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Existence and bifurcation results for a class

of nonlinear boundary value problems in (0,∞)

Wolfgang Rother

Abstract. We consider the nonlinear Dirichlet problem

−u′′ − r(x)|u|σu = λu in (0,∞), u(0) = 0 and lim
x→∞

u(x) = 0,

and develop conditions for the function r such that the considered problem has a positive
classical solution. Moreover, we present some results showing that λ = 0 is a bifurcation
point in W 1,2(0,∞) and in Lp(0,∞) (2 ≤ p ≤ ∞).

Keywords: nonlinear Dirichlet problem, classical solution, bifurcation point, ordinary dif-
ferential equation

Classification: 34B15, 34C11

The aim of this paper is to prove some existence and bifurcation results for the
nonlinear Dirichlet problem

(1) −u′′ − r(x)|u|σu = λu in (0,∞)

with the boundary conditions u(0) = 0 and limx→∞ u(x) = 0, where σ > 0 and
λ < 0 are given constants. In particular, we will generalize and complement some
results of M.S. Berger (see [2, Theorem 4]) and C.A. Stuart (see [6, Theorem 7.4]).
In the following, the function r is always assumed to satisfy

(A) The function r : (0,∞) → R is measurable and satisfies r > 0 a.e. on
a subinterval (δ1, δ2) (0 < δ1 < δ2) of (0,∞). The negative part r− = min (r, 0)
of r satisfies

∫ x2
x1

|r−(x)| dx < ∞ for all constants 0 < x1 < x2 < ∞; and from the
positive part r+ = max (r, 0) we require that it can be written as

r+ = r1 + r2 + r3 + r4, where

(i) 0 ≤ r1(x) ≤ f(x) · x−2−σ/2 holds for almost all x > 0 and a function
f ∈ L∞(0,∞) satisfying f(x)→ 0 as x→ 0,

(ii) the function r2 fulfils 0 ≤ r2 ∈ L∞(0,∞) and r2(x)→ 0 as x→ ∞,
(iii) 0 ≤ r3 ∈ Lp0(0,∞) holds for some p0 ∈ (1,∞),
(iv) and r4 satisfies 0 ≤ r4 ∈ L1(0,∞).
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Then we will prove the following existence results:

Theorem 1. Suppose that the function r satisfies (A). Then, for each λ < 0, there

exists a nonnegative, bounded function uλ ∈W 1,20 (0,∞)∩C0,1/2([0,∞)) such that
uλ 6≡ 0, uλ(0) = 0, limx→∞ uλ(x) = 0 and the equation (1) holds in the sense of
distributions.

Corollary 1. Assume in addition to (A) that r3 ≡ r4 ≡ 0. Then, for each α ∈
(0, |λ|1/2), there exists a constant Cα such that uλ(x) ≤ Cα · e−α·x holds for all

x ≥ 0.

Corollary 2. Suppose in addition to (A) that the function r is continuous in
(0,∞). Then uλ is positive in (0,∞), satisfies uλ ∈ C2(0,∞) and solves the equation
(1) in the classical sense.

In order to formulate our bifurcation results, we have to introduce some further
notations and assumptions.
The constants δ1 and δ2 may be defined as in (A), and I may denote the interval

I = (δ1, δ2). Moreover, (tn)n may be a sequence of real numbers satisfying 1 = t1 <
t2 < · · · < tn < tn+1 < . . . and tn → ∞ as n→ ∞.
By In, we denote the interval In = tn · I. Then, for k > 0, we introduce the

following condition:

(Ak) There exists a nonnegative, measurable function h on (0,∞) such that
r(x) ≥ h(x) · |x|−k holds a.e. in

⋃∞
n=1 In and βn = ess inf

y∈In

h(y)→ ∞ as n→ ∞.

Theorem 2. Suppose that the assumption (A) is fulfilled and that λn is defined

by λn = −t−2n for all n. Then we have the following results:

(a) If in addition (Ak) is satisfied for k = 2+
σ
2 , then ‖u′λn

‖2 → 0 and uλn
→ 0

in L∞
loc([0,∞)) as n→ ∞.

(b) If in addition (Ak) is satisfied for k = 2, then ‖uλn
‖∞ → 0 as n→ ∞.

(c) Let p ∈ (2,∞), 0 < σ < 2 · p and assume additionally that (Ak) holds for
k = 2− σ

p . Then ‖uλn
‖p → 0 as n→ ∞.

(d) Suppose additionally that 0 < σ < 4 and (Ak) holds for k = 2 − σ
2 . Then

we have ‖uλn
‖W 1,2 → 0 as n→ ∞.

