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Properties of forcing preserved by finite support iterations

Miroslav Repický

Abstract. We shall investigate some properties of forcing which are preserved by finite
support iterations and which ensure that unbounded families in given partially ordered
sets remain unbounded.
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0. Introduction.

J.I. Ihoda and S. Shelah [6] proved that the meager forcing keeps unbounded
families of functions. Moreover, this property of forcing is preserved by finite sup-
port iterations. Instead of the family of functions ωω with the eventual ordering we
can study arbitrary definable partially ordered set and ask which notions of forcing
keep unbounded families in this ordering.

We show that all Boolean algebras with finitely additive measure keep unbounded
families in a partial order closely connected with Lebesgue measure (Theorem 2).
This class of Boolean algebras is closed under finite support iterations [8].

Let F be a definable partially ordered set. We say that F is absolute if for every
transitive model M of ZFC, FM = F ∩M . Now we introduce the central notion of
the paper.

Definition. Let F be an absolutely definable partially ordered set. Let P be
a notion of forcing and let B = r.o.P . We say that P is F -good if for every name
fff ∈ V B such that 


P
fff ∈ F there exists g ∈ F such that h ≤ g whenever h ∈ F

and p 
 ȟ ≤ fff for some p ∈ P .

In the forcing language the letter F stands for the set defined by a corresponding
formula and it has a different meaning from F̌ . The definition does not make sense
when F is not directed. For F directed let us denote:

b(F) = min{|F0| : F0 ⊆ F & (∀f ∈ F)(∃g ∈ F0) g 6≤ f},

d(F) = min{|F0| : F0 ⊆ F & (∀f ∈ F)(∃g ∈ F0) f ≤ g}.

The next simple lemma justifies the definition:

Lemma. Let κ = b(F) and λ = d(F). If P is a c.c.c. F -good notion of forcing
then 


P
“b(F) ≤ κ̌ & λ̌ ≤ d(F)”.
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We shall concentrate our attention to these partially ordered sets:

ωω ordered by f ≤∗ g iff (∃m)(∀n ≥ m) f(n) ≤ g(n);

K = {f ∈ ωω :
∑

n∈ω

1

f(n)
≤ 1}, f ≤∗ g iff (∃m)(∀n ≥ m) f(n) ≤ g(n);

S = {f ∈ ωP(ω) :
∑

n∈ω

|f(n)|2−n ≤ 1} and

L = {f ∈ ωP(ω) : lim
n→∞

f(n)

n+ 1
= 0}

ordered by f ≤∗ g iff (∃m)(∀n ≥ m) f(n) ⊆ g(n);

M = {f ∈ ωP(<ω2) : (∀n) f(n) is open dense in <ω2},

ordered by f ≤∗ g iff (∃m)(∀n ≥ m) g(n) ⊆ f(n).

Evidently, these partially ordered sets are absolute. There are important connec-
tions of these partial orders with Lebesgue measure and category. Let us recall that
addL is the least cardinal κ for which the ideal L of Lebesgue measure zero sets is
not κ-additive and cof L is minimal cardinality of a base of L. The cardinals addK
and cofK are defined similarly for the ideal K of sets of first category. Particularly
we have:

addL = b(K) = b(S) = b(L),

cof L = d(K) = d(S) = d(L).

The characterization using convergent series is due to T. Bartoszyński [1]. The
second characterization is due to T. Bartoszyński [1] and J. Stern, J. Raisonier [11].
Their characterization is in terms of localization of functions from ωω by members of
S and their proof works also in this case. The last characterization is a consequence
of previous (see e.g. [12]). Similar characterization holds true for category:

addK = b(M), cofK = d(M).

This can be easily proved using some ideas of [13].

1. ωω-goodness.

Measure algebra is weakly (ω, ω)-distributive and so it is ωω-good. Several other
examples of ωω-good notions of forcing detects the following theorem. Meager
forcing [6], forcing for eventually different reals [10], Dirichlet–Minkowski forcing [3]
and Cohen forcing fulfill the assumptions of this theorem.

Theorem 1 (J.I. Ihoda, S. Shelah). Let P =
⋃

n,k∈ω

Pn,k be a notion of forcing such

that

(i) for every n, Pn =
⋃

k∈ω

Pn,k is centered; and

(ii) for every n, k ∈ ω and for every open dense set D ⊆ P there exists an integer
m = m(n, k,D) such that (∀p ∈ An,k)(∃i < m)(∃q ∈ Pi ∩D) q ≤ p.
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Then P is ωω-good.

