Moreover,
both ¢ and its complex conjugate ¢ are elements of W'.

Proof. Evidently, if x is a solution of (35), then x = a + b, whereae W, be W'.
As — a € W, one has M(iw,) (¢ + b) — M(iw,) a = c. Consequently, there is a solu-
tion b of (35) which is from.W'. Now let b;, b, € W', M(iwo) b; = ¢ for i =1, 2.
Subtracting the latter equation from the former one obtains M(iw,) (b; — b,) = 0.
Thus b, — b, is an element of both Wand W’, which implies b, = b, = x*.

By hypothesis ¢ € W’ and by Lemma 7, ¢ € W. The remaining assertions of the
theorem are obvious.

Concluding the previous considerations let us present a statement which has an
interesting physical meaning:

Theorem 8. Let the assumptions of Theorem 7 be satisfied. Then the number
@ = &'h does not depend on the choice of solution g = hexp (iw,t) of N correspond-
ing to e = cexp (iwot). Moreover, ® = ¢'x*, where ¢ and x* are defined in Theo-
rem 7.

Proof. As every solution g of ¢ corresponding to e = c exp (imyt) is given by
q = Xx exp (iw,t), x being a solution of (35), onehas @ = ¢'h = #'Xx = (X'¢) 'x =
= ¢'x. By Theorem 7, ¢'x = &'(x* + y), where ¢'y = 0, which proves the theorem.

Note. The number iw,® represents, from the physical point of view, the power
supplied to the network by sources of electromotive forces represented by e. Thus
Theorem 8 states that if there exists a sinusoidal solution of 0, then the power supplied
to N is uniquely determined. )

Note. As mentioned earlier the solution g of the network represents physically the
electrical charges. Consequently, the vector i = g’ represents currents in individual
branches. Recalling the proofs of Th. 4a and 4b one obtains that a) condition A in
Th. 4a is also a necessary and sufficient condition for ¢’ to have the form & exp (iwot).
b) If in Th. 4b case 1 occurs, then there is a solution g such that g’ isa constant vector;
in case 2, however, the first equation of ( 18) is a necessary and sufficient condition for
the existence of g such that ¢’ is a constant vector.
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"“Note. Theorem 6 deals with the case where the fact that iw, is a root of det M(p)
with multiplicity k implies that (p — iw,)*~* is the common factor of all elements of
N(p). From Theorem 4b it follows that case 2 of this theorem remains unsolved. Now
it will be shown that the zero root of det M(p) cannot be considered as an exceptional
case. Really, the condition det M(0) = O is equiralent to the following condition:
There exists a non zero cycle c'h of the graph of W such that ¥ ¢7S;; = 0.
i=1

Proof. The latter equality may be written as v»'X'SXv = 0, where v &= 0. As S is
positive semidefinite, the latter equation is equivalent to X'SXv =0, v + 0, q.e.d.

On the other hand, one is usually more interested in solutions of network with
e = const, the elements of e being real, which have constant time derivatives, than in
constant solutions. This case will be treated in what follows.

Theorem 9. Let Nt be a dissipative K-network, i.e. det X'RX =% 0, and let
det X'SX = 0. Then there exists a unique real constant vector & #+ 0 such that
q = at + b is a real solution of N with e = ¢ = const, ¢ real.

Proof. Consider the equation M(D)(at + b) = X'c, where M(D) = X'(LD? +
+ RD + S) X, or

(37) X'RXa + X'SX(at + b) = X'c.

Now a and b are to be chosen so that (37) is satisfied. Let ¥ be a real constant
matrix the columns of which form a complete set of linearly independent solutions of

(38) X'SXw=0.

Evidently, a has to fulfil (38), i.e. a = Yd for a certain d. Substituting into (37) one
obtains

(39) X'RXYd + X'SXb = X'c.

Now it will be shown that there exists exactly one d such that (39) has a real solution
for b. This happens if and only if for every solution Yu of (38) one has (Yu)' (X'c —
— X'SXYd) =0, or

(40) Y'Xc — Y'X'RXYd =0.

Since X“RX is the matrix of a positive definite quadratic form and the columns of Yare
linearly independent, there is a unique solution d of (40). Thus there exists exactly one
a = Yd and at least one b such that (37) is satisfied. Putting & = Xa and b = Xb one
can finish the proof.

