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Casopis pro péstovani matematiky, roc. 86 (1961), Praha

SOME NOTES ON FINITE STATE LANGUAGES AND EVENTS
REPRESENTED BY FINITE AUTOMATA USING LABELLED GRAPHS

KareL Curik, Brno
(Received October 15, 1959)

The theory of labelled graphs is used to demonstrate the equivalence between
finite state languages (N. CHOMSKY-G. A. MILLER [1]) and events represented by
finite automata (S. C. KLEENE [2] and Ju. T. MEDVEDEV [3]), and to show some
possibilities of generalising or specialising the notions of finite state grammar
and of finite automata (the notion of a finite indeterminate automaton is intro-
duced).1)

1. Introduction. Let O = {04, ...,0,}, n = 1 be a finite set of labels (or symbols,
words, letters, inputs) and let there be assomated to every finite sequence 0;, 0;,, ...,

i (k > 0) of labels, a so-called string « = 0;,0,, ... 0;, of length k. By N. CHOMSKY
and G. A. MILLER [1] a set of strings is called a language over vocabulary O, whilst by
Ju. T. MEDVEDEV [3] such a set is called an event upon the symbols (or inputs) of O.
These languages or events will be denoted by capitals letter M, N, P, ..., and the
strings by lower-case Greek letters o, 8, 7, .... The set U of all strings is sdid to be
an universal event (or language); on U there can be defined the well-known binary
operation, concatenation of strings, as follows:

(1) A =04 ...04 B=0j..0,=0f=0;...0,0 .:.0j.

This (free) semigroup of strings was investigated and axiomatised e. g. by P. C.
RoseENBLOOM [4] and may be completed by a new so-called null-string w (non e U)
having all the properties of unit

2 wo =oaw =o forevery aelU n {w}=U,

(i e., o has the length zero) In another way one may take a new label o, (non € 0),
start with a vocabulary Oy = O U {0o} and obtain, under the conditions (1) and (2)
{00 = ), the same semigroup with the unit w.

1y First after the finishing this paper I have fined further important results of N. CHoMsKY: On
certain formal properties of grammars (Inf. a. Control 2, 137—167, 1959) and of M. O. RABIN and
D. ScotT: Finite automata and their decision problems (IBM Jour. of research and developement 3,
114— 125, 1959), where, among others, the notion of indeterminated automaton was introduced.
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The concatenation on U, induces another binary operation — also to be called
concatenation — on the Boolean algebra of all subsets of U, as follows

®3) §+M, NcU,=MN = {af|aeM, fe N}
either M =0 or N=0=>MN =0.

This semigroup also has a unit O, = {0,}.

Now, if we replace every row of the k x-l-matrix (k fixed, 2* < n) studied by S. C.
KLENNE [2] by our label 0; (1 < i < n), we obtain a string of length /. Thus to every
event in sense of Kleene (ilLea set of such matrices) there corresponds an our event
M c U. In the algebra of events the Kleene disjunction ‘v corresponds to our set-
theoretical sum, his product (the symbols are identical) to our concatenation, and
his third operation of iteration E * F corresponds (using Oy, which is not introduced in
[2]) to the infinite power of an event, defined as follows

4 M> = GoMi, where M° =0y, M' =M, M* = MM, ...,

since we may wnt; (using the correspondence)

(5) ExF=FVvEFVE¥v.. -—OFUEFUEZFU . = E®°F,
Several identities may be established, e. g.

© MU N)=U (MN), (UM)N =U (MN),

) Mc M, (M*)* = M, Mc N=Mc N®

(these show that infinite power is a closure operation),

@) (MU N)™ = (M= U N)®°,

(MU N)*® = M2 U N°° U (M®N®0)*° Uy (NOMP0)®e |
k
M® = M*M=° U |J M* | etc
' i=0
Many other identities may be found in [2].
If we denote by O; (1 < i < n) an event containing only a single string o; and if we
introduce another infinite power

) M® = M' (thus M*° = M® U O,),
i=1

we may define the set Q resp. Q, as the smallest set of events containing O; for alf
i=1,2,...,n and the zero-event 9, which is closed under the operations of set-
theoretical sum, of concatenation and of infinite power co resp. 00,. In regard to the
notion of a regular event of [2] there holds.