Remark 1. Part (d) of Theorem 2 shows that λ = 0 is a bifurcation point for the
equation (1) inW 1,2. A similar result was obtained by C.A. Stuart [6, Theorem 7.4].
But in the contrast to the part (d) of Theorem 2, in [6], it is assumed that r is
nonnegative in (0,∞).
For the special case that 0 < σ < 4 and r(x) = c0 ·x−σ (c0 is a positive constant),

the existence of a nontrivial, nonnegative solution of the equation (1) already has
been proved in [2] (see Lemma 1 and Theorem 4).

1. Some preliminaries.

ByW 1,2(0,∞), we denote the Hilbert space of functions u defined on the interval
(0,∞) such that u and its derivative u′ are in L2(0,∞). The inner product of two
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functions u, v ∈ W 1,2(0,∞) is given by 〈u, v〉 =
∫ ∞
0 (u · v+ u′ · v′) dx. Moreover, by

W 1,20 (0,∞) we denote the closure of C∞
0 (0,∞) in W 1,2(0,∞).

The following lemma plays a crucial role in our proofs. The essential parts of it
can be found in [6, p. 188].

Lemma 1. Each function u ∈ W
1,2
0 (0,∞) can be identified with a continuous

function on [0,∞), still denoted by u, such that
(a) u(0) = 0, limx→∞ u(x) = 0,

(b) |u(x)| ≤
√
2 · ‖u‖1/22 · ‖u′‖1/22 holds for x ≥ 0,

(c) |u(x1)− u(x2)| ≤ ‖u′‖2 · |x1 − x2|1/2 holds for all x1, x2 ≥ 0 and
(d)

∫ ∞
0 x−2−σ/2 · |u(x)|2+σ dx ≤ 4 · ‖u′‖2+σ

2 .

Proof: Let ϕ ∈ C∞
0 (0,∞). Then we see that

ϕ2(x) = 2 ·
∫ x

0
ϕ(s) · ϕ′(s) ds, ϕ(x1)− ϕ(x2) =

∫ x1

x2

ϕ′(s) ds

and, by Hardy’s inequality, that
∫ ∞
0 x−2 · ϕ2(x) dx ≤ 4 · ‖ϕ′‖22. Hence, by Hölder’s

inequality, it follows that (b) and (c) hold for all ϕ ∈ C∞
0 (0,∞). Moreover, the

part (c) implies

|ϕ(x)| ≤ ‖ϕ′‖2 · x1/2 for x ≥ 0

and
∫ ∞

0
x−2−σ/2 · |ϕ(x)|2+σ dx ≤ 4 · ‖ϕ′‖2+σ

2 .

Now let u ∈ W 1,20 (0,∞) and (ϕn)n be a sequence of functions ϕn ∈ C∞
0 (0,∞)

such that ϕn → u in W 1,20 (0,∞) as n → ∞. Then, according to part (b), (ϕn)n is
a Cauchy sequence in L∞([0,∞)). Hence, there exists a function Φ, continuous on
[0,∞), such that

ϕn → Φ in L∞([0,∞)) as n→ ∞ .

Clearly, we have Φ(0) = 0, limx→∞ Φ(x) = 0 and Φ(x) = u(x) a.e. in (0,∞).
Furthermore, it is not difficult to show that (b)–(d) even hold for the function Φ.

�

2. Proof of the existence results.

For λ < 0, we define

Dλ = {u ∈W 1,20 (0,∞)
∣

∣

∫ ∞

0
|r−| · |u|2+σ dx <∞

and |u|λ := (‖u′‖22 + |λ| ‖u‖22)1/2 ≤ 1}.

Then, from (A) and Lemma 1, one easily concludes
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Lemma 2. There exist constants c0, c1, . . . , c5, independent of u ∈ Dλ, R > 0 and
S > 0, such that

(a)
∫ ∞
0 r+ · |u|2+σ dx ≤ c0,

(b)
∫ ∞
R r1 · |u|2+σ dx ≤ c1 ·R−2−σ/2,

(c)
∫ ∞
R r2 · |u|2+σ dx ≤ c2 · supy≥R r2(y),

(d)
∫ ∞
R r3 · |u|2+σ dx ≤ c3 ·

(∫ ∞
R rp03 dx

)1/p0 ,

(e)
∫ ∞
R r4 · |u|2+σ dx ≤ c4 ·

∫ ∞
R r4 dx

and

(f)
∫ S
0 r1 · |u|2+σ dx ≤ c5 · sup0<y≤S f(y).

