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Einstein metrics on a class of five-dimensional

homogeneous spaces

E.D. Rodionov

Abstract. We prove that there is exactly one homothety class of invariant Einstein metrics
in each space SU(2)× SU(2)/SO(2)r (r ∈ Q, |r| 6= 1) defined below.

Keywords: homogeneous Riemannian manifolds, Einstein manifolds, Ricci tensor, sectional
curvature

Classification: 53C25, 53C30

It is well-known [J] that any homogeneous Einstein manifold Mn for n ≤ 4
is a Riemannian symmetric space. On the other hand, little is known about
five-dimensional homogeneous Einstein manifolds which are not locally symmetric
(cf. [B, p. 186]).

In this paper, we study a special family of homogeneous spaces M5
r = SU(2) ×

SU(2)/SO(2)r, where SO(2)r , r ∈ Q, denotes the subgroup of all product matrices
of the form:

(

e2πit 0
0 e−2πit

)

×
(

e2πirt 0
0 e−2πirt

)

(t ∈ R).

We prove the existence, up to a homothety, of a unique invariant Einstein metric
on each M5

r (|r| 6= 1). These metrics are never naturally reductive.

1. Preliminaries.

Let su(2) denote the Lie algebra of SU(2) provided by the scalar productB(x, y)=

− 1
2 Retrxy. We consider an orthonormal basis {x1, x2, x3} of su(2) such that

[x1, x2] = x3, [x1, x3] = −x2, [x2, x3] = x1 and, moreover, the Lie algebra h of
H = SO(2)r(r ∈ Q) is of the form h = R · (x1, rx1). Put G = SU(2)×SU(2), then
g = su(2)⊕su(2) is the corresponding Lie algebra. Consider the scalar product on g
given by B |g×g= Bsu(2) + Bsu(2). Then we have a B-orthogonal decomposition

g = h ⊕ p1 ⊕ p2 ⊕ p3, where p1 = R · (rx1,−x1), p2 = R · (x2, 0) +R · (x3, o), p3 =
R · (0, x2) +R · (0, x3). Moreover, p1, p2, p3 are irreducible invariant subspaces w.r.
to the adjoint representation adh on p = p1 ⊕ p2 ⊕ p3 and p1 6≃ p2, p1 6≃ p3 w.r. to
this representation.

The author would like to thank Th. Friedrich, O. Kowalski and N. Netsvetaev for useful dis-
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Lemma 1.1. We have p2 6≃ p3 for |r| 6= 0, 1 with respect to the adjoint represen-
tation of h on p.

Proof: Suppose that there exists an isomorphism ̺ : p2 → p3 such that adW ◦̺ =
̺ ◦ adW for every W ∈ h. Put A = (x2, 0), B = (x3, 0) ∈ p2. Then we can write

̺(A) = (0, x), ̺(B) = (0, y), where x, y ∈ span(x2, x3). For W = (x1, rx1), we have
[W, ̺(A)] = ̺([W, A]) = ̺(B), and also [W, ̺(B)] = −̺(A). Hence we get r[x1, x] =
y, r[x1, y] = −x. Further, since the Lie bracket [x, y] on su(2) coincides with the
usual vector cross-product, we obtain immediately r‖[x1, x]‖ = r‖x‖ = ‖y‖ and
r‖[x1, y]‖ = r‖y‖ = ‖x‖. Hence the equality r2 = 1 holds, which is a contradiction.

�

Corollary 1.1. For |r| 6= 0, 1, every Ad(H)-invariant scalar product 〈·, ·〉 on p has,
up to a constant factor, the following form:

(1.1) 〈·, ·〉 = 〈·, ·〉◦ |p2×p1 +t〈·, ·〉◦ |p2×p2 +s〈·, ·〉◦ |p2×p2 ,

where t, s ∈ R+ and 〈·, ·〉◦ = B |g×g.

The proof follows from Lemma 1.1 and the Schur’s lemma.