1.1. Theorem. For an event M the following conditions are equivalent:

(a) M is a regular event in the sense of Kleene,
(b) MeQ, and O, ¢ M,
(c) MeQ.
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Proof. (a) = (b) follows by (5) and by definition of Q, (b) = (c) follows by (9) and
by definitions of Q and Q, and finally (c) = (a) follows by (5), because evidently
M” = M x M (always in the correspondence established above).

Note that the infinite powers M™° resp. M are free semigroups with resp. without
an unit elermnt (M need not be the set of mddpendent generators) and it is possible to

write Uy = (U 0)* and U = (U ot)m

From Thcorem 1.1 it follows that if we want to use ooy-powers to describe our re-
gular events then this can be performed only in some “context”, namely each oo -
power must be concatenated (or multiplied in [2]) by some event which does not
contain O, (this is sense of (5)); the precise formulation of this condition is given in the
definition of the so-called Chomsky-Miller notation (see scction 3 of this paper).

2. Labelled graphs. In [1] to every finite state grammar there is associated a labelled
finite graph, the so-called srate diagram of this grammar. Now we introduce the most
general notion of a finite, directed and labelled graph over vocabulary O (see the
previous section) as a quadruple (¥, E, 7, L), where V resp. E is the finite set of vertices
resp. edges and I resp. Lis a mapping of Einto V x V(i. e. incidence) resp. of E onto O
(i. e. labeling). Two graphs (V, E, I, L) and (V’, E’, I', L) are isomorphic if there exist
two one-to-one mappings f of Vonto V' and g of E ontoE’ such that

(10) eeE., I(e} = [x,p] =I'(g(e)) = [f(x).f(»)] and L(gle)) = L(e).

To every edge ¢; € E there corresponds a symbol e,[x, y;] 0,, = L(e;), the so-called
labelled edge, where [x;, y;] = I(e;) and O,, = L(e). If ¢ is the set of all la-
belled edges, we denote our graph by I' = (V, ). The set of vertices resp. of
labelled edges of a graph I';, I'’ etc., will be denoted by V,, V' resp. €,, €. In figures
there we use the usual representation of graphs in the plane.

A finite sequence of labelled edges {e,[x;_ . x;] 0,,}5.1 (kK = 1) is called a labelled
chain in V¥, ¢) with first resp. last vertex x, resp. x;; we shall say that this labelled
chain generates the string « = 0,,0,, ... 0,,.

Let there be given an ordered pair (X, Y), where X < Vresp. Y < Vis said to be
the ser of first resp. last vertices. Denote by I'(X, Y) an event containing all the strings
which are generated by all the labelled chains in I' with first vertices in X and last
vertices in Y.

Let Q be the set of all events M such that there exist a labelled graph I' = (V, &)
{(over vocabulary O) and sets of first and last vertices X, Y < V satisfying I'(X, Y) =
= M. In this section we shall prove

2.1. Theorem. Q < Q.

First of all we prove some lemmas and introduce some new notions.

22. Lemma. If M = I'(X, Y), then there exists a subgraph T inT such that: M =
=T"(X".Y'), where X' = X, Y' < Y, every xe X' resp. ye Y' is first resp. last vertex
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of at least one labelled chain with first resp. last vertex in X’ resp.in Y', every ve V' and
every e[u, v] o, € € is contained in some labelled chain with first resp. last vertex in X"
resp. in Y', and finally T is minimal in regard to these properties. Thus

1] efu,v]op, €[u,v]o,e® =e=e¢'.

