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Let us consider a Cartesian product A = >< Fi of a
' ) i€J

given system {Fif of fields, A 1is a commutative ring

: ied
with a unity-element 1 and the zero-element O such that
Fiea: pril = f, and pri0 = Ny o
where fi and n;, are by order the unity-element and the zero-
-element of the field Fie

For any i€ J we have a natural isomorphic embedding Uyt
Fi——+ A given by
¥aeF, : prjus(a) = a, prju(a) =n;  (J€3I, § £ 1),

For any i€ J let us denote by Ei the Im u; = ui(Fi). Ei
is of course a field, moreover it is an ideal of the ring A
and finally, it may be described by

Ei={7eAl¥ JeI I £ L pryx = nyf -

For any i€ J the element e, = u;(fy) is the unity-element of
the field E; while all E; have the common zero-element O.
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The Cartesian product A contains as an ideal and conse-

quently as a subring the (exterior) direct sum B = f%% Fi

The B 1is obviously a subcartesian product of the system

{Fi‘ i63 - As a subring of A , in generally, it does not
contain the unity-element 1, It is the goal of our article to
describe all rings R for that B¢ R ¢ A and 1 € R . For

the purpose of this paper we will call all such rings medial
subcartesian products of the system {Fii ied (medial - “"between"
B and A ).

Examples

1. As a trivial example of the medial subcartesian product
(of the system ZFi{ jeg of fields) we may take the Car-

tesian product A itself.

2. Let M = {n X1+alnez , ae Brf. M is obviously the
medial subcartesian product of the system {F.} i€ which
is minimal in the sense of being contained in any other

one.

3. Let J = N be the set of natural numbers and let for any
i€J the Fi be the field of rational numbers ( = the
Cartesian product A = £§5 F; is the ring of all sequenc-
es of rational numbers). Then the set R of all convergent
sequences of rational numbers is a medial subcartesian
product of the system {Fii jeg different from A as well
as from the minimal medial subcartesian product.

Theorem 1. Let M be_the _minimal_subcartesian product of the

system {Fi} i€ of fields. Then_ M = A if_and_only if_the_
set J is_finite.

P roo f: It is sufficient to prove that the infinity of J
implies M # A . For this reason we need to construct an
element x of A whose projections are not almost the constant
multiples of unity-elements. We may see without difficulty
that the following two cases are possible, only. 1. There
exists an infinite subset K of J such that all Fi' i€ K have
the same characteristic. 2. There exists an infinite subset K
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of J such that for any two distinct indices i, j€ K the Fi
Fj have different characteristics. In both cases we may assume
without loss of generality that K is countable: K = {k(l),
k{2), k(S),...f . In the first case, let x € A be an element
for that prk(l) =1 X fk(l)' prk<2) =2 X fk(2)' prk(3) =

= 3 X fk(3)' ««s» « In the second case, let us denote by Py
Pos Pz, -« the characteristics of the fields Fk(l)' Fk(2)'
Fk(}) - the eventuality of the zero-characteristics may be
ommited. Now, let x € A be an element for that prk(l)x =

= (pp =) X Figye Prge)X = (P = 2) X fy o0, prygyx =

= (p3 - 1) x fk(B)' ..« . The proof is completed.

Now, let us consider an arbitrary medial subcartesian
product R of the system {Fiiisa of fields. The ring R
contains any field E; as an ideal, especially it contains any
element e, - the generator of the ideal E. = e

j+ R . Let us
[ \ y : -
put U; = (i -e;j. R . The systenm {ei{ jeg consists of ortho
gonal idempotenties and has following properties:

(i) For any i€ J the ideal U, = (2 - e;). R is maximal.

{ii) If for any i€ J and for some x € R the e;.x = 0 is true,
then x = 0.

The (ii) is evident. To prove (i) we use the fact that

R as R -module is the direct sum of its ideals Ei and Ui

R = Ej_@Ui allowing the unique expression
X = e;.x + (1 - e;).x (1)

for any x& R and summands in order of E; and U;. In such a
way, it follows from (1) that the mapping R —E; given by
Xp—we,;.x is an epimorphism with the kernel Uj. Thus we have
proved:

Theorem 2. Any medial _subcartesian product R of the_system

Conversely, let us suppose that a commutative ring R

with a unity-element 1 is endowed by a system § of

e;} i€J
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orthogonal idempotent elements fulfilling (i) and (ii). Evi-

dently, for any i€ J the elements e, and 1 = e; are orthogonal

i i

idempotenties. Consequently, puttirng E; = e;. R we get

R =Ei$Ui

As U; is a maximal ideal the Ei is a field. Let us denote by

and

A the Cartesian product X_E. of the system {Ei§ 163

ied i
let us define a mapping f : R-=» A by virtue of

'Vx € R : prif(x) = e;.X .

Evidently, f is a hémomofphism carrying the unity-elemént 1
of R onto the element I of A for which pril = e;.1 = e,.
Hence, I is the unity-element 6f the Cartesian product A .
According to the cordition (ii) the kernel of f is the
zero-ideal of the ring R . Consequently, f is an isomorphic

embedding R =3 A |

Let us denote by S the image of the ring R under the
embedding f. As we have seen, the ring S contains the unity-
element I o6f A. The fields A, defined by

Ay ={§e Al¥iea, j#i: 'pr‘j§= o}
are the images of the fields E; under the isomorphic embedding
f. It follows from this that S contains the (interior) direct
sum , @_ Ai as well as the (exteriour) direct sum i?:] E,.
Therefore S is a medial subcartesian product of the system
(B} 1e 9 - , )
We conclude our consideration by formulating:

fields,

Remark. We may replace the system of fields by a system of
integral domains in simultaneous replacing (i) by the con-
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dition:

(i) For any i€ J the ideal U, = (1 - e;). R is a prime-ideal.
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SOUHRN

Medidlni subkartézské soudiny téles

Dalibor K1lueky, Libuse M ar ko v a

vV &lénku jsou studovany subkartézské soudiny systému
téles lFii i€3J obsahujici jednotkovy prvek okruhu iaga Fy
a souéasné jeho ideal i€ 3 F; (vn&jsi direktni souget téles
systému [Fii ieJ)'

PESKME

MenmanpHHE HOAMpSMHE NponsBeleHUs noaei
daaxno6op HKayuxmn , In6yme MapxosBSé4

B crarbe usyualTCA MOINDAMHE HpousBeleHits cucTeMH noxsel
{ Fiiiea colepxapmee eNMHMULY KOJbLA ;EJ Fi M B TOXe BpeMs
ero unean i@a Fi ( BHeWHY® NMpAMY® cyMMy rnoJell cMCTeMH

FigiGJ)'
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