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Completely regular spaces

H.L. Bentley, E. Lowen-Colebunders

Dedicated to the memory of Zdeněk Froĺık

Abstract. We conduct an investigation of the relationships which exist between various
generalizations of complete regularity in the setting of merotopic spaces, with particular
attention to filter spaces such as Cauchy spaces and convergence spaces. Our primary
contribution consists in the presentation of several counterexamples establishing the di-

vergence of various such generalizations of complete regularity. We give examples of: (1)
a contigual zero space which is not weakly regular and is not a Cauchy space; (2) a sep-
arated filter space which is a z-regular space but not a nearness space; (3) a separated,
Cauchy, zero space which is z-regular but not regular; (4) a separated, Cauchy, zero space
which is µ-regular but not regular and not z-regular; (5) a separated, Cauchy, zero space
which is not weakly regular; (6) a topological space which is regular and µ-regular but not
z-regular; (7) a filter, zero space which is regular and z-regular but not completely regu-
lar; and, (8) a regular Hausdorff topological space which is z-regular but not completely
regular.

Keywords: merotopic space, nearness space, Cauchy space, filter merotopic space, pretopo-
logical space, zero space, complete regularity, weak regularity, z-regularity, µ-regularity
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Introduction

During the last three decades, topologists have studied several categories, e.g.,

• Conv, the category of convergence spaces [F59].
• Mer, the category of merotopic spaces [K63].
• Fil, the category of filter merotopic spaces [K65], which is isomorphic to the
category of grill-determined nearness spaces[BHR76].
• Chy, the category of Cauchy spaces [Ke68], [KR74], [LC89].
• Near, the category of nearness spaces [H74a], [H74b], [H88], [P88].

All of these categories contain Top, the category of all topological spaces (some-
times assuming a very weak separation axiom), as a subcategory.
After these categories had been defined and their fundamental properties expli-

cated, topologists began extending various interesting subcategories of Top to the
above larger categories. One of the most interesting subcategories of Top is the
category of completely regular spaces. Perhaps the strongest reason for the impor-
tance of completely regular spaces is the fact that they are closely related to the
real number system, but a secondary reason is that there are many equivalent ways
of characterizing these spaces. However, in the larger categories mentioned above,
the various formulations of complete regularity may not remain equivalent.
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Our principal objective in this paper is to examine how various generalizations
of complete regularity are related. In carrying out this investigation we will operate
within the category Mer, a category which (essentially) contains all of the above
mentioned categories.
In order to keep the exposition as brief as possible, we assume familiarity with

merotopic spaces and nearness spaces (see, e.g., [H83] or [H88]), with convergence
spaces and Cauchy spaces (see, e.g., [LC89]), and with the relationships that exist
between all these (see, e.g., [BHL86]). We also assume familiarity with completely
regular nearness spaces [BHO89]. However, we do present some of the basic defini-
tions and fundamental results.
Recall that a merotopic space can have its structure given in any of four main

ways: by means of the uniform covers, by means of the near collections, by
means of the far collections, or by means of themicromeric (orCauchy) collec-
tions. One should recall here that Katětov used the concept of a collection being
micromeric as a primitive in his theory of merotopic spaces [K63], [K65]. Her-
rlich [H74b] has shown that the structure of a space can be determined by defining
either of the four: the uniform covers, the far collections, the near collections, or the
micromeric collections. For merotopic spaces, Katětov had earlier shown that the
structure can be given equivalently either with uniform covers or with micromeric
collections.
These notions are related as follows: A collection A of subsets of a space X is

far in X provided the collection

{X \A | A ∈ A}

is a uniform cover of X . A near collection is one which is not far. A collection
is micromeric (or Cauchy) provided that secA is a near collection, where sec is
defined by the equation:

secA = {B ⊂ X | B ∩A 6= ∅ for all A ∈ A}.

Every merotopic space has an underlying Čech closure space whose structure is
determined by the closure operator clX defined by :

x ∈ clX A ⇐⇒ {{x}, A} is near in X.

In general, this closure operator fails to be idempotent. It is idempotent, and
hence is a topological closure, provided the merotopic space is a nearness space,
i.e., satisfies the axiom [H74a] of Herrlich:

clX A is near =⇒ A is near,

where

clX A = {clX A | A ∈ A}.
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We can also say that for a micromeric collection A and for x ∈ X , A converges
to x (and write A → x) provided that the collection A ∨ ẋ is micromeric1, 2. This
concept of convergence can be used to characterize the closure operator: We have
that x ∈ clX A iff sec{A, {x}} → x.
There arises the functor T : Near→ Top. Its image is not all of Top, rather it is

the subcategory TopS of all symmetric topological spaces
3, i.e., those which satisfy

the axiom of Šanin [Š43]:

x ∈ clX{y} ⇐⇒ y ∈ clX{x}.

The functor T : Near→ TopS has a right inverse TopS → Near which turns out to
be a full embedding of TopS as a bicoreflective subcategory of Near; we shall assume
this embedding is an inclusion, an assumption which is tantamount to assuming
that a symmetric topological space has its structure given by the set of open covers,
i.e., a symmetric topological space is a nearness space whose uniform covers are
precisely those covers which are refined by some open cover.
In this paper we are interested only in those topological spaces which are sym-

metric. Therefore, we shall shorten the terminology and when we say “topological
space”, we always mean “symmetric topological space”. Moreover, we are inter-
ested only in merotopic spaces: when we say “space”, we mean “merotopic space”.
Whenever X and Y are spaces, we shall use the notation Hom (X, Y ) to denote the
set of all uniformly continuous maps f : X → Y .
We shall need to consider the separated nearness spaces. These have been defined

by Herrlich in [H74b] and their properties explored in [BH78b] and [BH79]. The
definition of these spaces is as follows. First, we say that a collection A of subsets
of a merotopic space X is concentrated iff A is both near and micromeric. We
then define a nearness space X to be separated provided that for any concentrated
collection A, the collection

{B ⊂ X | {B} ∪ A is near }

is near (and hence is the unique maximal near collection containing A). Some mo-
tivation for this terminology lies in the fact that a T1 topological space is separated
iff it is Hausdorff.
Recall the definition of regularity [H74a] for merotopic spaces: A space X is said

to be regular if for every uniform cover A of X , the collection4

{B ⊂ X | B < A for some A ∈ A}

is a uniform cover of X .

1Here, ẋ denotes the principal filter generated by {x}.
2For collections A and B of subsets of X, A∨B denotes the collection of all A∪B with A ∈ A

and B ∈ B, while A ∧ B denotes the collection of all A ∩ B with A ∈ A and B ∈ B.
3These spaces have also been called R0 spaces and essentially T1 spaces.
4B < A means {A, X \ B} is a uniform cover of X or, equivalently, for some uniform cover G

of X, we have star (B, G) ⊂ A.
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Every regular space is a separated nearness space. Our terminology is chosen
with regard to the fact that a topological space is regular as a nearness space iff it
is regular in the usual topological sense.
Regularity is a rather strong requirement on a nearness space. In many ways,

regular spaces are as well-behaved as uniform spaces [BH79]. We now define a less
stringent concept.