Proof. I is finite and therefore it suffices to remove suitable labelled edges and

possibly some vertices also.
01

V(O-L) 0 w (04

Fig. 1.

w(0,)

The subgraph I in 2.2 is called minimal in regard to the event T(X, Y). When dealing
with labelled graph satisfying (I) we always denote its labelled edges only by [u, v] o,
since in this case

(11) [u, vi]op = [Up, vi] o>y =uy, vy =v,, 04 =o04.
2.3. Lemma. Let M = TI(, v), where T is minimal in regard to M,
V={v, €E={[v,v] oy .., [V, V] 0.}
and let T’ be defined as follows:
V={}U W, vyooneW, W= {wo,)...,w0s,)}>
where w(0,,) denotes a new Wertex, and

€ ={[nwo)] o, 11 =)= P}V {[Wos), V]os |1 S5 =P}V
O {[w(0s) w(oa)] 0a, |/ # 1 < js b < p}-

Then () T'(V', V') = M for allv' € V', (ii) I"" is minimal in regard to M and (iii) I" satisfies
the following condition

(1) e[u,v]o,e € =>u =+ vy (i.e. I’ does not contain slings) .

Proof. (i)—(iii) follow from the definition of I/, because in every v’ € V" starts just
one edge labelled by o, forallj = 1, 2, ..., p. Note only that M = (O,, U ... U O, )®
(a simple example is in Fig. 1).
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2.4. Lemma. [f M = I'(x, X), then there exist T’ and ye V', Y < V' such that T"

satisfies (1), (II) and T'(y, Y) = M.
Proof. By 2.2 we may suppose that I' is minimal in regard to M. Let now [, v;] 0q,
forj=1,2,..., p; be all the slings in I" incident to the vertex v;. We construct graphs.

I, as in 2.3 for graphs I';, when V; = {v;} and
€ = {[vis vi] Ouys -+ [Vis vi] Oap} 5

Fig. 2.

for all i=1,2,...,m (where V= {v,...,v,}) and we demand V; nV; =0 if
i+ k 1=<i, k< m Now define I'" as follows: '
V=UV/, =yUG6u {[wio,,), wk(oa')] o li+k 1=ik=m,
i=1 i=1 .
[vovlo,e€ 1Sr<p, 1 £sZp}
(a simple example is in Fig. 2). Finally let

y=x and Y=XU{ W,.

i=1
It is easily shown that I' satisfies (I) and (II), and by 2.3 also. that I"(y, ¥) = M.

2.5. Lemma. If M = I'(x, X), then there exist T', ye V' and Y < V' such that the
following conditions are satisfied: T'(, Y) = M, (1), (II) and
(I1X) there is no labelled chain in I'" the first and last vertex of which is y.

Proof. By 2.2 and 2.4 we may suppose that I" satisfies (I), (II) and that it is minimal
in regard to M. We construct I'" as follows: ¥V’ = VU {y}, where ynoneV, ¢ =
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=€u {[y,u]o;|[x,u] 0,e €, ueV, 1 £j < n}, Y= X. By this construction it is
easy to see that I' is the required graph.?)

2.6. Lemma. If M = I'(X, Y), then there exist T', pe V' and Q = V' such that
I'(p,0) =M.

Proof. By 2.2 we may suppose that I" satisfies (I). If X = {x,, ..., x,,}, let I'; be
a minimal subgraph of I in regard to I'(x;, ¥) fori = 1,2, ...,m,i. e. T'(x,, ¥}) =
= I'(x;, Y), where Y; = Y. Let I'; be isomorphic to I" and let p;e V;, x;€ V resp.
Q; = V;,Y; c Vbe corresponding elements resp. sets of elements in this isomorphism,
ie IypyQ)=T (x,, Y;). By 2.5 we may suppose that I'; satisfies (III). If we put
p = p;and requlre Vin V = {p} for alli+j 1 <1i,j< m we may define I as

follows: V' = U v, €= U @,, Q= U Q;. Evidently I'(p, Q) = U Ti(ps Q) =
i=1

2.7. Lemma. If M = F(x, y) and F, x and y satisfy (I)—(III), then there exist T,
x'eV' and Y' < V' such that T'(x', Y') = M, and that T, x" and Y’ satisfy conditions
(I)—(111) and
(Iv) there is no labelled chain in T’ the first and last vertex of whzch is some vertex

yeY'.

