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Multiplication of nonadditive cuts in AST

Karel Čuda

Abstract. Three complete characteristics of couples of nonadditive cuts such that J × K 6=

J × K are given. The equality J × K = J !K is proved for all couples of nonadditive cuts.
Some examples of nonadditive cuts are described.
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inner and outer product of two cuts, logarithmical cut
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Introduction.

Cuts (initial segments) of natural numbers play in AST (alternative set theory)
a role similar to that one played by cardinal numbers in the classical set theory.
To every class X , the inner cut X (of natural numbers being numbers of elements
of subsets of X) and the outer cut X (of numbers which cannot be numbers of
elements of supersets of X) are defined. X and X may be different and they may
have arbitrary values provided that they are proper cuts andX ≤ X (see [Tz 1987]).
If we restrict ourselves on Borel classes or on real ones, then these possibilities
are much more restricted. The exact list of them may be found in [KZ 1989].
An obvious mathematical task is to extend arithmetical operations on cuts. But
there are different possibilities how to do this (see [KZ 1988]). In the mentioned
paper, there are examples demonstrating that these extensions may differ. One
such example for the operation of product is the couple of cuts α + FN and α −
FN for α > FN. Here the equalities α + FN = α2/(α − FN) and α − FN =
α2/(α + FN) are remarkable (instead of FN any additive cut can be used there).
In this paper, we proceed in the opposite direction; we prove that in the case of
the product of nonadditive cuts the mentioned difference is relatively infrequent.
We give three complete characterizations of couples of nonadditive cuts for which
the inner product differs from the outer one. We prove also that for nonadditive
cuts J, K, the equality J × K = J !K holds. Two of the mentioned characteristics
are connected with the given example. Namely, we prove (in Sect. 1) that for
nonadditive cuts J × K 6= J × K, iff K = γ/J for a suitable natural number γ and

(in Sect. 2) that if J × K 6= J × K, then in almost all cases K = r(α− (J −α)) for
a suitable rational number r and a suitable α ∈ J , moreover, the cut J −α is “very
small” with respect to α. In Sect. 2 there are investigated products of some typical
couples of nonadditive cuts. In Sect. 3 there are some examples of cuts illustrating
the matter investigated in the sections 1 and 2. New definitions and the notation
are introduced in Sect. 0.



62 K. Čuda

0. Preliminaries.

We use small Greek letters for natural numbers (also infinite ones), except π
and σ used in the notions π-class and σ-class (the intersection, the union, resp., of
a countable system of set-theoretically definable classes). For finite natural numbers
we use m, n, k, . . . . Latin capitals are used for classes and J, K are reserved for cuts
(parts of the class of natural numbers containing with every element also smaller
numbers). For sets we use small Latin letters. For rationals (also infinite) we use
r, s, t . . . .

Definition 0.1. (1) xry = max {α ∈ N ;α ≤ r} – the lower integer part.
(2) prq = min {α ∈ N ;α ≥ r} – the high integer part.
We extend the ordering of N also for cuts.

Definition 0.2. Suppose that J, K are proper cuts (not equal to any natural num-
ber). Then J ≤ K ≡ J ⊆ K, r ≤ J ≡ xry ∈ J . Other cases and the extension of <,
we left to the reader.

Definition 0.3. For proper cuts J, K and a rational number r, we define

(1) r · J = {α; (∃ β ∈ J)(α ≤ xr · βy}),
(2) γ/J = {α; (∀ β < J)(α · β < γ)},
(3) J · K = {γ; (∃ α < J)(∃ β < K)(γ < α · β)} – the inner product,
(4) J !K = {γ; (∀ α > J)(∀ β > K)(γ < α · β)} (hence J !N = N) – the outer
product.

Remarks: (1) All the definitions are in accordance with [KZ 1988], we only differ
in the notation J · K which is used also in the case J · K 6= J !K.
(2) It is possible to define also “mixed” products (for α < J and β > K and vice

versa). Both these products are estimated by J · K from below and by J !K from
above and hence we do not study them here, as we prove that the difference between
the inner and outer product is relatively infrequent. Nevertheless, e.g. Theorem 1.4
is applicable for these products, too.