Definition 1. A space X is said to be weakly regular provided it satisfies the
condition: Whenever A is a micromeric collection on X then so is clX A.

Proposition 2. If X is a nearness space then the following are equivalent:

(1) X is weakly regular.
(2) Every uniform cover of X is refined by a uniform cover consisting of closed
sets (i.e., closed in the underlying topological space TX).

(3) Every far collection in X is corefined5 by a far collection of open sets.

Proof: (1) =⇒ (2): Assume that X is weakly regular and let G be a uniform cover
of X . It suffices to show that

H = {H ⊂ X | H is closed and H ⊂ G for some G ∈ G}

is a uniform cover of X . Assume that H is not a uniform cover of X . Then there
exists a micromeric collection A such that for every A ∈ A and for every H ∈ H
we have A 6⊂ H . Since X is weakly regular, clX A is micromeric. Hence, for some
G ∈ G and some A ∈ A we have clX A ⊂ G. But then clX A ∈ H and we have
a contradiction.
(2) =⇒ (3): Let A be a far collection in X . Then G = {X \ A | A ∈ A} is

a uniform cover of X and so, by (2), G is refined by some uniform cover H whose
members are closed. Then the far collection B = {X \H | H ∈ H} has open sets
as members and B corefines A.
(3) =⇒ (1): Let A be micromeric and suppose that clX A is not. Then sec clX A

is far and so, by hypothesis, it is corefined by some far collection B of open sets.
Then secB is not micromeric and therefore A 6⊂ secB. There exists A ∈ A with
A /∈ secB. It follows that there exists B ∈ B with B ∩ A = ∅. Since B corefines
sec clX A, we have B ∈ sec clX A. Therefore, B ∩ clX A 6= ∅. Since B is open, we
have a contradiction. �

Proposition 3.

(1) Every regular space is weakly regular.
(2) A topological space is regular iff it is weakly regular.

Proof: (1): Observe first that in any nearness space X we have

B < A ⇐⇒ clX A < intX B.

5A corefines B iff each member of A contains a member of B.
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Let X be a regular space. Then X is a nearness space and we may establish the
statement in Proposition 2 (2) to show thatX is weakly regular. Let A be a uniform
cover of X and let

B = {B ⊂ X | B < A for some A ∈ A}.

Then B refines clX B and clX B refines A. By regularity, B is a uniform cover of X
and the proof of (1) is complete.
(2): Observe first that in any topological space X we have

B < A ⇐⇒ clX A ⊂ intX B.

Let X be a weakly regular topological space. Let A be a uniform cover of X . We
must show that

B = {B ⊂ X | B < A for some A ∈ A}

is a uniform cover of X . X , being a topological space, is a nearness space. Hence
intX A is a uniform cover of X . By the statement in Proposition 2 (2), there exists
a uniform cover H of X which refines intX A with the members of H being closed
sets. Then H ⊂ B and it follows that B is a uniform cover of X . �

Filter merotopic spaces

Filter merotopic spaces were defined by Katětov [K65] and were extensively stud-
ied in [R75] and [BHR76]. Here we shorten “filter merotopic space” to “filter space”.
A space X is said to be a filter space provided every micromeric collectionM

is corefined by some Cauchy filter F .
Every topological space is a filter space (even every subtopological6 space is).
We denote the category of all filter spaces by Fil. Fil is bicoreflective in Mer, and

Fil is cartesian closed. For a description of its function space structure see [K65]
or [BHR76]. Katětov proved that the function space structure of Fil is the one
of continuous convergence. We let id : FX → X denote the Fil coreflection of
a space X .
Several interesting subcategories of Fil were investigated in [BHL86]. Two of the

most useful of these are the categories ConvS (of symmetric convergence spaces)
and Chy (of Cauchy spaces).
A Cauchy space is a filter space X which satisfies: If A and B are micromeric

and if ∅ /∈ A ∧ B then A ∨ B is micromeric.
The category of all Cauchy spaces is denoted by Chy; it is bicoreflective in Fil.

Cauchy spaces are precisely what Katětov called “Hausdorff filter merotopic spaces”.
Cauchy spaces are usually defined using Cauchy filters only [KR74] instead of the
more general micromeric collections. Nevertheless, there is no essential difference
between these two approaches since isomorphic categories result [BHL86].

6A nearness space is said to be a subtopological space provided it is a subspace of some
topological space.
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A filter space X is called a C space provided that whenever A and B are mi-
cromeric in X and x ∈ X then we have

A → x and B → x =⇒ A∨ B is micromeric.

A convergence space is a C space which satisfies the condition: For every
micromeric collection A in X there exists x ∈ X such that A → x. The subcategory
of Mer whose objects are the convergence spaces is denoted by ConvS.
We mentioned above that Cauchy spaces are defined usually in terms of axioms
about filters. The same thing is true about convergence spaces. If Conv denotes
the category of all convergence spaces in the sense of Fisher [F59], then ConvS is
isomorphic to that full subcategory of Conv whose objects are those convergence
spaces satisfying the following symmetry axiom:

ẋ→ y =⇒ x and y have the same convergent filters.

Between convergence spaces, a map f : X → Y is said to be continuous at x
iff a filter F converges to x in X implies the filter7 G = stack{f [F ] | F ∈ F}
converges to f(x) in Y . It then follows that f : X → Y is uniformly continuous
iff it is continuous at x for every x ∈ X . Because of this fact, we often omit the
word “uniformly” in the phrase “uniformly continuous” when we are dealing with
convergence spaces.
In the counterexamples which appear near the end of this paper, we have found it
useful to define some spaces directly in terms of “neighborhoods” of points. Such
spaces always turn out to be convergence spaces, in fact, even more special than
convergence spaces: They are always pretopological spaces [C48], [BHL86], [LC89].
A pretopological space is a setX endowed with a “neighborhood filter system” B,
i.e., to each x ∈ X is associated a filter B(x) such that the following two axioms are
satisfied:
(N1) x ∈ ∩B(x) for each x ∈ X .
(N2) B(x) is a filter on X for each x ∈ X .
A map f : (X1,B1)→ (X2,B2) between pretopological spaces is said to be contin-
uous at x provided

B2
(

f(x)
)

⊂ stack {f [A] | A ∈ B1(x)} .