Proof. If I'(y,y) =0, put I" = T, x' = x and Y’ = {p}. Further let I'(y, y) =
= N = § and therefore by (III) x # y. Let I'* be isomorphic to a minimal subgraph
of I in regarde to I'(y, ») and let y* € V* and y e V be corresponding vertices in this
isomorphism. Now we “split” the vertex y* into parts y§, ¥+, ..., y¢ such that all
labelled edges starting in y* will start in y’(')‘ and all labelled edges finishing in y* will
finish in just one vertex y¥, 1 < i < k. This new graph we denote I, (an example of
this and following constructions is in Fig. 3). It is easy to see that if (Vs Yo) = Q
where Y, = {y%, ..., ¥}, then Q® = N.

Let P be the set of strings generated by all labelled chains

{[Wi—ia wi] Oai ?—1

in T such that wy = x, w, = yand w; & yforall 1 £ i < k. Let I'** be the minimal
subgraph of I" containing all vertices and labelled edges of these generating labelled
chains. Let I'; be isomorphic to I'** and let x, € V;, xe V* and y, e V;, ye V** be
corresponding vertices in this isomorphism, i. e. I'y(xy, y;) = P. .

I is constructed as follows: V' = Vu Vyu V;, @ = Gu €, u C,, where we
identify X = x =x, y =5, Y = {9} U Y, and require VNV, = 3}, VNV, =

={x} and Vo nV;=0. Now M=Pu PN P(O, U N) and I'(x’,Y’) =

=PUMQ=PUPO,UN)Q=PuU PQU U QY) = P U PN = Mand by con-
struction of I'" it follows that I"’, x" and Y’ sausfy (I) (Iv).

2) The idea to ,,double” a first vertex and an essential abbreviation of this proof is due to J. BEG-
VAR. I wish thank him also for other remarks to this paper.
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Before proceeding to the proof of Theorem 2.1 we note that to the set-theoretical
sum of events there corresponds, in the algebra of graphs, the cardinal sum, to the

concatenation there corresponds (under certain conditions) identifying last vertices
of one and first vertices of another graph and to the infinite power there corresponds
(under certain conditions) identifying first and last vertices in the same graph (see
proof of 2.7).
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Proofof Theorem 2.1.If M = O, 1 < i £ nor M = @, then evidentely M € ;.
Next we shall prove M, N EQs=>MuU N, MN, M* Q.

LIf M=T,(X,,Y,), N=T,(X,,Y,), then MU N =T(X, Y), where V=
=V,u V¥, €=¢ uE, (we suppose, of course, that ¥; n ¥, = @) and X =
=X,V X, Y=Y, UVY,

2. LetM = T'y(X, Y), where Y = {y,, ..., »,} and let N = I"(P, Q). By 2.6 we may
suppose that X = {x}, P = {p} and by 2.5 that x non e ¥, p non e Q (this follows by
condition (III)). Let I'; be isomorphic to I for 1 £ i < sandlet p,e V;, pe V"’ resp.
Q: < V,, O c V' be corresponding vertices resp. sets of vertices in this isomorphism.
We identify p; = y; and require V; n V; =0 fori % jand V, n V; = {y;} for 1 £ i,
j = 5. Now if we define

V=UV;$ G-'F=L}(€i’
i=0 i=0

then obviously I'(x, U Q;) = MN.
i=1

3. Let M = I'(X, Y). By 2.6 and 2.5 we may suppose that X = {x} and that con-
ditions (I)—(III) are satisfied. Let Y = {y, ..., y,} and let T'; be the minimal subgraph
in T in regard to I'(x, ;). Further let I'f be isomorphic to I'; and let x* € V¥, xe V;
and y¥ e V¥, y, € V, be corresponding vertices in this isomorphism, i. e.