Definition 0.4. J+ = {α; (∀ β ∈ J)(β + α + 1 ∈ J)} is called the additive part
of J (see [S 1988]).
Remember that |u| denotes the number of elements of the set u.

Definition 0.5. (1) X = {α; (∃ u $ X)(α = |u|)} (the inner cut of X).

(2) X = {α; (∀ u ⊇ X)(α < |u|)} (the outer cut).
(3) If X = X we put |X | = X, if X 6= X, we say that X has no cut.

(See [Tz 1987], [KZ 1988].)
A cut J is called additive, iff (∀ α, β ∈ J)(α + β ∈ J). Remember that J+ is

additive and a cut J is additive, iff J = J+. Remember also that J ·K = J × K ≤

J × K ≤ J !K (see [KZ 1988]). There are examples given in the mentioned paper
demonstrating the fact that equalities need not hold in the above inequalities.

1. Products of the form J × (γ/J).
In the first section, we prove that for nonadditive proper cuts J and K, the carte-

sian product J×K has no cut, iff there is γ such that K = γ/J . Hence we generalize
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the fact that (α+ FN)× (α2/(α+ FN)) = α2−α·FN and (α+ FN)× (α2/(α+ FN))

= α2+α ·FN. Moreover, we prove (except other interesting facts) the fact that for
nonadditive cuts J, K we have J × K = J !K.
We prove, at first, a special (but substantial) case of one implication of the main

theorem.

Theorem 1.1. If J is a nonadditive proper cut and if α < J < 2α, then K =
2α2/J is a nonadditive proper cut such that K+ = J+, K · J = 2α2 − α · J+ and
K × J = 2α2 + αJ+. Hence K × J has no cut, as K × J = K · J = 2α2 − αJ+.

Proof: The case J = α+J+, i.e. K = 2α−J+ is easy and can be left to the reader.
Analogously for J = α + β − J+. The proof of J · K = 2α2 − α · J+ is easy, too.
Hence we concentrate on the case ( ∀ β)(J 6= β+J+& J 6= β−J+). We prove that
there is no set m of the cardinality 2α2 such that m ⊃ J ×K. Then the rest of the
proof is easy and it is left to the reader. We prove this by contradiction. We define
the function f(β) = min (rng (((2α × 2α) − m) ↾ (β + 1))) − 1. The function f(β)
is decreasing and we have m ⊃ {〈γ, δ〉; γ ≤ f(δ)} ⊃ J × K. Choose ε > J+ such
that f(α)− 2ε > J (this is possible, as f(α) > J, J+ is additive and J 6= f(α)−J+

by the assumption). Then there is γ ∈ J such that γ > α& γ + ε > J , hence
p2α2/(γ + ε)q ∈ K. Now we estimate (from below) the cardinality of m. We have
|m| > p2α2/(γ+ε)q ·γ+α·2ε ≥ 2α2−εp2α2/(γ+ε)q+ε ·2α ≥ 2α2, a contradiction.

�

Note that the assumption that K = γ/J is a proper cut is equivalent to the
property that γ is sufficiently large. This assumption is expressed exactly in the
following lemma.

Lemma 1.2. Let J be a nonadditive proper cut and α < J < 2α. γ/J is a proper
cut, iff for every β > J+ we have γ · β > α2. In this case we have (γ/J)+ =
(γ/α2) · J+.

Proof: Remember that β > J+, iff (∃ α1 ∈ N)(α1 < J < α1+β). Now it suffices
to realize the equality γ/α1−γ/(α1+β) = γ ·β/(α1 ·(α1+β)) and use the facts that
J+ is additive and that for sufficiently small β > J+, the inequality α < α1 < 2α
follows from α1 < J < α1 + β. �

Note: The proof of the general case of the considered implication (for γ such that
(∀ β > J+)(γ · β > α2), where α < J < 2α, it holds that K = γ/J is a proper cut
such that J ×K has no cut) can be obtained now by a modification of the proof of
Theorem 1.1. We leave this modification to the reader.
It can be noticed that in the investigated case (J × K has no cut) the following

equality holds β ·J+ = α ·K+ where α < J < 2α and β < K < 2β. The importance
of this equality is proved by the following theorem.