The nonlinear functional ζ will be defined by

ζ(u) = − 1

2 + σ
·
∫ ∞

0
r(x)|u(x)|2+σ dx.

Then, the part (a) of Lemma 2 shows that ζ is well defined on Dλ and that

Mλ = inf
u∈Dλ

ζ(u)

is a well defined real number.
The interval (δ1, δ2) may be defined as in (A) and the function ϕ0 ∈ C∞

0 (0,∞)
may be chosen such that suppϕ0 ⊂ (δ1, δ2) and |ϕ0|λ = 1. Then

(2) ζ(ϕ0) < 0 implies Mλ < 0.

Lemma 3. There exists a function u∞ ∈ Dλ such that |u∞|λ = 1, u∞ ≥ 0 and
ζ(u∞) =Mλ.

Proof: Let (un)n ⊂ Dλ be a sequence such that ζ(un) → Mλ as n → ∞. Then,
according to (2), we can assume without restrictions that ζ(un) ≤ 0 holds for
all n. Furthermore, since ‖|u|′‖2 = ‖u′‖2 (see [4, Lemma 7.6]), we may assume that
un ≥ 0.
The sequence (un)n is bounded in W

1,2
0 (0,∞). Hence, using Lemma 1, the

Arzela–Ascoli theorem, the reflexivity of W 1,20 (0,∞), and a standard diagonal pro-
cess, we see that there exists a subsequence of (un)n, still denoted by (un)n, such
that

un 7−→
w

u∞ in W
1,2
0 (0,∞) as n→ ∞ ,

and

(3) sup
0≤x≤d

|u∞(x)− un(x)| →
n→∞

0

holds for all constants 0 ≤ d <∞.
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As an immediate consequence of these results, we obtain

|u∞|λ ≤ 1 and u∞ ≥ 0.

Since ζ(un) ≤ 0 holds for all n, we conclude from the part (a) of Lemma 2:

(4)

∫ ∞

0
|r−| |un|2+σ dx ≤ c0 for all n.

But (4) and Fatou’s lemma imply
∫ ∞
0 |r−| |u∞|2+σ dx <∞.

Furthermore, it follows by Lemma 2 that for each ε > 0 there exist constants
Rε > 0 and Sε > 0 such that

(5)

∫ ∞

Rε

r+ · |un|2+σ dx ≤ ε

and

(6)

∫ Sε

0
r1 · |un|2+σ dx ≤ ε hold for all n ∈ N ∪ {∞} .

From (3)–(6), we conclude that

(7) lim
n→∞

∫ ∞

0
r+(x) · |un(x)|2+σ dx =

∫ ∞

0
r+(x) · |u∞(x)|2+σ dx .

Moreover, Fatou’s lemma and (7) imply

Mλ ≤ ζ(u∞) ≤ lim inf ζ(un) =Mλ .

Since ζ(u∞) =Mλ, the inequality (2) shows that |u∞|λ > 0.
Finally, Mλ < 0 and Mλ ≤ ζ(|u∞|−1λ · u∞) = |u∞|−2−σ

λ · Mλ prove that
|u∞|λ = 1. �

Proof of Theorem 1: The function u∞ may be chosen as in Lemma 3. Then, for
each ϕ ∈ C∞

0 (0,∞), there exists an ε0 = ε0(ϕ) ∈ (0, 1] such that |u∞ + ε · ϕ|λ > 0
holds for all |ε| ≤ ε0(ϕ).
For |ε| < ε0(ϕ), we define

η(ε) = ζ((u∞ + ε · ϕ) · |u∞ + ε · ϕ|−1λ ) = ζ(u∞ + ε · ϕ) · |u∞ + ε · ϕ|
−2−σ
λ ,

and ψ(ε) = ζ(u∞ + ε · ϕ). Then, using the inequality

| |b|2+σ − |a|2+σ| ≤ (2 + σ) · 21+σ · |b− a| · (|a|1+σ + |b|1+σ) (a, b ∈ R),

it is not difficult to show that there exists a constant C = C(σ) such that

|r(x)| · | |u∞(x) + ε · ϕ(x)|2+σ − |u∞(x)|2+σ | · |ε|−1

≤ C · |r(x)| · |ϕ(x)| · (|u∞(x)|1+σ + |ϕ(x)|1+σ)

≤ C · (‖u∞‖1+σ
∞ + ‖ϕ‖1+σ

∞ ) · r(x) · ϕ(x)
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holds for almost all x ≥ 0.
Hence, we can apply Lebesgue’s convergence theorem and obtain

dψ

dε
(0) = −

∫ ∞

0
r · |u∞|σ · u∞ · ϕdx.