¥

UTHas ) =M.
i=1

The graphs I'f satisfy all the conditions (I)—(III) and by 2.7 there exist graphs I'j,
x'eV;and Y; c V| satisfying I'y(x’, Y}) = T'F(x*, »7) for 1 £i < s and all the con-

ditions (I)— (IV). We identify x' = u for all ue U Y’ and require V'; n V) = {x'} for
i=1

i ¥ j. Now, if we define
V=Uv:, €=Ug¢,
i=1 i=1
then I'(x’, x') = M®.
3. Finite state grammars. A finite state language L is an event generated (sce [1])
by a (finite state) grammer G, the so-called state diagram of which is a finite labelled

graph over extended vocabulary O = O U {0,} (cf. section 1). Let , be the set of
all L; generated by grammars G such that

(12)  inthe state diagram of G there are no labelled chains starting and finishing in the
initial state all edges of which are labelled by o,,.
3.1. Theorem. Q; < Q.

Proof. If Me Qg, i. e. if there exist I', X and Y such that M = I'(X, Y) and I is
alabelled graph with vocabulary O, then by 2.5 and 2.6 we may suppose that X = {x}
and that T, x and Y satisfy (I)—(III). We define a labelled graph I', with extended
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vocabulary O, as follows: Vo =V, € = C U {[y, x] 0o | yi€ Y}. If x = v, is the
initial state, then I, is the state diagram of a grammer G,. But from the conditions
(1)~ (111) for I it follows that Gye Fy (cf. [1], p. 97) and also L € Q, (because from
(I11) follows x non € Y). Thus it is sufficient to prove L; = M.
If
% = 0,04 - 0 €Lg, (a;*0for1<i<q),

there exist (cf. [1], p. 95) a string f = 0,05, --. 05, and a sequence

vclv coey Vopuy (vft € Vo)

such that
(i) ve, = ve,,, = Vo, (il) v F¥vo for I <i<r+1,

(iii) [vep veir,) 05,€Co for 1S i<r and (iv) a=p

(in regard to (2)). From
(Ve Ve, 1] 0b, € €o

and from Goe Fy (i. e. [u,v]ope Gy = v = v, and [u, v,] 0,€ € = 0, = 0o) it
follows that 0, = 0o, vy % 0y for 1 £ i <r and therefore r — 1 = g and o, = o,,‘
for 1 £1g q. Atleast v, € Y and therefore

{[va t‘ln] O,‘ ray
is a labelled chain in I starting in x and finishing in Y, generating the string o, so that
xeM =TI(x,Y).
If on the contrary o = 0,, ... 0, €M = I'(x, Y), then there exists a labelled chain

{[V‘.‘, v“l + x] oﬂi}:-t

in I such that v, = x(= v)and ., € Y. Now the sequence v, ..., ¥

and the string (over vocabulary O,)

¢"+p VC'-A-: = vo

B =0y, ...0,0p,,, wWhere o, =0, for 1 Sisq and o0,,, =0,

satisfy conditions (i), (iii) and (iv) and by (I1II) for I the condition (ii) also. Therefore
aelg;,.
In [1], p. 104, there is introduced the so-called Chomsky-Miller notation X (X, ...,
. X;) X¢41, where X, are strings or, recurrently, Ch. M. notations, and it is proved
(Theorem 6) that every L can be represented by finite number of Ch. M. notations.

3.2. Lemma. [f'L is represented by a single Ch. M. notation, then L is an event which
may be expressed in the algebra of events as follows: in the Ch. M. notation there are
symbols representing strings, commas and pairs of brackets; if we replace each string by
an event containing this single string only, each comma by the symbol of set-theoretical
sum O and if we place the coq-power of every expression in a pair of brackets (neigh-
bouring expressions concatenated of course), we obtain an event equal to L.