Theorem 1.3. Let J and K be nonadditive cuts such that α < J < 2α and
β < K < 2β. If β · J+ > α ·K+, then there are β0, β1 ∈ N such that β0 < K < β1
and |J × K| = β0 · J = β1 · J .

Proof: Let us choose β0 < K < β1 such that (β1 − β0) · α < β · J+. More-
over, β < β0 may be supposed. We prove that β1 · J is the inner cut of J × K.
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β1 · J ≥ J × K is obvious. For the proof of the opposite inequality, the property
(∀ α0 ∈ J)(∃ α1 ∈ J)(α0 · β1 < β0 · α1) suffices. Choose α1 ∈ J such that
β(α1 − α0) > 2(β1 − β0) · α. It is possible, as p(β1 − β0) · α/βq ∈ J+ and J+ is
additive. Then we have β0 ·(α1−α0) > β ·(α1−α0) > 2(β1−β0) ·α > (β1−β0) ·α0.
We obtain the needed inequality by the substraction of β0 ·α0 from the both sides.
Now we have to prove that β0 · J is the outer cut of J × K. J × K ≥ β0 · J is

obvious. To prove the opposite inequality, it suffices to justify (∀ α1 > J)(∃ α0 >
J)(α0 · β1 < β0 · α1). We proceed analogously as above.
The theorem proves the necessity of the condition β · J+ = α · K+ for J × K 6=

J × K. Later (the remark after Theorem 2.3) we prove that the condition is not
sufficient even in the connection with another necessary condition of the opposite
set cofinality of the cuts J and K.
By the following theorem we obtain (J ·K)+. Moreover, the equality (J ·K)+ =

(J × K)+ = (J !K)+ holds and another relation for the three cuts J ·K, J × K and
J !K is proved. �

Theorem 1.4. If J, K are nonadditive cuts and α < J < 2α, β < K < 2β, then
(J · K)+ = (J × K)+ = (J !K)+ = max (α · K+, β · J+). Moreover, we have
(∀ γ > (J · K)+)(∃ δ)(δ < J · K ≤ J × K ≤ J !K < δ + γ).

Proof: Let us suppose max (α · K+, β · J+) = α · K+. We prove at first the
additional property. If γ > α · K+, then xγ/5y > α · K+ (due to the additivity
of α · K+). Let us put γ0 = xγ/5y, γa = min (γ0/β, α) and γb = xγ0/αy. Then
we have γb > K+, γa > J+ and hence there are α1 < J and β1 < K such that
α < α1 < J < α1+γa and K < γb+β1. Thus we have J !K < (α1+γa)(β1+γb) =
α1·β1+α1·γb+β1·γa+γa·γb ≤ α1·β1+2α·γb+2β·γa+α·γb ≤ α1·β1+5γ0 ≤ α1·β1+γ.
From the additional property we have (J · K)+ ≤ α · K+, (J × K)+ ≤ α ·

K+, (J !K)+ ≤ αK+.
Now we prove (J · K)+ ≥ α · K+. Let γ < α · K+ and γ0 < K+ be such that