Furthermore, dη
dε (0) = 0 implies

µ(λ) ·
(

∫ ∞

0
u′∞ · ϕ′ dx+ |λ| ·

∫ ∞

0
u∞ · ϕdx

)

=

∫ ∞

0
r · |u∞|σ · u∞ · ϕdx,

where µ(λ) =
∫ ∞
0 r(x) · |u∞(x)|2+σ dx = −(2 + σ) ·Mλ > 0.

Now we define uλ = µ(λ)
−1/σ · u∞ and conclude that

(8)

∫ ∞

0
u′λ · ϕ′ dx−

∫ ∞

0
r(x)|uλ|σuλ · ϕdx = λ ·

∫ ∞

0
uλ · ϕdx

holds for all ϕ ∈ C∞
0 (0,∞). The remaining assertions follow from Lemma 1. �

Proof of Corollary 1: From (8), we conclude for all nonnegative functions

ϕ ∈ C∞
0 (0,∞) :

∫ ∞

0
u′λ · ϕ′ dx ≤ λ ·

∫ ∞

0
uλ · ϕdx +

∫ ∞

0
r+(x)u

1+σ
λ · ϕdx.

For functions v ∈ W 1,20 (0,∞) satisfying v ≥ 0 there exist sequences (ϕn)n of non-

negative functions ϕn ∈ C∞
0 (0,∞) such that ϕn → v in W 1,20 (0,∞) as n → ∞

(see [3, p. 147]). Hence, we obtain

(9)

∫ ∞

0
u′λ · v′ dx ≤ λ ·

∫ ∞

0
uλ · v dx+

∫ ∞

0
r+(x) · u1+σ

λ · v dx

for all functions v ∈W 1,20 (0,∞) satisfying v ≥ 0.
The constant ε1 > 0 may be chosen such that ε1 ≤ |λ| − α2. Then it follows

from the assumptions and Lemma 1 that there exists a constant R1 > 0 such that

(10) r+(x) · uσ
λ(x) ≤ ε1 holds for all x ≥ R1 .

Since uλ is bounded, we can find a constant Cα > 0 such that

uλ(x) ≤ Cα · e−α·x holds for all x ∈ [0, R1 + 1].

The function ψα may be defined by ψα(x) = Cα · e−α·x for x ≥ 0. Then one easily
verifies that ψα ∈ W 1,2(0,∞) and

(11)

∫ ∞

0
ψ′

α · v′ dx = −α2 ·
∫ ∞

0
ψα · v dx holds for all v ∈W 1,20 (0,∞).
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The function (uλ − ψα)+ satisfies (uλ − ψα)+ ∈W 1,20 (0,∞), (uλ − ψα)+(x) = 0
for x ∈ [0, R1 + 1], (uλ −ψα)

′
+ = (uλ − ψα)

′ on {uλ > ψα} and (uλ − ψα)
′
+ = 0 on

{uλ ≤ ψα}.
Hence, we obtain from (9)–(11):

∫ ∞

0
((uλ−ψα)

′
+)
2 dx ≤ λ ·

∫ ∞

0
uλ · (uλ−ψα)+ dx+ ε1 ·

∫ ∞

0
uλ · (uλ−ψα)+ dx+

+ α2 ·
∫ ∞

0
ψα · (uλ − ψα)+ dx ≤ −α2 ·

∫ ∞

0
(uλ − ψα)

2
+ dx ≤ 0.

Thus, Lemma 1 implies (uλ − ψα)+ ≡ 0 and uλ(x) ≤ ψα(x) for all x ≥ 0. �

Proof of Corollary 2: For x ∈ (0,∞), we define

l(x) = −r(x) · u1+σ
λ (x) − λ · uλ(x).

Then, from the assumptions and Theorem 1, it follows that l is continuous in (0,∞).
The function U may be defined by

U(x) =

∫ x

1

∫ y

1
l(s) dsdy for x > 0.

Then we see that U ∈ C2(0,∞) and U ′′(x) = l(x) holds for x > 0. Moreover, for
all functions ϕ ∈ C∞

0 (0,∞), we obtain

(12)

∫ ∞

0
(u′λ − U ′) · ϕ′ dx = 0.

Corollary 3.27 in [1] and (12) imply the existence of a constant K such that

(13) u′λ = U
′ +K holds in D′(0,∞).