We then say that f is continuous iff f is continuous at x for each x ∈ X .
Each pretopological space (X,B) becomes a convergence space if, for a filter F on
X and for x ∈ X , we define F → x iff B(x) ⊂ F . The resulting convergence spaces
are precisely those which satisfy the convergence axiom:

∩{F | F → x} → x.

(The above informal description is actually a concrete isomorphism of categories.)
One final remark about pretopological spaces: They are also isomorphic to the
category of closure spaces (in the sense of Čech, i.e, without idempotency). For
a proof of this isomorphism, see Section III.14.B of [Č66].

7stackA for a collection A denotes the collection of all supersets of members of A.
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Completely regular spaces

Completely regular nearness spaces have been defined in a way that enables one
to determine internally all completely regular extensions of topological spaces. The
following definitions and results are taken from [BHO89].
The definition of complete regularity involves a slight modification of the defini-

tion of regularity.
A space X is said to be completely regular if for every uniform cover A of X ,

the collection

{B ⊂ X | B is completely within A for some A ∈ A}

is a uniform cover of X . That B is completely within A means that there exists
a uniformly continuous map f : X → [0, 1] with f [B] ⊂ {0} and f [X \ A] ⊂ {1}.
Here, [0, 1] is understood to carry its usual topological structure: the set of all covers
refined by some open cover.
Every completely regular space is regular, and every uniform space is completely

regular. Not every regular space is completely regular: An example is any regular
topological space which is not completely regular. Not every completely regular
space is uniform: An example is any completely regular topological space which is
not paracompact.
The concept of complete regularity can be formulated in terms of the micromeric

collections: A space X is completely regular if and only if it satisfies the following
condition: Whenever A is a micromeric collection in X , then so is the collection

{B ⊂ X | A is completely within B for some A ∈ A}.

The underlying topological space TX of a completely regular spaceX is also com-
pletely regular (in the usual topological sense). A topological space is completely
regular (as a merotopic space) if and only if it is completely regular as a topological
space, in the usual sense.
A useful characterization of those subtopological spaces which are completely

regular is that they are precisely the subspaces (in Mer) of the completely regular
topological spaces [BHO89].

Creg, the full subcategory of Nearwhose objects are the completely regular spaces,
is bireflective in Near.

Zero spaces

A classical result is that a topological space X is completely regular iff the set
of zero sets of all real-valued continuous functions forms a base for the closed sets
of X . In [BHO89] the analogous property for merotopic spaces was defined, arriving
at a category called Zero.
The real line8 as a topological space with the usual topology will be denoted by

IRt. Recall that Hom (X, IRt) denotes, for any space X , the set of all uniformly

8The space IRt, as well as IR with various other related nearness structures, was studied
in [BH78a.]
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continuous maps f : X → IRt. The set of all bounded members of Hom(X, IRt) is
a φ-algebra (in the sense of [HJ61]). For any space X , we have

{Z(f) | f ∈ Hom(X, IRt)} = {Z(f) | f ∈ Hom(X, IRt) and f is bounded },

where we are using the usual notation:

Z(f) = {x ∈ X | f(x) = 0}

coz (f) = {x ∈ X | f(x) 6= 0}.

We shall use the customary notation:

Z(X) = {Z(f) | f ∈ Hom(X, IRt)}

coz (X) = {coz (f) | f ∈ Hom(X, IRt)}.

Members of Z(X) are called zero sets and members of coz (X) are called cozero
sets.
A space X is said to be a zero space provided that every far collection in X is

corefined by a far collection consisting of zero sets.
The concept of being a zero space can be formulated either in terms of uniform

covers or in terms of micromeric collections.

Proposition 4. For any space X , the following are equivalent:

(1) X is a zero space.
(2) Every uniform cover of X is refined by a uniform cover consisting of cozero
sets of X .

(3) Every micromeric collection in X is corefined by a micromeric collection
consisting of cozero sets.

Proof: The proof is analogous to the proof of Proposition 2. Use zero (cozero)
sets where in the proof of Proposition 2 we used closed (open) sets. �

Every zero space is necessarily a nearness space and every completely regular
space is a zero space. Not every zero space is completely regular. In fact, a zero
space need not even be weakly regular (see Example 5). For topological spaces,
however, recall that being a zero space is equivalent to being completely regular.

Zero, the full subcategory of Near whose objects are the zero spaces, is bireflective
in Near. Additional information about zero spaces can be found in [BHO89].
If X is any space, then we have defined above a closure operator clX on X .

At this time we are interested in a different closure operator on X which we shall
denote by clIR (in spite of the fact that this notation seems contradictory). clIR
denotes the closure operator on X which corresponds to the initial topology on X
induced by the source

(

f : X → IRt

)

f∈Hom (X,IRt)
.

Proposition 5. Let X be a set and let F be a sublattice of the lattice of all maps
X → IR with pointwise operations. Assume that the condition:

f ∈ F and g : IRt → IRt continuous =⇒ g ◦ f ∈ F
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is satisfied. Then

{Z (f) | f ∈ F}

is a base for closed sets of the initial topology on X induced by the source

(

f : X → IRt

)

f∈F .

Proof: The usual argument used in such theorems can be adapted. See, e.g., the
proof of Proposition 1.5.8 of [E89], but write “min” where Engelking writes “max”
since we have interchanged 0 and 1. �

Corollary 6. If X is a merotopic space then Z (X) is a base for closed sets for the
topology corresponding to the closure operator clIR.

We remark that it follows from the above result that clX A ⊂ clIRA for every
subset A of X . Indeed, the uniform continuity of a map f : X → IRt implies the
uniform continuity (=continuity since TX is topological) of f : TX → IRt, and
consequently Z(f) is closed in TX . Hence, every set which is closed with respect
to the topology induced by the operator clIR is also closed in TX . Therefore,
clX A ⊂ clIR A.

Proposition 7. If X is a zero space, then clX = clIR, i.e., the usual Čech closure
operator of X as a merotopic space is actually a topological closure and it is the
one corresponding to the initial topology on X induced by the source

(

f : X → IRt

)

f∈Hom (X,IRt)
.

Proof: We have already mentioned above that for any subset A of X , we have
clX A ⊂ clIRA. To show the reverse inclusion, let x /∈ clX A. Then {A, {x} } is
far in X so for some B ⊂ Z(X), B is far in X and B corefines {A, {x} }. For
some B ∈ B, we have x /∈ B. Therefore, A ⊂ B. For some uniformly continuous
map f : X → IRt we have B = Z(f). B is closed with respect to the topology
corresponding to the operator clIR and therefore clIRA ⊂ B. Hence, x /∈ clIRA and
the proof is complete. �

Corollary 8. If X is a zero space then its underlying topology TX is completely
regular.

Z-regular spaces

In this section, we consider a property which is not directly related to complete
regularity, but is a slight variation on the definition of zero spaces.