We construct a scalar product (·, ·) on g = su(2) ⊕ su(2) by setting (·, ·) =
〈·, ·〉 |p×p +〈·, ·〉◦ |h×h. Then we consider the following (·, ·)-orthonormal basis of g:

E1 = (rαx1,−αx1), E2 = 1/
√

t(x2, 0), E3 = 1/
√

t(x3, 0),

E4 = 1/
√

s(0, x2), E5 = 1/
√

s(0, x3), E6 = (αx1, rαx1),

where α = (r2 + 1)−1/2.
It is obvious that h = R·E6, p1 = R·E1, p2 = R·E2+R·E3 and p3 = R·E4+R·E5.

Lemma 1.2. We have the following multiplication table:

[E1, E2] = rαE3, [E1, E3] = −rαE2, [E1, E4] = −αE5, [E1, E5] = αE4,

[E2, E3] = rαt−1 · E1 + αt−1 · E6, [E2, E4] = [E2, E5] = [E3, E4] = [E3, E5] = 0,
[E4, E5] = αs−1 · E1 + rαs−1 · E6, [E3, E6] = αE2, [E5, E6] = rαE4,

where α = (r2 + 1)−1/2.

The proof is straightforward and can be omitted.

Corollary 1.2. The multiplication table of Lemma 1.2 implies that:

[p1, p1] = 0, [p1, p2] = p2, [p1, p3] = p3, [p2, p3] = 0,

[p2, p2] ⊂ p1 ⊕ h, [p3, p3] ⊂ p1 ⊕ h.
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2. The computation of the sectional curvatures.

In this part, we shall use the notation of the previous part. First, we see that every
G-invariant Riemannian metric onM5

r (|r| 6= 0, 1) is determined, up to a homothety,
by an Ad(H)-invariant scalar product of the form (1.1). Further, the sectional
curvatures of such metric can be calculated by means of the standard formula
(see [B]):

(2.1)

〈R(X, Y )Y, X〉 = (−3/4)〈[X, Y ]p, [X, Y ]p〉 − 〈[[X, Y ]h, Y ], X〉−
− (1/2)〈Y, [X, [X, Y ]p]p〉 − (1/2)〈X, [Y, [Y, X ]p]p〉+
+ 〈u(X, Y ), u(X, Y )〉 − 〈u(X, X), u(Y, Y )〉,

where X, Y ∈ p, 〈·, ·〉 is the corresponding scalar product on p and the mapping
u : p × p → p is defined by the formula:

(2.2) 2〈u(X, Y ), Z〉 = 〈[Z, X ]p, Y 〉+ 〈[Z, Y ]p, X〉

for all Z ∈ p.

Lemma 2.1. For an Ad(H)-invariant scalar product 〈·, ·〉 of the form (1.1), the
following formulas are true:

(2.3)

u(X, Y ) = (t − 1)/2t[X, Y ], where X ∈ p1, Y ∈ p2,

u(X, Z) = (s − 1)/2s[X, Z], where X ∈ p1, Z ∈ p3,

u(p1, p1) = u(p2, p2) = u(p3, p3) = u(p2, p3) = 0.

Proof: We shall use Corollary 1.2, the formula (2.2) and the notations of Corol-
lary 1.1. Let X ∈ p1, Y ∈ p2. If Z ∈ p1, then [Z, X ]p = 0, [Z, Y ]p ∈ p2 and
hence 〈u(X, Y ), Z〉 = 0. Further, if Z ∈ p3, then [Z, X ]p ∈ p3, [Z, Y ]p = 0 and also
〈u(X, Y ), Z〉 = 0. Therefore u(X, Y ) ∈ p2. Let Z ∈ p2, then [Z, X ]p ∈ p2, [Z, Y ]p ∈
p1 and we have:

2t〈u(X, Y ), Z〉◦ = t〈[Z, X ]p, Y 〉◦ + 〈[Z, Y ]p, X〉◦ .

But

t〈[Z, X ]p, Y 〉◦ + 〈[Z, Y ]p, X〉◦ =
= t〈[Z, X ], Y 〉◦ + 〈[Z, Y ], X〉◦ =
= t〈[X, Y ], Z〉◦ − 〈[X, Y ], Z〉◦ ,

since 〈·, ·〉◦ is Ad(G)-invariant. Hence u(X, Y ) = (t−1)/2t[X, Y ] forX ∈ p1, Y ∈ p2.
The other cases are treated analogously. �
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Lemma 2.2. For the sectional curvatures of M5
r (r 6= 0) we have:

Kσ(E1, E2) = Kσ(E1, E3) = (rα/2t)2,

Kσ(E1, E4) = Kσ(E1, E5) = (α/2s)2,

Kσ(E2, E3) = 1/t− 3α2/4t2, Kσ(E2, E4) = Kσ(E2, E5) = 0,

Kσ(E4, E5) = 1/s− 3α2/4t2, Kσ(E4, E3) = 0,

where α = (r2 + 1)−1/2.