Then, according to Theorem 1.4.2 in [5], we see that (13) holds even in the classical
sense and that uλ ∈ C2(0,∞).
To prove that the function uλ is positive in (0,∞), we assume that there exists

an x0 ∈ (0,∞) such that uλ(x0) = 0. Since uλ(x) ≥ 0 holds for all x ≥ 0, we see
that u′λ(x0) = 0. Hence the vectorvalued function (y1, y2) = (uλ, u

′
λ) solves the

initial value problem

(y′1, y
′
2) = F (x, y1, y2) = (y2,−λ · y1 − r(x) · |y1|σ · y1),

(y1(x0), y2(x0)) = (0, 0).

The function F is continuous in (0,∞) × R
2 and the partial derivatives ∂y1F and

∂y2F of F are also continuous in (0,∞)×R
2. Then, it follows by a standard result

from the theory of ordinary differential equations that uλ ≡ 0 in (0,∞). �
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3. Proof of the bifurcation results.

The function u∞ may be chosen as in Lemma 3. Then we have uλ = µ(λ)
−1/σ ·

u∞, where µ(λ) = −(2 + σ) ·Mλ. Since |u∞|λ = 1, it follows that

(14) ‖u′λ‖2 ≤ µ(λ)−1/σ and ‖uλ‖2 ≤ µ(λ)−1/σ · |λ|−1/2 .

The function ϕ1 ∈ C∞
0 (0,∞) may be chosen such that suppϕ1 ⊂ I = (δ1, δ2) and

‖ϕ′1‖22+ ‖ϕ1‖22 = 1. The functions ϕn may be defined by ϕn(x) = t
1/2
n ·ϕ1(t−1n ·x).

Then, it follows that suppϕn ⊂ In and

(15) ‖ϕ′n‖22 + t−2n · ‖ϕn‖22 = ‖ϕ′1‖22 + ‖ϕ1‖22 = 1.

Lemma 4. Let λn = −t−2n for all n and suppose that (Ak) holds for some k > 0.
Then it follows that

(a) ‖u′λn
‖2 ≤ (βn · t2+σ/2−k

n · γ0)−1/σ

and

(b) ‖uλn
‖2 ≤ tn · (βn · t2+σ/2−k

n · γ0)−1/σ

holds for all n, where γ0 =
∫

I |x|−k · |ϕ1(x)|2+σ dx > 0.

Proof: The identity (15) shows that |ϕn|λn
= 1. Hence, we obtain

(16)

Mλn
≤ ζ(ϕn) = −(2 + σ)−1 · t1+σ/2

n ·
∫ ∞

0
r(x) · |ϕ1(t−1n · x)|2+σ dx

= −(2 + σ)−1 · t1+σ/2
n ·

∫

I
r(tn · x) · |ϕ1(x)|2+σ dx

≤ −(2 + σ)−1 · t1+σ/2−k
n · βn ·

∫

I
|x|−k · |ϕ1(x)|2+σ dx.

Since µ(λn) = −(2 + σ) ·Mλn
, the assertions follow from (14), (15) and (16). �

Proof of Theorem 2: Assume first that (Ak) is satisfied for k = 2+ σ/2. Since
βn → ∞ as n → ∞, we obtain from the part (a) of Lemma 4 that ‖u′λn

‖2 → 0 as
n→ ∞. The part (c) of Lemma 1 implies

|uλn
(x)| ≤ ‖u′λn

‖2 · x1/2 for all x ≥ 0.

Hence, we see that uλn
→ 0 in L∞

loc([0,∞)) as n→ ∞.
From the part (b) of Lemma 1 it follows that

(17) ‖uλn
‖∞ ≤

√
2 · ‖uλn

‖1/22 · ‖u′λn
‖1/22 holds for all n.

Then, combining Lemma 4 and (17), we show that

‖uλn
‖∞ → 0 (n→ ∞), if (Ak) holds for k = 2.
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Now let p ∈ [2,∞) be a real number and suppose that 0 < σ < 2 · p. Since

‖uλn
‖p ≤ ‖uλn

‖1−2/p
∞ · ‖uλn

‖2/p
2 ≤ 21/2−1/p · ‖u′λn

‖1/2−1/p
2 · ‖uλn

‖1/2−1/p
2

holds for all n, we obtain from Lemma 4 that

‖uλn
‖p → 0 (n→ ∞) if (Ak) holds for k = 2− σ/p.

If (Ak1) is satisfied for some k1 > 0, then (Ak) holds for all k ∈ [k1,∞). In
particular, we see that (A2−σ/2) implies (A2+σ/2). Hence the part (d) of Theorem 2

follows from the above considerations. �
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