Proof. Let m be the number of pairs of brackets in the given Ch. M. notation. If
m = 0, our lemma is obviously true; we may suppose that it is true for each p,
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0 < p < m. If now our Ch. M. notation contains m pairs of brackets, it has the fol-
lowing form: Lg = a(4y, ..., 45) B(By, .-, By) (... ... )8(Dy, ..., D,) & where a, fi,

., 8,-¢ are strings, while 4;, B;, ..., Dy are either strings also or Ch. M. notations
containing less than m pairs of brackets. Therefore by induction A;, By, ..., Dy
represent some events A;, B, ..., D, respectively, each of which is constructed in the
described manner. '

We construct (cf. [1], p. 105) a string of the set of strings represented by the Ch. M.
notation a4, .... 4,) f as follows: we take a sequence Xy = &, X,, ..., X;, X;4q = f
such that X, ..., X, is some quite arbitrary sequence of symbols 44, -.., 4,. Further
if A4;1is a Ch. M. notation too, we take a new sequence of form similar to 4; and put
this sequence in place of 4; in the previous sequence, etc. Each string which is result
of such a construction (cf. [1], p. 105), may also be obtained by taking suitable
strings «; € A;, | < i < a and forming the concatenation oy, ... «,8; and convcrs;ly.
Therefore the Ch. M. notation a4, ..., 4,) B represents the event {a}(A; v ...V
U A,)*°{B}, and the same holds for the other Ch. M. notations B(By, ..., By) ¥, -ens
Dy, ... ,,)s Also

Lo = {o}(A; U ... U A)®{B}B; U ... U B)*°{p}(... ...)*°{5} .
.(Dy U ...u D,)®{e},
which proves our lemma.

3.3. Corollary. The Ch. M. notation Ay, ..., Ag) B ... 8Dy, ..., D) € represents an
L;€Q, if and only if

(13)  at least one of strings «, B, ..., 8, & outside every pair of brackets is not equal
to 0.

The proof follows immediately from the definition of Q; and by (4) and 3.2.

3.4. Theorem. If M is an event over the extended vocabulary O,, the following con-
ditions are equivalent: ‘ N

(a) M is a regular event in the sense of Kleene,

(d) There exist a labelled graph T = <V, €) over the vocabulary O and the sets
X, Y < Vsuchthat M = T(X, Y), i. e. M€ Qg '

(c) There exists a grammar G over the extended vocabulary 0,, satzsy" ying (12), and
such that L = M, i. e. MeQ,,

(f) M may be represented by a ﬁmte number of Ch. M. notations satisfying (13) over
the vocabulary O,,

(b) MeQ, and Oy & M.

Proof. (a) = (d) follows by 1.1 and 2.1, (d) = (e) follows by 3.1, (e) = (f) follows
by [1], Th. 6 and 3.3, (f) = (b) follows by 3.2 and 1.1, and (b) = (a) follows by I.1.

3.5. Corollary. Theorem 6 in [1] may be inverted.
The proof follows from 3.4 and 3.3.
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3.6. Corollary. Let F, be the class of all grammars the state diagrams of which satisfy
(11) and let L(F,) be the set of all Lg, where G € Fy. Then L(F,) = L(Fy) (cf. [1]).

Proof. It is evident that L(F;)  L(Fy). If there were L;e L(F,), then either
Ly =MuU O, orL; = M, where Me Q (in virtue of 3.4 and 1.1). By the same con-
struction as in the proof of 3.1 of a grammar G, such that L;, = M, we have construc-
ted a state diagram I', satisfying (I)—(I11), i. ¢. G, € F,. In the second case L; € L(F;)
and in the first case we add to I'y a new vertex y and two labelled edges [y, ¥] 0o and
[, vo] 00, obtaining a new state diagram I'y of somme grammar G, satisfying (II), of
course. Therefore L, = L; and Gy€ Fy, i. e. Lge L(F,).

3.7. Corollary. The set of all finite state languages is not changed if in the definition
of generation of strings (or sentences, see [1], p. 95) the condition (i) is omitted.

The proof follows directly from 3.4.

38. Lemma. I[f M = I'(X, Y), then there exist T',p'€ V' and Q' < V' such that
I'(p, Q') = M and I satisfies conditions (1) and , :
(V) [,v]on, [w]oreC =v=w.