Proof: Let us calculate Kσ(E1, E2). From the formula (2.1) and Lemmas 1.2, 2.1
we have:

Kσ(E1, E2) = (−3/4)〈rαE3, rαE3〉 − (1/2)〈E2, [E1, rαE3]p〉−
− (1/2)〈E1, [E2, (−rα)E3]p〉+ ((t − 1)/2t)2〈[E1, E2], [E1, E2]〉 =
= (−3/4)r2α2 + r2α2/2 + r2α2/2t+ ((t − 1)/2t)2r2α2 = (rα/2t)2 .

The other sectional curvatures are calculated analogously. �

Corollary 2.1. For the Ricci curvatures of M5
r (r 6= 0) we have:

ricc (E1) = (r
2s2 + t2)α2/2t2s2, ricc (E2) = (2t(r

2 + 1)− r2)α2/2t2,

ricc (E4) = (2s(r
2 + 1)− 1)α2/2s2, where α = (r2 + 1)−1/2 .

The proof follows from the Lemma 2.2 by a straightforward computation.

3. Invariant Einstein metrics on M5
r .

We start with

Lemma 3.1. Let 〈·, ·〉 be an Ad(H)-invariant scalar product on p of the form (1.1).
Then the invariant Einstein metrics on M5

r (|r| 6= 0, 1) are defined by the formulas

(3.1) t =
|r|(2y2 + 1)
2|y|(r2 + 1) , s =

2y2 + 1

r2 + 1
,

where y is any real root of the equation 8|y|3 − 8|r|y2 + 4|y| − |r| = 0.
Proof: Since SO(2)r acts transitively on p1, p2, p3 and preserves the Ricci curva-
ture, then 〈·, ·〉 is Einsteinian iff ricc(E1) = ricc(E2) = ricc(E4). But from Corol-
lary 2.1 we see that this is equivalent to the formulas:

{

r2s2+t2

s2
= 2t(r2 + 1)− r2

r2s2+t2

t2
= 2s(r2 + 1)− 1

(t, s ∈ R+)

or
{

2{t(r2 + 1)− r2} = t2/s2

2{s(r2 + 1)− 1}/r2 = s2/t2
(t, s ∈ R+).
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From here we can express the parameter t in two different ways:







t = r2

4(r2+1){s(r2+1)−1}
+ r2

r2+1

t =
s|r|√

2{s(r2+1)−1}

(t, s ∈ R+, s >
1

r2 + 1
) .

Hence we get the equation

r2

4(r2 + 1){s(r2 + 1)− 1} +
r2

r2 + 1
=

s|r|
√

2{s(r2 + 1)− 1}
.

After the substitution s(r2 + 1)− 1 = 2y2, we obtain 8|y|3− 8|r|y2 +4|y| − |r| = 0.
Further, for the discriminant D, we get D = 1

63
(r4 − 61

25
· r2 + 1) > 0, and hence we

have only one real root. The formulas (3.1) now follow easily, and this completes
the proof. �

Hence we obtain the first part of the following

Theorem 3.1. For each r ∈ Q(|r| 6= 0, 1), there exists, up to a homothety, a unique
invariant Einstein metric on M5

r . This metric is never naturally reductive.

Proof of the second part: In fact, we only have to compare our metrics with
the family of naturally reductive metrics of the type I from [K–V]. This can be done
by a direct computation. �

Remark 1. Let us note that the property “never naturally reductive” means “not
naturally reductive whatever is the group representation M5

r = G/H(G ⊂ I(M5
r ))

and whatever is the Ad(H)-invariant decomposition g = h ⊕ p ”, cf. [K–V].

Remark 2. For r = 0, we obtain the decomposable homogeneous space S2 × S3,
where the invariant Einstein metrics are well-known. All of them are naturally
reductive (cf. [B]).

The cases M5
−1, M

5
1 are to be studied separately.
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