Definition 9. A space X is said to be a z-regular space provided it satisfies the
condition: Every far collection in X is corefined by a far collection consisting of
cozero sets.
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Proposition 10. For any space X , the following are equivalent:

(1) X is z-regular.
(2) Every uniform cover of X is refined by a uniform cover consisting of zero
sets.

(3) Every micromeric collection in X is corefined by a micromeric collection
consisting of zero sets.

Proof: The proof is analogous to the proofs of Propositions 1 and 4. �

Proposition 11.

(1) Every completely regular space is z-regular.
(2) Every z-regular space is weakly regular.

Proof: (1): The proof is trivial from the definitions.
(2): See Proposition 16 below. �

The proofs of Propositions 12 and 13 below are straightforward textbook exer-
cises.

Proposition 12. z-regularity is productive, hereditary, and summable in Mer.

Proposition 13. The category of z-regular spaces is bireflective in Mer. If X is
any merotopic space, then its z-regular reflection is given by id : X → ZX , the
identity map on the underlying sets, where we define:

A is a uniform cover of ZX

iff

A is refined by some uniform cover B of X such that B ⊂ Z(X).

Furthermore, Hom(X, IRt) = Hom (ZX, IRt). (Note that the notation is tricky:
Z(X) denotes the collection of all zero subsets of X while ZX denotes the z-regular
reflection of X .)

We remark that a z-regular space may fail to be a nearness space (Example 2) and
a z-regular nearness space may fail to be regular (Example 3). Being a topological
space doesn’t help much: a z-regular topological space may fail to be completely
regular (Example 8)9. Also, a zero space may fail to be z-regular (Example 4),
and regularity doesn’t even help (J. Reiterman and J. Pelant have produced an
example of a regular zero space which is not z-regular [Private communication -
unpublished]).

µ-regular spaces

We are interested in a notion of complete regularity defined for filter spaces
by Katětov [K65]. In order to avoid confusion of terminology, we use the phrase
“µ-regular space” in place of Katětov’s “completely regular filter space”.
Recall the closure operator clIR introduced in the above section on zero spaces.

9In this connection, note that Exercise 14.C.2 of [W70] is a misprint.
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Definition 14. We say that a space X is µ-regular iff the condition:

A is micromeric in X =⇒ clIRA is micromeric in X.

Proposition 15. For any space X , the following are equivalent:

(1) X is µ-regular.
(2) Every micromeric collection in X is corefined by a micromeric collection
consisting of sets which are closed with respect to the topology corresponding
to the closure operator clIR.

(3) Every uniform cover of X is refined by a uniform cover consisting of sets
which are closed with respect to the topology corresponding to the closure
operator clIR.

(4) Every far collection in X is corefined by a far collection consisting of sets
which are open with respect to the topology corresponding to the closure
operator clIR.

Proof: The proof is analogous to the proofs of Propositions 1, 4, and 10. �

Proposition 16.

(1) Every z-regular space is µ-regular.
(2) Every µ-regular space is weakly regular.

Proof: (1): Let X be a z-regular space and let A be micromeric in X . By
Proposition 10, (1) =⇒ (3), A is corefined by some micromeric collection B of zero
sets. It is enough to show that B corefines clIRA. Every B ∈ B is the zero set of
some uniformly continuous map f : X → IRt. Such an f is continuous with respect
to the topology corresponding to clIR. Therefore, B is closed in that topology and
the desired result follows.
(2): The result is immediate from the fact (observed after Corollary 6 above) that
clX A ⊂ clIR A for every subset A of X . �

Proposition 17. If X is a zero space, then

X is µ-regular ⇐⇒ X is weakly regular.

Proof: This result follows immediately from the relation clIR = clX given in
Proposition 7. �

The proofs of the following three propositions are straightforward exercises.

Proposition 18. The category of µ-regular spaces is bireflective in Mer. If X is
any merotopic space, then its µ-regular reflection is given by id : X → MX , the
identity map on the underlying sets, where we define:

A is micromeric in MX

iff
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for some micromeric collection B in X we have clIR B corefines A.

Furthermore, Hom(X, IRt) = Hom(MX, IRt).

Proposition 19. The category of all µ-regular filter spaces is bireflective in Fil

withid : X → FMX being the µ-regular filter reflection of a filter space X .

Proposition 20. The Fil coreflection of a µ-regular space is also µ-regular.

Examples

Example 1. A contigual10 zero space X which is not weakly regular and is not
a Cauchy space. This example is due to J. Reiterman [Private communication -
unpublished]; it is the first known example of this type.

The underlying set of X is the open segment ]0, 1[. The structure of X is obtained
by refining the metric uniformity of the open segment ]0, 1[ by adding a single cover

G = {G1, G2 }

where

G1 = ]0, 1[ \
{ 1

2n
| n ∈ IN

}

G2 = ]0, 1[ \
{ 1

2n+ 1
| n ∈ IN

}

.

Thus, basic uniform covers are of the form Cǫ∧G where Cǫ is a finite cover of ]0, 1[ by
open segments of length ǫ. Members of these covers are cozero with respect to the
metric uniformity; thus they are cozero with respect to the space X for the latter
has a structure which is (strictly) finer. It follows that X is a zero space. Since
the basic uniform covers of X are open in the usual topology of the open segment
]0, 1[, the topology TX of X is the same as the usual topology of the open segment.
Further, for every open set G, we have

cl G = cl (G ∩Gi) (i = 1, 2).

Hence { cl G | g ∈ Cǫ ∧ G } is refined by Cǫ. It follows that G cannot be refined by
any closed uniform cover of X ; therefore, X is not weakly regular.
Clearly,X is contigual. The fact that every contigual space is subtopological (and

hence is a filter space) follows from [H74a; Proposition 5.11]; for an short proof of
this fact see [BH82; Proposition 2.4]. In the present example, X is a subspace of
the topological space ]0, 1[ ∪ {ξ1, ξ2 } where a neighborhood base of ξ1 consists of
the sets

{ξ1} ∪
(

]0, ǫ[ \
{ 1

2n
| n ∈ IN

} )

ǫ > 0,

10A space is said to be contigual iff every uniform cover is refined by some finite uniform
cover.
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and where a neighborhood base of ξ2 consists of the sets

{ξ2} ∪
(

]0, ǫ[ \
{ 1

2n+ 1
| n ∈ IN

} )

ǫ > 0.

To show that X is not a Cauchy space, let

F = stack {Fǫ | ǫ > 0}

G = stack {Gǫ | ǫ > 0}

where

Fǫ = ]0, ǫ[ \ {
1

2n
| n ∈ IN}

Gǫ = ]0, ǫ[ \ {
1

2n+ 1
| n ∈ IN}.

Then F and G are Cauchy filters on X with ∅ /∈ F ∧G but with F ∨G not a Cauchy
filter.