Proof: Let 

P
fff ∈ ωω. For every j ∈ ω, the set

Dj = {q ∈ P : (∃l ∈ ω) q 
 fff(ǰ) = ľ}

is open dense in P . By (ii), for every n, k ∈ ω the set

a(n, k, j) = {l ∈ ω : (∃i < m(n, k,Dj))(∃q ∈ Pi) q 
 fff(ǰ) = ľ}

is nonempty and by (i) finite. Set

g(j) = max
⋃

n,k≤j

a(n, k, j), j ∈ ω.

Now, assume that h ∈ ωω and p 
 (∀j ≥ ǰ0) ȟ(j) ≤ fff(j) for some p ∈ P and
j0 ∈ ω. There are n, k ∈ ω such that p ∈ Pn,k. Therefore h(j) ≤ max a(n, k, j) for
j ≥ j0 and so h ≤∗ g. �

2. S-goodness, K-goodness and L-goodness.

Theorem 2. Let B be a complete Boolean algebra with strictly positive finitely
additive measure. Then B+ = B − {000} is S-good.

In the proof of the theorem we will need this result:

Lemma 1 (A. Krawczyk). Let B be a Boolean algebra with finitely additive mea-
sure µ. Let n,m ∈ ω and let {bi : i < n} ⊆ B be such that

∧

i∈a

bi = 000 for every

a ∈ [n]m. Then
∑

i<n

µ(bi) ≤ (m− 1)µ(111).

Proof: By induction on n ∈ ω simultaneously for all Boolean algebras with finitely
additive measure:

∑

i<n

µ(bi) = µ(bn−1) +
∑

i<n−1

µ(bi ∧ bn−1) +
∑

i<n−1

µ(bi − bn−1) ≤

≤ µ(bn−1) + (m− 2)µ(bn−1) + (m− 1)µ(−bn−1) = (m− 1)µ(111).

�

Proof of Theorem 2: Let µ be a strictly positive finitely additive measure on B
and let µ(111) = 1. Let fff ∈ V r.o.B and ‖fff ∈ S‖ = 111, i.e.

∥

∥

∥

∥

∥

∑

n∈ω

|fff(n)|2−n ≤ 1

∥

∥

∥

∥

∥

= 111.

Denote bn,i = ‖ǐ ∈ fff(ň)‖ and let gm(n) = {i ∈ ω : µ(bn,i) >
1

m+1}. We shall show
that

(1)
∑

n∈ω

|gm(n)|2
−n <∞,
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for all m ∈ ω.
Let us assume that (1) does not hold for some m. Then there is an N ∈ ω such

that

(2)
∑

n<N

|gm(n)|2
−n > m+ 1.

Let A = {(n, i, j) : n < N & i ∈ gm(n) & j < 2N−n} and let us denote
bn,i,j = bn,i for (n, i, j) ∈ A. Then by (2),

∑

(n,i,j)∈A

µ(bn,i,j) >
1

m+ 1

∑

n<N

|gm(n)|2
N−n > 2N .

According to Lemma 1 there exists B ⊆ A, |B| > 2N such that

b =
∧

(n,i,j)∈B

bn,i,j 6= 000.

Then
b 
 “

∑

n<N

|fff(n)|2−n ≥
∑

n<N

|{i : (∃j) (n, i, j) ∈ B}|2−n ≥

≥
∑

n<N

|{(i, j) : (n, i, j) ∈ B}2n−N2−n = |B|2−n > 1”.

This is a contradiction and therefore (1) holds true. Choose g ∈ S such that gm ≤∗ g
for every m ∈ ω.
Now, if h ∈ S is such that b 
 (∀n > ň0) ȟ(n) ⊆ fff(n) for some b ∈ B+ and

n0 ∈ ω, then h(n) ⊆ gm(n) whenever n > n0 and µ(b) >
1

m+1 . Therefore h ≤∗ g.
�

One can easily prove:

Lemma 2. Let F , H be absolute partially ordered sets. Let mappings α : F → H,
β : H → F be such that

(i) α is absolute and monotone,
(ii) α(f) ≤ h implies f ≤ β(h).

Then H-goodness implies F -goodness.