α · γ0 > γ. If α ≤ α1 < J, β1 < K, then α1 · β1 + γ ≤ α1(β1 + γ0) and β1 + γ0 < K
(by the definition ofK+). We have proved that for γ < α·K+ we have γ ∈ (J ·K)+.
The proof of (J !K)+ ≥ α · K+ is quite analogous and it is left to the reader.
To prove (J × K)+ ≥ α·K+ it suffices for everym ⊇ J×K and every γ < α·K+

to find m̃ ⊇ J×K such that it holds |m| > |m̃|+γ. Without loss of generality we may
assume “convexity ofm ” (∀ 〈α, β〉)((∃〈α1, β1〉 ∈ m)(α < α1& β < β1) =⇒ 〈α, β〉 ∈

m)), hence (∀ δ ∈ α)(m
′′

{δ} ∈ N &m
′′

{δ} > K). Let us put γ0 = pγ/αq, hence

γ0 ∈ K+. Now it suffices to put m̃
′′

{δ} = m
′′

{δ}−γ0, as we have m
′′

{δ}−γ0 ⊃ K.
�

Remark: Note that in [KZ 1989] an example is given of a real semiset X such that
X and X are both nonadditive and (X)+ 6= (X)+.

Lemma 1.5. (a) Let J and K be cuts such that for no γ ∈ N the equality

J = γ − J+ holds. If J ≤ K and (∀ δ > J+)(∃ α)(α ≤ J ≤ K ≤ α + δ), then
J = K.
(b) Let J and K be cuts such that J+ = K+ and there is γ ∈ N with J =

γ − J+. If J ≤ K and (∀ δ > J+)(∃ α)(α ≤ J ≤ K ≤ α + β), then J = K or
K = γ + J+.
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Proof: (a) By contradiction: If J < γ < K, then there is δ > J+ such that
γ − δ > J (otherwise J = γ − J+ contradicting our assumption). But in this case
we have (∀ α ∈ J)(α+ δ ∈ γ < K) which is in contradiction to our assumption.
(b) Obviously K ≤ γ + J+. If γ < K, then K ≥ γ + J+ due to K+ = J+. If

γ > K, then K ≤ γ − J+ since K+ = J+. �

Corollary 1.6. If we prove, for nonadditive cuts J, K, that for no γ the equality
J · K = γ − (J · K)+ holds, then |J × K| = J · K = J !K.

In the following theorem, we prove the opposite implication of the main assertion.

Theorem 1.7. If J and K are nonadditive cuts such that J × K 6= J × K, then
there is γ ∈ N such that K = γ/J .

Proof: Let α, β be such that α < J < 2α, β < K < 2β. Due to Theorem 1.3
we know that β · J+ = α · K+. We also know (Corollary 1.6) that there is γ such
that J · K = γ − β · J+. We prove that J × K = γ + β · J+. By contradiction, we
prove γ < J × K. γ > J × K implies namely γ − β · J+ ≥ J × K (by Theorem 1.4
(J × K)+ = β ·J+), hence γ−β ·J+ = J × K < J × K ≤ γ−β ·J+, a contradiction.
We prove now K ≤ γ/J . Let us fix β1 ∈ K. We have to prove (∀ α1 ∈ J)(β1 <
γ/α1), but we know that α1 · β1 < γ, as α1 · β1 < γ − β · J+. It suffices to prove
γ/J ≤ K. Let us fix δ ∈ γ/J . Hence there is α1 > J such that δ < γ/α1. Now it
suffices to prove that (∀ β1 > K)(δ < β1). But we have α1 · β1 > J !K ≥ J × K =
γ + β · J+ > γ and hence δ < γ/α1 < β1. �

Our result can be now collected to the promised assertion.

Corollary 1.8. The cartesian product of two proper nonadditive cuts J, K has no
cut, iff there is γ such that K = γ/J .

Remark: Due to Theorem 1.4 we know that (J ·K)+ = α·K+ (where α < J < 2α).
If we use an arbitrary γ̃ such that |γ̃ − γ| < α · K+ instead of γ, then the equality
K = γ̃/J holds, too.
The following theorem proves that the necessary conditions β · J+ = α ·K+ and

J ·K = γ−α ·K+ for the nonexistence of the cut of J ×K have a position different
from that one of the couple of conditions β ·J+ = α ·K+ and J, K has the opposite
set cofinality.

Theorem 1.9. Let J, K be nonadditive cuts and let α, β be such that α < J < 2α
and β < K < 2β. If β · J+ = α · K+ and there is γ such that J · K = γ − α · K+,
then either there are α1, β1 such that J = α1 − J+ and K = β1 − K+ or J × K
has no cut. (Note that in the first case |J × K| = γ − α · K+.)