Example 2. Example 2 is the pretopological space X described in Example 3
below. It is a separated filter space which is a z-regular space but not a nearness
space.

Example 3. A separated, Cauchy, zero space E which is z-regular but not regular.

On the real line let α be an irrational number and let (αj)j∈IN be a strictly monotone
decreasing sequence of irrationals converging to α. For j > 1 choose a sequence

(qj
n)n∈IN of rationals in the interval ]αj , αj−1[ converging to αj . For j = 1 choose

a sequence (q1n)n∈IN of rationals in the interval ]α1,∞[ converging to α1. Let

X =
(

[α,∞[ ∩ Q
)

∪ {α} ∪ {αj | j ∈ IN} .

(Here Q denotes the set of all rational numbers.) A pretopological structure p is
defined on X by means of the following neighborhood filters B(x) for x ∈ X :

B(q) =q̇ for q ∈ X ∩Q

B(α) = stack {Fn ∪ {α} ∪ {αj | j ≥ n }, | n ∈ IN}

where Fn =

∞
⋃

j=n

{qj
k
| k ∈ IN}

B(αj) = stack {]αj −
1

n
, αj +

1

n
[ ∩ X | n ∈ IN}.

Clearly (X, p) is Hausdorff.
We define a space (E, γ) by E = [α,∞[ ∩ Q and γ is the merotopic subspace
structure of (X, p). By the results in the paper [BHL86], it follows that (E, γ) is
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a separated Cauchy space. Since the minimal Cauchy filters have an open base,
(E, γ) is a nearness space.
For each x ∈ X we let M(x) be the trace of B(x) on E. For every n and every
m ≥ n there exists j such that

E \ Fm /∈M(αj) and Fn /∈M(αj).

It follows that

M(α) 6= {B ⊂ E | A < B for some A ∈ M(α) } .

Hence, (E, γ) is not regular.
Next we show that (E, γ) is z-regular, and therefore also µ-regular and weakly
regular. Let τ be the trace on X of the discrete rational extension topology of IR
(every rational point is open). (X, τ) is metrizable and τ is a coarser structure
than p. Therefore τ closed sets are τ zero sets and hence also p zero sets. So
traces of τ closed sets are (E, γ) zero sets. Hence, eachM(x) for x ∈ E has a base
consisting of zero sets, and it follows that (E, γ) is z-regular.
Finally, we show that (E, γ) is a zero space. Since the neighborhood filters in (X, τ)
of the rational points as well as every αj have a base of τ cozero sets, then the
neighborhood filters in (X, p) of each of those types of points have a base of p
cozero sets, and it follows that the traces of the neighborhood filters in (E, γ) of
each of those types of points have a base of γ cozero sets. So we need only show
that M(α) has a γ cozero set base. Let n ∈ IN and consider the corresponding

Fn ∈M(α). A continuous map f̂n : (X, p)→ IRt is defined as follows:

f̂n(q
n
j ) =

1

j
if j ≥ 1

f̂n(q
n+k
j ) =

1

j + k
if j ≥ 1 and k ∈ IN

f̂n(x) = 0 elsewhere.

The restriction fn of f̂n is uniformly continuous (E, γ)→ IRt and Fn = f−1
n ]0,∞[.

Therefore, Fn is a cozero set.

Example 4. A separated, Cauchy, zero space X which is µ-regular but not regular
and not z-regular.

We let ω denote the first infinite ordinal, Ω the first uncountable ordinal, ωω the
ordinal product, and Z = [0, ωω]× [0,Ω] the set theoretic product of the sets [0, ωω]
and [0,Ω]. On Z we place a pretopological structure by defining filterbases for the
neighborhood filters as follows:

S(α, β) =
{

{x}
}

if x = (α, β), and either β < Ω or α < ωω is a successor ordinal

S(ωn,Ω) = {]δ, ωn]× ]γ,Ω] | δ < ωn and γ < Ω} for n < ω

S(ωω,Ω) = {]δ, ωω]× {Ω} | δ < ωω} .
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That is to say, the neighborhood filters are B(x) = stackS(x) for each x ∈ Z. We
define X as the merotopic subspace of Z where

X = {(α, β) ∈ Z | β < Ω or α is a successor ordinal } .

Z is a strict completion of X in the sense of [L89], and so it follows that a map
X → IRt is uniformly continuous iff it has a continuous extension Z → IRt.
In order to show that X is not z-regular, consider the micromeric collection

G =
{(

]δ, ωω]× {Ω}
)

∩X | δ < ωω
}

,

which is the trace on X of the neighborhood filterbase S(ωω,Ω). Assuming X is
z-regular, G is corefined by a micromeric collection P whose elements are zero sets
of X . Since P is micromeric in X , it is also micromeric in Z. Therefore, there
exists a neighborhood filter of some point of Z which corefines P . It is not difficult
to see that such a point must in fact be (ωω,Ω). Therefore, we have that B(ωω,Ω)
corefines P , which in turn corefines G. Let B =]0, ωω]× {Ω}. Then B ∈ B(ωω,Ω)
and so there exist P ∈ P and G ∈ G with G ⊂ P ⊂ B. Since P is a zero set
of X , there exists a uniformly continuous map f : X → IRt such that f ≥ 0 and
f−1[{0}] = P . Let f̂ : Z → IRt be the continuous extension of f . By definition of
G, there exists δ < ωω such that

G =
(

]δ, ωω]× {Ω}
)

∩X.

There exists k < ω with δ < ωk. The sequence

(

ωk + 1,Ω
)

,
(

ωk + 2,Ω
)

, · · ·

converges to
(

ω(k+1),Ω
)

in Z. Since f̂(α,Ω) = 0 whenever α is a successor ordinal

between ωk and ω(k + 1), it follows that f̂
(

ω(k + 1),Ω
)

= 0. The continuity of

f̂ : Z → IRt implies that

{

[−
1

m
,
1

m
] | m < ω

}

corefines
{

f̂ [H ] | H ∈ B
(

ω(k + 1),Ω
)}

.

Therefore we have

∀m < ω ∃ δm < ω(k+1) ∃ γm < Ω f̂
(

]δm, ω(k+1)]× ]γm,Ω]
)

⊂ [−
1

m
,
1

m
].

Put γ = supn γn. Then γ < Ω. It follows that

∀m < ω {ω(k + 1)}× ]γ,Ω] ⊂]δm, ω(k + 1)]× ]γm,Ω].

Therefore,

∀m < ω f̂
(

{ω(k + 1)}× ]γ,Ω]
)

⊂ [−
1

m
,
1

m
].
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So finally we can conclude that

f̂
(

{ω(k + 1)}× ]γ,Ω]
)

= {0}.