Almost immediate consequence of this lemma is that L-goodness implies ωω-
goodness (see e.g. [12, Lemma 2.1] and the proof) and S-goodness implies K-
goodness. Thus every complete Boolean algebra with strictly positive finitely ad-
ditive measure is K-good. Dominating algebra [13] is not ωω-good and since it
is σ-centered, it carries a finite additive measure. Therefore B+ need not be L-
good. This also shows that the condition (i) in Lemma 2 cannot be dropped since
one can easily construct absolute mappings α : ωω → K, β : K → ωω satisfying
condition (ii).
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Theorem 3. Let B be a measure algebra. Then B+ is an L-good notion of forcing.

Proof: Let µ be a σ-additive measure on B and let µ(111) = 1. Let fff ∈ V r.o.B and
‖fff ∈ L‖ = 111. Since B is weakly (ω, ω)-distributive and satisfies c.c.c., there exists

ϕ ∈ ωω such that lim
n→∞

ϕ(n)
n+1 = 0 and ‖(∃m)(∀n > m) |fff(n)| ≤ ϕ(n)‖ = 111. Let

{am : m ∈ ω} be a partition of 111 in B such that am 
 (∀n > m̌) |fff(n)| ≤ ϕ̌(n).

Find a monotone unbounded function ψ ∈ ω such that lim
n→∞

ϕ(n)ψ(n)
n+1 = 000. Let us

denote bn,i = ‖ǐ ∈ fff(ň)‖ and set gm(n) = {i : µ(bn,i ∧ am) >
1

ψ(n)
}. According to

Lemma 1, |gm(n)| ≤ ϕ(n)ψ(n) for n > m and so gm ∈ L. Choose g ∈ L such that
gm ≤∗ g for every m ∈ ω.
If h ∈ L and if b 
 (∀n > ň0) ȟ(n) ⊆ fff(n) for some m,n0 ∈ ω and b ≤ am then

h(n) ⊆ gm(n) whenever n > max{n0,m} and µ(b) > 1
ψ(n)
. Hence h ≤∗ g. �

3. M-goodness.

Let M denote the set of all Borel codes [7] of Borel meager sets. For a ∈ M ,
Ba is a Borel meager set with code a. M is ordered by a ≤ b iff Ba ⊆ Bb.
Obviously, this ordering is absolute and since the ideal K has the base consisting of
meager Fσ-sets we can “identify” it withM ordered by f ≤ g iff Af ⊆ Ag (where
Af =

ω2−
⋂

n∈ω

⋃

s∈f(n)

[s]). So we have two orderings onM and we will see that they

do not differ very much.

Lemma 3. M -goodness implies ωω-goodness.

Proof: We show that assumptions of Lemma 2 hold true. For f ∈ ωω let α(f) be
a Borel code (chosen in a standard way) of the set

{x ∈ ω2 : (∃m)(∀n > m)(∃i ≤ f ′(n))x(n+ i) = 1},

where f ′(n) = max
i≤n

f(i). Evidently, α : ωω → M is absolute and monotone. We

define β : M → ωω. Let a ∈ M . There are nowhere dense sets An ⊆ ω2 such that
An ⊆ An+1 and Ba ⊆

⋃

n∈ω
An. Set

β(a)(n) = min{m ∈ ω : (∀s ∈ n2)(∃t ∈ n+m2) s ⊆ t & [t] ∩An = ∅}.

We shall verify the condition (ii) of Lemma 2. Assume that f(n) > β(a)(n) for
infinitely many n ∈ ω. Then there exists a sequence nk ∈ ω such that nk+1 >
nk + f

′(nk) and f
′(nk) > β(a)(nk). By induction on k define sk ∈ nk2 such that

sk ⊆ sk+1,
[sk+1 |̀ (nk + f

′(nk))] ∩Ank
= ∅, and

if nk + f
′(nk) ≤ i < nk+1 then sk+1(i) = 1.

Set x =
⋃

k∈ω

sk. Then x ∈ Bα(f) −Ba and so α(f) 6≤ a. �
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Theorem 4. Let P be a notion of forcing. The following are equivalent:

(i) P isM-good,
(ii) P is M -good,
(iii) for every P -name AAA such that 


P
AAA ∈ K, the set

{x ∈ ω2 : (∃p ∈ P ) p 
 x̌ ∈AAA} is meager.

