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Convex orderings for stochastic processes∗

Bruno Bassan, Marco Scarsini

Abstract. We consider partial orderings for stochastic processes induced by expectations
of convex or increasing convex (concave or increasing concave) functionals. We prove that
these orderings are implied by the analogous finite dimensional orderings.
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1. Let E be a Polish space and let F be a class of functionals defined on EN. We
consider two stochastic processes X = {Xn |n ∈ N} and Y = {Yn |n ∈ N} taking
values in E. Relations such as

(1) Eφ(X) ≤ Eφ(Y ) ∀ φ ∈ F

are often used to define partial orders for stochastic processes which have many
applications in probability, mathematical statistics, mathematical economics and
operations research (see for example Stoyan (1983)).
Our goal is to find families Fn of functions defined on E

n, such that

Eψ(X1, . . . , Xn) ≤ Eψ(Y1, . . . , Yn) ∀ ψ ∈ Fn, ∀ n ∈ N

implies (1).
Kamae, Krengel and O’Brien (1977) proved the implication when E is partially

ordered and F and Fn are the classes of increasing functions. The problem is
reported as open by Stoyan (1983) in the case of the classes of increasing convex
and increasing concave functions defined on a linear space E. In this note, we give a
solution for these two families and the families of convex and concave functions. It
may be noted that a similar problem was studied by Lindqvist (1988), who showed
that a stochastic process is associated, if all its finite dimensional distributions are
associated.
2. We introduce the following classes of functions defined on a convex subset U

of a partially ordered topological vector space.

F I(U) = {f : U → R | f is increasing },

FV(U) = {f : U → R | f is convex },

F IV(U) = F I(U) ∩ FV(U),

FC(U) = {f : U → R | f is concave },

F IC(U) = F I(U) ∩ FC(U).
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LetW be a convex subset of a partially ordered Polish space. For every setA ⊂ N,
we endow WA with the product topology and of the componentwise ordering. All
the integrals that appear in the sequel are assumed to exist.

Theorem. LetX = {Xn |n ∈ N} and Y = {Yn |n ∈ N} be two stochastic processes

with values in W , and let F be any of the classes FV, F IV, FC, F IC. If

Eφ(X1, . . . , Xn) ≤ Eφ(Y1, . . . , Yn) ∀ n ∈ N

for every measurable φ ∈ F(Wn) such that the above expectations exist, then

Eg(X) ≤ Eg(Y ) for every continuous functional g ∈ F(WN).

The proof is based upon the following lemma.

Lemma. Let E = E1 × E2 be a convex subset of a topological vector space, let

H : E → R be a convex function bounded from below, and let h : E1 → R be

defined by the relation:

h(x) = inf
y∈E2

H(x, y).

Then h is convex.

Proof of Lemma: Given a function f : B → R, we define

epi (f) = {(x, z) ∈ B × R | f(x) < z}.

Let also

Ay = {(x, z) ∈ E1 × R | (x, y, z) ∈ epi (H)}, y ∈ E2.

Let us prove now that epi (h) =
⋃

y∈E2
Ay. If (x, z) ∈

⋃
y∈E2

Ay, then there exists

y0 ∈ E2 such that (x, z) ∈ Ay0 and

h(x) = inf
y∈E2

H(x, y) ≤ H(x, y0) < z;

thus (x, z) ∈ epi (h). Conversely, let (x, z) ∈ epi (h), i.e. h(x) = infy∈E2 H(x, y) <
z; we can choose y ∈ E2 such that H(x, y) < z. Then (x, z) ∈ Ay ⊂

⋃
y∈E2

Ay.

Since a function f is convex, if and only if epi (f) is a convex set, the claim will
follow if we prove that

⋃
y∈E2

Ay is convex. Let (x1, z1), (x2, z2) ∈
⋃

y∈E2
Ay ; then

there exist y1, y2 such that H(x1, y1) < z1 and H(x2, y2) < z2. The inequalities
above and the convexity of H imply

H
(
α(x1, y1) + (1− α)(x2, y2)

)
≤ αH(x1, y1) + (1− α)H(x2, y2) < αz1 + (1−α)z2,

i.e. (
αx1 + (1− α)x2, αz1 + (1− α)z2

)
∈ Aαy1+(1−α)y2 ⊂

⋃

y∈E2

Ay .
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Proof of Theorem: First, we prove the result for the classes FV and F IV. Let
g :WN → R be a function bounded from below; for every n ∈ N, we define functions
gn :W

N → R and g̃n :W
n → R by the following relation:

gn(u1, u2, . . . ) = g̃n(u1, . . . , un) = inf
sk∈W
k>n

g(u1, . . . , un, sn+1, . . . ).

If g ∈ F(WN), then the Lemma implies that g̃n ∈ F(Wn). Thus

Eg̃n(X1, . . . , Xn) ≤ Eg̃n(Y1, . . . , Yn)

or, equivalently,
Egn(X) ≤ Egn(Y ).

It is clear that {gn |n ∈ N} is an increasing sequence. We show now that it converges

pointwise to g. For every x ∈ WN and n > 0, we choose a sequence s
(n)
n+1, s

(n)
n+2, . . .

such that, if

x(n) = (x1, . . . , xn, s
(n)
n+1, s

(n)
n+2, . . . ),

one has
| g(x(n))− gn(x) | < 2

−n.

The relation

| g(x)− gn(x) | ≤ | g(x)− g(x(n)) | + | g(x(n))− gn(x) | ,

the continuity of g and the convergence of the sequence {x(n) |n ∈ N} to x imply
that limn→∞ gn = g.
It follows from the monotone convergence theorem that Eg(X) ≤ Eg(Y ).
Consider now the case of a function g ∈ F not necessarily bounded from below.

Let g+ = max(g, 0), g− = max(−g, 0) and hn = max(g,−n). Then, for every
n ∈ N, we have that h+n = g

+ and h−n ↑ g−. Since hn ∈ F and hn is bounded from
below, it follows that

Ehn(X) ≤ Ehn(Y ).

The monotone convergence theorem implies that

lim
n→∞

Eh−n (·) = Eg
−(·);

therefore
lim

n→∞
Ehn(·) = Eg(·)

and the claim follows immediately.
The result for the classes FC and F IC can be easily proved now, since f ∈ FC, if

and only if (−f) ∈ FV and f ∈ F IC, if and only if h ∈ F IV, where h(x) = −f(−x).
�
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