But
(

{ω(k + 1)}× ]γ,Ω]
)

∩X ⊂ P ⊂ B = ]0, ωω]× {Ω}.

Since ]γ,Ω] is not a subset of {Ω}, we have a contradiction.
To prove that X is a zero space, it suffices to show that the trace on X of each
neighborhood filter of Z has a base of cozero sets. Each of the filters

B(α, β), β < Ω,

B(α, β), α a successor ordinal,

B(ωn,Ω), n < ω,

clearly has a base of cozero sets of Z: In each case, the sets in the defining filterbase
are cozero sets as can be shown by using the characteristic function of each such
set (i.e., the function which is 1 on the set and 0 off it). It follows, in each of the
above three cases, that the traces on X have bases of cozero sets of X .
Note that

{

]ωn, ωω]× {Ω} | n < ω
}

is a base for B(ωω,Ω). Let n < ω and let

M =
(

]ωn, ωω]× {Ω}
)

∩X.

To show that M is a cozero set of X , we define h : Z → IRt such that h is 0 at
all points of Z except those of the form (α,Ω) where α is a successor ordinal with
ωn < α. If n < k < ω and 0 < p < ω, we define

h
(

ωk + p,Ω
)

=
1

kp
.

Clearly, M = X ∩ coz (h), so the only thing left to check is the continuity of
h : Z → IRt. At each discrete point, h is trivially continuous. At (ωm,Ω) with
m ≤ n, h is 0 on every basic neighborhood. Consider a point (ωm,Ω) with n < m.
For ǫ > 0 we choose p < ω such that

1

(m− 1)p
< ǫ

and we choose γ < Ω arbitrarily. Then

h
(

]ω(m− 1) + p, ωm]× ]γ,Ω]
)

⊂ [−ǫ, ǫ],

and it follows that h is continuous at each point (ωm,Ω) with n < m. Finally,
consider the point (ωω,Ω). For each ǫ > 0 we choose m with n < m < ω such that
1
m < ǫ. Then

h
(

]ωm, ωω]× {Ω}
)

⊂ [−ǫ, ǫ],
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and it follows that h is continuous at (ωω,Ω). This completes the proof that X is
a zero space.
Since X is a zero space, it is a nearness space. Therefore, the underlying closure
operator is topological and, by Proposition 7, clX = clIR. Clearly, the trace on X
of each basic neighborhood of points of Z are closed in X . It follows that X is
a µ-regular space.
It remains to prove only that X is not a regular space. Let

M = {
(

]δ, ωω]× {Ω}
)

∩X | δ < ωω} ,

i.e.,M is the trace on X of the basic neighborhoods of (ωω,Ω). Clearly, it suffices
to show that

{S ⊂ X |M < S for some M ∈M}

is not micromeric. For that purpose, it is sufficient to show that for every k with
n < k < ω, we have

(

]ωk, ωω]× {Ω}
)

∩X ≮
(

]ωn, ωω]× {Ω}
)

∩X.

Select any l with k < l < ω. Clearly
(

]ωn, ωω]× {Ω}
)

∩X does not belong to the
trace of B(ωl,Ω) on X . On the other hand,

X \

(

(

]ωk, ωω]× {Ω}
)

∩X

)

does not belong to the trace of B(ωl,Ω) on X either. It follows that

{

(

]ωn, ωω]× {Ω}
)

∩X , X \

(

(

]ωk, ωω]× {Ω}
)

∩X

) }

is not a uniform cover of X , and we are through.

Example 5. A separated, Cauchy, zero space X which is not weakly regular.

Let X = IR with the following merotopic structure: A is micromeric in X iff either
A is corefined by some point’s usual neighborhood filter in IRt or A is corefined by
the filterbase

F = {Fn | n ∈ IN}

where

Fn =
⋃

k≥n

]

k −
1

2
, k +

1

2

[

.

Since every point has an IRt neighborhood disjoint from some member of F , X
is clearly a Cauchy space, and since every equivalence class of Cauchy filters on
X has a minimum (either an IRt neighborhood filter or the filter generated by F)
X is separated. We remark that the underlying closure operator ofX as a merotopic
space and the closure operator in the ConvS coreflection of X both coincide with
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the closure operator of IRt. Since {clX F | F ∈ F} is not corefined by F , the space
X is not weakly regular.
It remains to be shown that X is a zero space. Let W(x) be the IRt neighborhood
filter of a point x. W(x) has a base consisting of cozero sets of IRt, and, moreover,
if f : IRt → [0, 1] is continuous and coz f ⊂ ]x− ǫ, x+ ǫ[ for some ǫ > 0, then there
exists n0 such that f is 0 on Fn for every n ≥ n0. It follows that {f [F ] | F ∈ F}
generates the filter 0̇ and hence f : X → [0, 1] is uniformly continuous. Thus,W(x)
has a base consisting of cozero sets of X .
The proof will be complete if we can show that every member of F is a cozero set of
X . Let n ∈ IN and let In = [n−

1
2 , n+

1
2 ] with the usual topology, i.e., as a subspace

of IRt. The open interval ]n −
1
2 , n +

1
2 [ is a cozero set in In. Let f : In → [0, 1]

be continuous such that coz f = ]n− 12 , n+
1
2 [. We extend f to a continuous map

f̃ : IR→ [0, 1] in the following way:

f̃ =

{

0, if x ≤ n− 12
f(x−l)

l+1 , if x ∈ In+l .

Clearly coz f̃ = Fn. In order to show that {f̃ [F ] | F ∈ F} converges to 0, let ǫ > 0

and choose l0 such that
1

l0+1
< ǫ. Then f̃ [In+l] ⊂ [0, ǫ] for every l ≥ l0. Hence

{f̃ [F ] | F ∈ F} is corefined by the usual neighborhood filter of 0. It follows that

f̃ : X → [0, 1] is uniformly continuous and therefore Fn is a cozero set of X . This
completes the proof that X is a zero space.

Example 6. A topological space Z which is regular and µ-regular but not z-regular.

This example is based on Example 17 of van Est and Freudenthal [vEF51]. Let
Z = IR ∪ {ω}, where ω /∈ IR. Let IP denote the space of irrational numbers with
the usual topology. Using Lemma 10 of [vEF51]] we can express IP as a pairwise
disjoint union of a family (Yn) of subspaces of IP where each Yn is of the second

category in every open set of IR. We establish the notation: If pi denotes the ith

prime number, ρ > 0, and ξ ∈ Yi, then we let

V̺ pi
(ξ) = {

s

t
| s ∈ Z, t = pα

i for some α ∈ IN, and |ξ −
s

t
| <
1

t
< ̺} .