Note. Of course, b in Theorem 9 is not determined uniquely. Denote by W the set
of all real solutions w of (38). Obviously, Wis a linear subspace of E, (real n-dimen-
sional Euclidean space). Let W’ be its orthogonal complement in E,. Then it is easy to
show that each solution of (37) can be written as at + b* + w, where b* is a uniquely
determined vector from W’ and w is an arbitrary vector from W.

490



References

[11 V. Dolezal and Z. Vorel: The Theory of Kirchhoff’s Networks. Cas. pro pést. matem., 1962,
87, No. 4, 440—476.

[21 L. Schwartz: Théorie des distributions. Herman & Cie, Paris 1950.

3] I'eavgpano H. M.-Ilusoe I'. E.: OGoGmenusie QYHKIMA U HeUCTBAS HaX EWMH. Mocksa 1958.

[4] I'aummaxep ®. P.: Teopus Matpun. Mocksa 1953.

[51 V. Dolezal: O Fourierové transformaci v teorii linearnich soustav. Apl. mat. 6, 1961, No. 3,
184—213.

Vytah
PERIODICKA RESENT KIRCHHOFFOVYCH SIT{
VAcLAv DOLEZAL a ZDENEK VOREL, Praha

Clinek navazuje na préci [1] a pojedndvd o existenci resp. unicité periodickych
feSeni Kirchhoffovych siti.

Pojem feSeni K-sit& na celé Gasové ose je definovdn rovnicemi A 1, A 2, kde e je
dany vektor, jehoZ komponenty jsou distribucemi, a g je hledané fefent.

Véta 1 zabyvd se ,reguldrnim p¥ipadem®, tj. pfedstavuje podminky, za kterych
existuje jediné T-periodické feSeni dané K-sité. VEty 4a, 4b, 7, 9 pozoruji specidini
»singuldrni p¥ipady*, tj. uddvaji podminky existence feseni pasivni K-sit& tvaru g =
= hexp iot, kdy e = c exp iot (h, ¢ jsou konst. vektory, o redl. &slo), jakoZ i di-
mensi prostoru vSech feSeni tohoto typu. Véta 8 pak ukazuje, Ze &islo ¢'h, které fysi-
kdln& pfedstavuje energii doddvanou do sité, nezdvisi na vybéru fefeni g = h exp iwt.

PesroMme
IEPYOOVYECKUE PEIMEHWUSA CETEI KUPXTODDA
BALIJIAB JOJIEXAJI u 3JEHEK BOPEIJI, Ilpara

CraTbs npuMBIKaeT k pabote [1] i mocesieHa BOIpocaM CyIeCTBOBAHUS K €UH-
CTBEHHOCTH Iepuoaudeckux pemenuit cereit Kupxrodda.

Ilonarue pemenus K-ceTH Ha BCeHl OCH BpPEMEHM OIPEJENICHO ypaBHEHHAMH A 1
A2, roe e — AaHHBI BEKTOP, KOMIIOHEHTHl KOTOPOro SBIAIOTCA 0600mECHABIMA
QyHKIUSIME, ¥ ¢ — HCKOMOE pelIeHHe.

Teopema 1 mocBsmeHa ,,peryIipHOMY CIIy4alo‘‘; OHa CONEPXKHUT YCIOBHUA, IIPH KO-
TOPBIX CYIIECTBYET ONHO €OMHCTBEHHOE T-mepHoAMdecKoe peleHue JaHHOH K-CeTH.
B Teopemax 4a, 4b, 7, 9 U3yvaroTCA YaCTHBIE ,,0CO0BIE CIYIaH*, T. €. IPHBOIATCI
YCIIOBHSL CYILeCTBOBaHMS penieHusi nmaccuaBoil K-ceTw BEpa g = hexp iwt, xorma
e = cexp iot (h, ¢ — IOCTOAHHBIE BEKTOPEI, @ — JEHCTB. 9HCII0), PABHO KaK X pas-
MEPHOCTh IPOCTPAHCTBA BCEX PELICHH 3TOro Tuma. B Teopeme 8 mokasaHo, YTO
qucno ¢'h, X0Topoe ¢ GU3UIECKOM TOYKH 3pEHUS NPEJCTaBIISCT SHEPIHUIO, JOCTaB-
JITIEMYIO B CeTh, HE 3aBHCHT OT BEIOOpa pelneHus q = h exp iwt.
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