Proof: (i)→(iii). Let 

P
AAA ∈ K. Then there exists a P -name fff such that



P
fff ∈ M & AAA ⊆ Afff & (∀n ∈ ω)fff(n+ 1) ⊆ fff(n).

For every x ∈ ω2 denote fx(n) = {s ∈ <ω2 : x /∈ [s]}. Then fx ∈ M and if
p 
 x̌ ∈ AAA then by monotonicity of fff , p 
 (∃m)(∀n > m)x /∈

⋃

s∈fff(n)

[s], and so

p 
 f̌x ≤∗ fff . Hence by M-goodness of P there is g ∈ M such that fx ≤∗ g
whenever p 
 x̌ ∈ AAA for some p ∈ P . Therefore

{x ∈ ω2 : (∃p ∈ P ) p 
 x̌ ∈AAA} ⊆ Ag ∈ K.

(iii)→(ii). Let 

P
aaa ∈M . There is b ∈M such that

{x ∈ ω2 : (∃p ∈ P ) p 
 x̌ ∈ Baaa} ⊆ Bb.

By absoluteness 

P
B̌c ⊆ Bč for c ∈ M . Therefore, if c ∈ M and p 
 č ≤ aaa then

Bc ⊆ {x : p 
 x̌ ∈ Baaa} ⊆ Bb.
(ii)→(i). Let 


P
fff ∈ M. Without loss of generality we can assume that



P
(∀n ∈ ω)fff(n+ 1) ⊆ fff(n).

Otherwise take fff ′(n) =
⋂

i≤n

fff(i). The forcing P is M -good. Therefore there is such

a code b ∈M that for every code a ∈M such that p 
 Bǎ ⊆ Afff , for some condition
p, we have Ba ⊆ Bb. Let Q = {rn : n ∈ ω} be a countable dense subset of ω2 in
V disjoint with the meager set Bb. Obviously 


P
Q̌ ∩Afff = ∅. In V r.o. P (and in V

respectively) let us define:

ϕh(n) = min{k ∈ ω : rn |̀k ∈ h(n)}, h ∈ M.

Then 

P
(∀n ∈ ω)ϕfff (n) < ∞. By Lemma 3, there is ψ ∈ ωω such that ϕ ≤∗ ψ

whenever ϕ ∈ ωω and p 
 ϕ̌ ≤∗ ϕfff for some p ∈ P . Set

g(n) = {s ∈ <ωω : (∃k ≥ n) rk |̀ψ(k) ⊆ s}.

Then g ∈ M.
Now let h ∈ M be arbitrary such that p 
 ȟ ≤∗ fff for some p ∈ P . There exist

h0 ∈ M, m ∈ ω and q ≤ p such that q 
 (∀n ∈ ω)fff(n) ⊆ ȟ0(n) and h0(n) = h(n)
for n > m. Let us denote h1(n) =

⋂

i≤n

h0(i). Then q 
 (∀n ∈ ω)fff(n) ⊆ ȟ1(n) and

hence q 
 (∀n > m)ϕ
ȟ
(n) ≤ ϕ

ȟ1
(n) ≤ ϕfff (n). Therefore ϕh ≤∗ ψ and so h ≤∗ g.

�

From condition (iii) of Theorem 4 it follows that if P isM-good then for every set
A ⊆ ω2 of second category, 


P
“ Ǎ is of second category”. Hence, measure algebras

are notM-good (see [2]).
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Corollary. Let P be a notion of forcing of cardinality less than addK. Then P is
M-good.

Proof: If 

P
“AAAn ⊆ ω2 is nowhere dense” then the set {x ∈ ω2 : p 
 x̌ ∈ AAAn} is

nowhere dense and

{x ∈ ω2 : (∃p ∈ P ) p 
 x̌ ∈
⋃

n∈ω

AAAn} =
⋃

p∈P

⋃

n∈ω

{x ∈ ω2 : p 
 x̌ ∈ AAAn}.

�

4. Iterated F-good forcing.

Theorem 5. Let F = ωω,K,L,S,M. Let {Pξ : ξ ≤ α} ∪ {QQQξ : ξ < α} be a finite
support iterated forcing system and let for every ξ < α,



Pξ
“QQQξ is a c.c.c. F -good notion of forcing”.

Then Pα is F -good.