We are using IN to denote the set of positive natural numbers, Z to denote the set
of all integers, and Q to denote the set of all rational numbers. We make Z into
a topological space by introducing the following neighborhoods:

(1) If q ∈ Q, then we take

{A ⊂ Z | q ∈ A}

as a neighborhood base at q, i.e., every rational point is to be a discrete
point.

(2) If ξ ∈ IP with ξ ∈ Yi, then we take as a neighborhood base at ξ the collection:

{V̺ pi
(ξ) ∪ V̺ pi+1

(ξ) ∪ {ξ} | ̺ > 0} .
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(3) For each natural number n, we let Hn denote the set of all real numbers
strictly greater than n and we define

Wn = {ω} ∪

(

Hn ∩

[(

∞
⋃

i=n

Yi

)

∪
⋃

{

V1 pi
(ξ) | i ≥ n and ξ ∈ Yi

}

])

.

Then we let
{Wn | n ≥ 1}

be a neighborhood base at ω.

The only non triviality arising in the proof that Z is a topological space is the
demonstration that eachWn contains a neighborhood of each of its irrational points.
Let ξ0 ∈ Yi for some i ≥ n. Then

V1 pi
(ξ0) ∪ V1 pi+1

(ξ0) ⊂
⋃

{V1 pj
(ξ)j ≥ n and ξ ∈ Yj} .

Indeed, let

v =
s

pα
i+1

∈ V1 pi+1
(ξ0).

Using the density of Yi+1, choose ξ ∈ Yi+1 between v and ξ0. It follows that

v ∈ V1 pi+1
(ξ).

In order to show that Z is regular and T1, we consider each kind of point in turn. For
each rational point q, the set {{q}} is a neighborhood base of closed sets. Consider
next a point ξ ∈ IP. If ξ ∈ Yi, then the set

A = V̺ pi
(ξ) ∪ V̺ pi+1

(ξ) ∪ {ξ}

is open and closed in Z. It is clear that ω, any rational in Z \A, or any ξ′ ∈ Yj for
j /∈ { i− 1, i, i + 1 } all have a neighborhood contained in Z \ A. Suppose ξ′ ∈ Yj

with j ∈ { i− 1, i, i+ 1 } and with ξ′ 6= ξ. Let η = |ξ′ − ξ|. Then

A ∩
]

ξ′ −
η

2
, ξ′ +

η

2

[

is finite (perhaps empty). So there exists δ > 0 such that

Vδ pj
(ξ′) ∪ Vδ pj+1

(ξ′) ∪ {ξ′} ⊂ Z \A.

Thus we have established that every irrational point of Z has a neighborhood base
of closed sets.
Finally, we consider the point ω. For every n there exists k such that Wk ⊂
clX Wk ⊂ Wn. Fix n and choose such a k with k ≥ n + 1. If z ∈ clX Wk and
z /∈ Wk then z has to be an irrational point z = ξ with ξ ∈ Yj for some j < k.
Moreover, for all ̺, we have

(

V̺ pj
(ξ) ∪ V̺ pj+1

(ξ) ∪ {ξ}
)

∩Wk 6= ∅.
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It follows that j ≥ k − 1. Hence j ≥ n. We have that ξ ∈ clX Wk. Hence ξ belongs
to the usual closure of Hk and therefore ξ ∈ Hn. Finally we can conclude that
ξ ∈ Wn. The proof that Z is regular and T1 is finished.
We next prove that Z is µ-regular. Note that since Z is a topological space,
µ-regularity means the following: Let Z ′ be the completely regular reflection of Z.
Then Z is µ-regular if and only if the following condition is satisfied:
For every z ∈ Z and for every V a neighborhood of z in Z, there is a neighborhood
U of z in Z such that clZ′ U ⊂ V .
First, let z = q ∈ Q. Since {q} is open and closed in Z, the characteristic function
χ{q} : Z → IRt is continuous. Hence {q} is closed in Z ′.

Secondly, let z = ξ ∈ IP with say ξ ∈ Yi. We have already proved above that

A = V̺ pi
(ξ) ∪ V̺ pi+1

(ξ) ∪ {ξ}

is open and closed in Z. So χA : Z → IRt is continuous and hence A is closed in Z ′.
Thirdly, let z = ω and letWk be a basic neighborhood of z. Since we already proved
that Z is regular, it suffices to show that clZ′ Wk = clZ Wk. Let z ∈ clZ′ Wk and
suppose that z /∈ Wk. Then z ∈ IR, i.e., z 6= ω. In order to prove that z ∈ clZ Wk,
we show that the neighborhood filters of z in Z and Z ′ coincide. As before, note
that for q ∈ Q we have that χ{q} : Z → IRt is continuous and hence {q} is open

in Z ′, while for ξ ∈ IP and A as above, χA : Z → IRt is continuous and hence A is
open in Z ′. This concludes the proof that Z is µ-regular.
We show that Z is not z-regular. If n ≥ 2 andWn is a basic neighborhood of ω, then
there is no continuous function f : Z → IRt and k ≥ n such that Wk ⊂ Z(f) ⊂Wn.
Indeed, it follows from the results in [vEF51] that the fact that f equals zero on
Yk ∩Hk implies that it also takes the value zero on some points outside Wn. (Note:
The fact that Z is not completely regular has been proved on page 366 of [vEF51]:
Y1 is closed and Z cannot be separated from ω by a continuous function.

Example 7. A filter, zero space X which is regular, and z-regular but not com-
pletely regular.

Let Z be the topological space defined in Example 5 above and let X be the rational
numbers as a nearness subspace of Z. Clearly, X is a filter nearness space which is
regular. Also X is not completely regular.
In order to show that X is a zero space, it suffices to show that the trace on X of
any neighborhood filter of Z has a base consisting of cozero sets. Since for rational
points q the set { q } is open and closed, the characteristic function χ{q} : Z → IRt is

continuous. Hence the restriction f =
(

χ{q}|X
)

: X → IRt is uniformly continuous

and we have { q } = coz f .
The same argument is used for the trace of the neighborhood filter of an irrational
point ξ: Any set

A = V̺ pi
(ξ) ∪ V̺ pi+1

(ξ) ∪ {ξ}

is open and closed in Z and hence the characteristic function χA : Z → IRt is
continuous. Therefore the restriction f = (χA|X) : X → IRt is uniformly continuous
and we have A = coz f .
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Consider next the trace of the neighborhood filter of ω. It has as a base

{Wn ∩X | n ∈ IN}.

We show that for every n, the set Wn ∩X is a cozero set in X . Notice that

Wn ∩X = Hn ∩
⋃

{V1 pi
(ξ) | i ≥ n and ξ ∈ Yi} .

Let n be fixed. Let h : Z → IRt be the function defined as follows: h takes the value
0 everywhere except on Wn ∩ X . For q ∈ Wn ∩ X with q = s

t (
s
t in irreducible

form), and with t = pα
i for some α and for some i ≥ n, we define h(q) = 1t .