Proof. By 3.4 there exists a grammar G, satisfying (12) such that M = L, and
whose state diagram is I', and initial state v,. By [1], Theorems 1, 2, 3 we may sup-
pose that Gy € Fy (see [1], p. 98), i. e. 'y satisfies (1), (V) and the conditions [u, v] 0, €
€@, = v = v, and [u, vo] 0,€ €y = 0, = 0,. Now we define V' = V,, ¢ = &, —
= {[x.vo] 00 | xEVp}, p' = vy, Q" = {x | x€ Vy, X % vy, [X, vo] 00 € €,}. Then I
satisfies (I) and (V), I'" is a labelled graph over the vocabulary O and ev:dently
r(, Q) = Mm.

4. Finite determinated and indeterminated automata. A finite automaton of = (S;
Iy, ..., I,) in the sense of Medvedév (see [3]) is a finite set S of states with a finite set
I,, ..., I, of mappings of S into S (so-called inputs). This automaton may be called
determmaled because by choosing a state xe€ S and an input [; there is uniquelly
determined next following state /(x)e S. In [3], to every J; there is associated a
symbol 0, I £ j £ n, i. e. to every set of finite sequences of inputs there is an uni-
quelly defined event over the vocabulary O (cf. section 1). Now, an event M over O is
representable (by a finite determinated automaton), if there exist an & = (S; Iy, ..., 1),
an initial state x° € S and a set of final states X° < S such that
(14) %= 0,...0,6M= I T, . 1 (x")eX°.
In [3] this is denoted by M = d(x , X0

Let Q4 be the set of all events representable by finite determinated automata.

4.1. Lemma. Let M = o/(x° X°), where of = (S; 1, ..., I). If we define V = S,
¢ ={[uv]o;luveS Lu)=v,15j<Sn}, then T(x° X°) = M, and T satisfies
conditions (1), (V) and
(v1) 0;€0, wueV=>there exists a ve V such that [u,v]o;e€.

The proof is obvious.
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4.2. Lemma. Let T” be an labelled graph satisfying (V) over the vocabulary Q. Then
there may be defined a labelled graph T over the vocabulary O (V' < V), satisfying (V)
and (V1) andT'(x, Y) = T'(x, Y) forall xe V', Y = V', as follows: 1) if T’ satisfies (VI)
weputT' = T; 2) if T" does not satisfy (VI), we take a new vertex w non € V"’ and define
V=V'u {w}, €=CE v {[u,w]o;|[uv]o;none€ for all ve V'}.

The proof is obvious.

~ 4.3. Theorem. If M is an event over the vocabulary O, then the following conditions
are equivalent: (c) MeQ, (g) MeQ,.

Proof. (c) = (g) If M = I'(?, Q), by 3.8 we may suppose that I' satisfies £ = {p],
(1) and (V), and by 4.2 also (VI). Now we define o = (S; I, ..., I,) as follows: S = ¥,
I(u) = vif [u,v] 0;€ € (obviously by (VI) and (V) ; is the required mapping).

(g) = (c) follows by 4.1.

4.4. Corollary. The set Q is'not changed if either 1) by input I, we understand a map-
ping of some subset S; < S into S (S; # 0), or 2) we always choose the initial state x°
and the set of final states X° in such a manner that x° none X°, or 3) we use a set of
initial states instead of a single initial state.

Proof. 1) follows from 4.2 and 4.3, 2) follows from 4.3 and 2.5 and 3) follows from

4.3.and 2.6.
. Now, in the notion of determinated automaton & = (S; Iy, ..., I,) of Medvedév
instead of the usual mappings /;, choose many-valued mappings f;, 1 < i < n. These
many-valued mappings f; ‘might be called random mappings, because if we admit
repeated use of them (possibly in time), then in different cases f(x), x € S will denote
different elements of S (of course the notation fi(x) is not suitable). Therefore a system
# = (S;fi, ..., f,) may be called an indeterminated automaton. To every many-valued
mapping f; there may be associated an ordinary mapping F; of S into the set of all
subsets of S'in the following manner: F(x) = S(x), where S|(x) = S is the set of all
“possible” values fi(x) (by repetition). To every f; we associate the symbol o, €0,
1 < i< n, and say that M (an event over the vocabulary O) is representable by a
finite indeterminated automaton if there exist # = (S; f}, ..., f,) and x°e §, X° = §
such that

(15) =0, ...0,eMsf f . f(x)ex°.
In this case we shall write M = %(x°, X°) .