Proof: By induction on α. The case α nonlimit or cf α > ω is trivial. Let cf α = ω,
α = lim

n∈ω
αn, αn < αn+1. Let fff be a Pα-name such that 


Pα
fff ∈ F . We will find

g ∈ F such that if h ∈ F and p 
 ȟ ≤∗ fff then h ≤∗ g.
For every n ∈ ω there is a Pαn -name fffn such that

if F = ωω,K,S then



Pαn
“ there exists a decreasing sequence {rk : k ∈ ω} ⊆ PPPαn,α

such that (∀k ∈ ω) rk 
 fff(k) = fffn(k) ”;

if F = L then



Pαn
“ there exists a decreasing sequence {rk : k ∈ ω} ⊆ PPPαn,α

such that

(∀k ∈ ω)(∃m > k)(∀i ≥ m)
|fff(i)|

i+ 1
<
1

k
& rk 
 fff |̀m = fffn |̀m ”;

if F =M then



Pαn
“ there exists a sequence {rk,i : k, i ∈ ω} ⊆ PPPαn,α such that

(∀k, i ∈ ω) rk,i+1 ≤ rk,i & (∃m > i)(∀s ∈ i2)(∃t ∈ fff(k) ∩m2)

s ⊆ t & rk,i 
 fffn(k) ∩
≤m2 = fff(k) ∩ ≤m2 ”.

It is not difficult to verify that 

Pαn

fffn ∈ F . By the induction hypothesis, for every

n ∈ ω there is a gn ∈ F such that h ≤∗ gn whenever h ∈ F and p 
 ȟ ≤∗ fffn for
some p ∈ Pαn . Since b(F) > ω, there is g ∈ F such that gn ≤∗ g for every n ∈ ω.
We will show that g has the required properties.
Let h ∈ F and let p 
 ȟ ≤∗ fff , p ∈ Pα. If F = ωω,S,L then there is q ≤ p

and k0 ∈ ω such that q 
 (∀k > ǩ0) ȟ(k) ⊆ fff(k). q ∈ Pαn for some integer n.



102 M. Repický

Then q 

Pαn
(∀k > ǩ0) rk 
 ȟ(k) ⊆ fff(k) = fffn(k) and so q 
 ȟ ≤∗ fffn. Therefore

h ≤∗ gn ≤∗ g. The case F = K is similar.
If F =M and q 


Pα
(∀k > ǩ0)fff(k) ⊆ ȟ(k), for some n ∈ ω and q ∈ Pαn then

q 

Pα
(∀k > ǩ0)(∀i ∈ ω) rk,i 
 fffn(k) ∩

≤i2 = fff(k) ∩ ≤i2 ⊆ ȟ(k).

Hence q 
 (∀k > ǩ0)fffn(k) ⊆ ȟ(k) and so h ≤∗ gn ≤∗ g. �

Corollary. Cohen forcing is F -good for F = ωω,K,S,L,M.

For Cohen forcing we can state another general assertion.

Theorem 6. Let F ⊆ ω([ω]<ω) be an absolutely definable family ordered by f ≤∗ g
iff (∃m)(∀n > m) f(n) ⊆ g(n). Let F satisfy the following two conditions:

(i) b(F) > ω,
(ii) (∀g ∈ F)(∀f ∈ ω([ω]<ω)(∀n ∈ ω)f(n) ⊆ g(n)⇒ f ∈ F .

Then Cohen forcing is F -good.

Proof: For p ∈ P let us denote

Fp(n) =
⋂

{x ⊆ ω : (∃q ≤ p) q 
 fff(n) = x̌}.

Since p 
 (∀n ∈ ω)Fp(n) ⊆ fff(n), by condition (ii) and by absoluteness of F ,
Fp ∈ F for every p ∈ P . Let g ∈ F be such that Fp ≤∗ g for every p ∈ P .

Now let h ∈ F and let p 
 (∀n > ň0) ȟ(n) ⊆ fff(n). Then h(n) ⊆ Fp(n) for every
n > n0 and so h ≤∗ g. �
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[4] Cichoń J., Pawlikowski J., On ideals of subsets of the plane and on Cohen real, J. Symb.
Logic 51, 3 (1986), 560–569.
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[12] Repický M., Porous sets and additivity of Lebesgue measure, Real Analysis Exchange,
1989–1990.

[13] Truss J.K., Sets having caliber ℵ1, Proc. Logic Colloquium ‘76, Studies in Logic 87 (1977),
595–612.
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