We show that h is continuous. Clearly, h is continuous at every rational point. Let
ξ be irrational and select i so that ξ ∈ Yi. Let ǫ > 0. Choose ̺ < ǫ and consider
the neighborhood

A = V̺ pi
(ξ) ∪ V̺ pi+1

(ξ) ∪ {ξ}.

Let s
t ∈ A (st in irreducible form).If

s
t /∈ Wn then h(st ) = 0. If

s
t ∈ Wn then

h(st ) =
1
t , and since

s
t ∈ A it follows that |ξ − s

t | <
1
t < ̺, and hence h(st ) < ǫ.

So we can conclude that h[A] ⊂ [−ǫ, ǫ[, therefore h is continuous at each irrational
point. In order to show that h is continuous at ω, let ǫ > 0 and choose m such
that m ≥ n and 1

pm
< ǫ. It suffices to show that h[Wm) ⊂ [−ǫ, ǫ[. Let q be

rational, q ∈ Wm. Then there exist i ≥ m and ξ ∈ Yi such that q ∈ V1 pi
(ξ), and

consequently q = s
t (in irreducible form) where s ∈ Z and t = pα

i for some α ∈ IN

with |ξ − s
t | <

1
t . Hence we have

h(
s

t
) =
1

t
=
1

pα
i

≤
1

pα
m

<
1

pm
< ǫ.

This completes the proof that h is continuous.
It follows that f = h |X : X → IRt is uniformly continuous. Moreover, Wn ∩X =
coz f . The proof that X is a zero space is complete.
In order to show that X is a z-regular space, we show that the trace on X of the
neighborhood filters of each point of Z has a base of zero sets. For rational q ∈ Z
and for irrational ξ ∈ Z, a proof analogous to what we did above can be given. So
consider the point ω ∈ Z. Fix n. Define a function h : Z → IRt by letting h take
the value 0 everywhere except at points in the set X \ (Wn ∩ X). For any point
s
t ∈ X \ (Wn ∩X), (st in irreducible form) let h(st ) =

1
t . As before, it can be shown

that h is continuous at each rational and at each irrational point. For the continuity
at ω, note that if ǫ > 0 and m ≥ n then h|Wn = 0 and therefore h[Wm] ⊂ [−ǫ, ǫ[.
Finally, Wn ∩X = Z(h|X).

Example 8.

A regular Hausdorff topological space X which is z-regular but not completely
regular. This example (the first known of its type, we believe) is due to M.E. Rudin
[Private communication - unpublished].

Let IP denote the set of all irrational numbers in the open segment ]0, 1[. Let K
be the intersection of IP and the standard Cantor set, let H = IP \ K, and let
h : K → H be a homeomorphism. Since K is order isomorphic to IP and H is the
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union of countably many disjoint intervals from IP, we can assume each of the H
intervals is the image under h of a K interval having a rational endpoint. Let

D = ]0, 1[ 2 \ {(x, x) | x is rational}

and topologize D by:

(1) Each (x, y) with x 6= y is isolated.
(2) A basic neighborhood of (x, x) for x ∈ H is of the form [(x, x) , (x + ǫ, x)[

for some ǫ > 0.
(3) A basic neighborhood of (x, x) for x ∈ K is of the form [(x, x) , (x, x − ǫ)[

for some ǫ > 0.

For each n ∈ IN, let Dn be a copy of D (with the topology described above). Let Y
be the quotient space of the disjoint union of the Dn’s with each (x, x) from the K
of Dn identified with

(

h(x), h(x)
)

from the H of Dn+1.
Our space is X = Y ∪ {p}, p being just an extra point we throw in. A basic open
neighborhood of p in X is of the form

{p} ∪

(

Dn \ diagonal of Dn

)

∪
⋃

m>n

Dm

for some n ∈ IN. Pictorially:
∣

∣

∣
H1 D1 K1

∣

∣

∣

∣

∣

∣
H2 D2 K2

∣

∣

∣

∣

∣

∣
H3 D3 K3

∣

∣

∣

∣

∣

∣
H4 D4 · · · p.

Note that Y is an open subspace of X . It is not difficult to see that X is a regular
Hausdorff space with every point except p having a clopen neighborhood base and
with p having a zero set neighborhood base. Hence X is z-regular. But since p can-
not be separated from H1 by any continuous real-valued map, X is not completely
regular.

The following table summarizes the properties of our counterexamples.

compl. zero reg. z-reg. µ-reg. weak. separ. fil. near.
reg. reg.

Ex. 1 − + − − − − + + +
Ex. 2 − − − + + + + + −
Ex. 3 − + − + + + + + +
Ex. 4 − + − − + + + + +
Ex. 5 − + − − − − + + +
Ex. 6 − − + − + + + + +
Ex. 7 − + + + + + + + +
Ex. 8 − − + + + + + + +

Figure 1 Table of properties of counterexamples
+ means has the property; − means does not have it
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The following diagrams make visible the relationships which exist between the prop-
erties we have been considering. These diagrams exhibit all relationships which hold,
except those obtained by transitivity.
The first diagram exhibits the relationships which hold when we assume that we

are dealing only with topological spaces.
Remarks for the topological case:
• Regular does not imply µ-regular. See Example 2 of [BM76].
• µ-regular does not imply z-regular. See Example 1 of [BM76].
• z-regular does not imply completely regular. See Example 8 above, due to
M.E. Rudin.

Completely regular ←→ zero space

↓
z-regular

↓
µ-regular

↓
regular ←→ weakly regular

Diagram 1. The topological case.

The second diagram is for general merotopic spaces (not assuming the space to
be a nearness space).
Remarks:
• If a space is either completely regular, a zero space, or regular then it is necessarily
a nearness space.
• a z-regular space, and therefore also a µ-regular space or a weakly regular space,
need not be a nearness space (our Example 2 is such a space).

Completely regular

#
#

#
##

	 ? S
S

S

^
regular zero space z-regular

?
µ-regular

S
S

S
S

S
S

^ #
##

	
weakly regular

Diagram 2. The general merotopic space case.
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In the third diagram we assume that the spaces under consideration are weakly
regular.

Completely regular

#
#

#
##

	 ? S
S

S

^
regular zero space z-regular

?
µ-regular

Q
Q

Q
~

Diagram 3. The weakly regular case.

In our last diagram, we assume that the spaces under consideration are regular.
Remarks for the regular case:
• Zero does not imply z-regular. J. Reiterman and J. Pelant have an example
[Private communication - unpublished].
• z-regular does not imply zero (see Example 8 above due to M.E. Rudin).

Completely regular

? S
S

S

^
zero space z-regular

?
µ-regular

Q
Q

Q
~

Diagram 4. The regular case.
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