Let Qp be the set of all events which are representable by a finite indeterminated
automata. . '

Now if M = %B(x°, X°), we define a labelled graph I" over the vocabulary O as
follows: V' = S, € = {[, v] 0; | ve Fi(u) (i. e. it is ,,possible” that fi(u) = v) for all
u,ve Sand 1 £ i < n}. Then obviously I satisfies (I) and T'(x°, X %) = M.

If on the contrary we have a labelled graph I'" over the vocabulary O (V = S),
satisfying (I), then we define mappings F; as follows: Fi(u) = {ve S | [y, v] 0,€ ¢} =
= S{u)foralli,1 <i < nandallue S. Random mappings f; are uniquelly determi-
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ned by the F, and therefore an indeterminated automaton # = (S;fi,....f,) is
defined, such that #(x°, X°) = I'(x°, X°)forallx®e S, X° = S. We have thus proved

4.5. Theorem. If M is an event over the vocabulary O, the following conditions are
equivalent: (¢) M e Q and (h) Me Q.

References
[1] N. Chomsky, G. A. Miller: Finite State Languages, Information and Control 1 (1958), 91~ 112.

[2] S. C. Kleene: Tpencrapsienne cOBbITHH B HEPBHBIX CETAX H KOHEYHBIX ABTOMATAX, ABTOMATHI

(Russian Translation), 1956, 15— 69.
[3] 0. T. Meosedes: O xnacce coGLITHH, NONYCKAIOUMX NPEACTABJIEHME B KOHEYHOM auromare,

AsTomatsi, 385—401,
[4) P. C. Rosenbloom: The Elements of Mathematical Logic, 1950.

Vytah

NEKOLIK POZNAMEK S HLEDISKA POJMENOVANYCH GRAFU
O JAZYCICH S KONECNE MNOHA STAVY A O JEVECH
REPRESENTOVATELNYCH KONECNYMI AUTOMATY

Karet CuLix, Brno

Teorie pojmenovanych graft je vyuZito k ditkazu ekvivalence pojmu jazyka s ko-
neén& mnoha stavy (N. CHoMSKY-G. A. MILLER [1]) s pojmem jevu representovatel-
ného konednymi automaty (S. C. KLEENE [2] a Ju. T. MEDVEDEV [3]). Déle jsou uve-
deny n&které moZnosti zobecnéni nebo specialisace pojmil gramatiky s koneéné& mnoha
stavy a pojmu koneéného automatu (zejména je zaveden pojem nedeterminovaného
koneéného automatu).

Pesome

HECKOJIBKO M3ITOJIB3VIOUUX TEOPUIO I'PA®OB 3AMEYAHUNA
O A3BIKAX C KOHEYHbIM UHUCJIOM COCTOSSHUN
N O COBBITUAX, NMPEACTABUMBIX B KOHEYHBIX ABTOMATAX

KAPEJI YVJIMK (Karel Culik), Bpro

Teopust rpadoB H3INOML3OBAHA JUIA JOKA3BIBATENLCTBA JKBHBAJNICHTHOCTH NO-
HATHA A3bIKA C KOHCUHBIM umucioMm coctosuuit (N, CHOMSKY-G. A. MILLER [1])
C TOHATHEM COOBITHA, JONYCKAIOWEro MNPEJCTABICHHE KOHEYHBIMH ABTOMATAMM
(S. C. KLeEeNE [2] u KO. T. Meanseaes [3]). Hanee yka3aHH HEKOTOpPbIE BO3ZMOX-
HOCTH IeHEpAJIH3ALMH M CICUHANMIAUNH NOHATHS IPAMMATHKA C KOHEUHBIM YHCIOM
COCTOSIHUI M MOHATHS KOHCYHOTO aBTOMATA (HMEHHO BBEACHHO IMOHATHE KOHEYHOTO

HEICTEPMHHHPOBAHHOT O ABTOMATA),
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