Proof: We have to prove that if the first case does not hold, then K = γ/J .
K ≤ γ/J is obvious, as J ·K < γ. We prove K ≥ γ/J . Let us suppose α = β hence
J+ = K+. The general case is only an obvious modification.
(a) If J = α1 − J+, then γ/J = pγ/α1q + J+ and we suppose (without loss of

generality) γ = α21. We have to prove α1 < K. If α1 > K, then α1 − K+ > K
(the equality leads to the first case of the conclusion of the theorem). Hence there
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is ε > K+ such that α1− ε > K and α1 · (α1− ε) = γ − ε ·α1 > J ·K = γ −α · J+,
a contradiction.
(b) If J = α1 + J+, then γ/J = β1 − J+ for β1 = xγ/α1y. If K < γ/J , then

there is ε > J+ such that β1−ε > K. But we have (β1−ε) · (α1+J+) < γ−α ·J+,
a contradiction.
(c) We have neither J = α1 + J+ nor J = α1 − J for any α1. We want to prove

(∀ β1 < γ/J)(β1 < K). If there is β1 such that β1 < γ/J and β1 > K, then there
are α1 > J such that β1 < γ/α1 and ε > J+ such that α1 − ε > J . But then we
have (α1 − ε) · β1 < γ − α · J+ = J · K, a contradiction. �

Remark: Note that the triple of necessary conditions for J × K not having a cut,
namely J ·K = γ−α ·K+, α ·K+ = β ·J+ and J, K has opposite set cofinalities, is
also sufficient, as the first case of the conclusion in the last theorem is excluded by
the third condition. This triple of conditions is the third complete characterization
of couples of nonadditive cuts such that their cartesian product has no cut.
The following corollary proves that for nonadditive cuts J, K, the equality J × K=

J !K holds. (Note that the equality J · K = J × K is obvious for all cuts.)

Corollary 1.10. For every couple of nonadditive cuts J, K, we have J × K =
J !K.

Proof: Let α, β be such that α < J < 2α, β < K < 2β.
(a) If there is no γ such that J ·K = γ−max (α·K+, β ·J+), then by Theorem 1.4

and Lemma 1.5(a) we have J · K = J × K = J × K = J !K.

(b) If J ·K = γ −max (α ·K+, β · J+) and J ·K < J × K, then α ·K+ = β · J+

and J × K = J !K = γ + α · K+ by Theorem 1.4.
(c) If J ·K = γ −max (α ·K+, β · J+), J ·K = J × K and α ·K+ = β · J+, then

by Theorem 1.8 we have J = α1 − J+, K = β1 − K+ for suitable α1, β1 and hence
J !K = γ − α · K+.
(d) If α·K+ < β·J+, then by Theorem 1.3 there are β1, β2 such that β1 < K < β2

and β1 · J = β2 · J(= J ·K = J × K). Obviously β1 · J ≤ J ·K ≤ J × K ≤ J !K ≤
β2 · J . �

Remarks: (1) The assertion of the last corollary can be reformulated as follows:
If one of products of two cuts J, K is not additive, then J × K = J !K.
(2) In the following paper concerning the products of additive cuts, we shall prove

that only in the case that both J and K are additive, the inequality J × K < J !K
is possible. An example is remembered in Sect. 3.

Corollary 1.11. If X, Y have nonadditive cuts and if |X |, |Y | has a cut, then
|X × Y | = |X | · |Y |.

Proof: |X| · |Y | = X · Y ≤ X × Y ≤ X × Y ≤ X !Y = |X | · |Y |. �

The dual equality J × K = J !K to the obvious one J ×K = J ·K leads to dual
versions of Corollary 1.6 and Theorem 1.9 where we change J · K by J !K and −
by +. We can restate the dual version of Theorem 1.9: Let J, K be nonadditive
cuts and let α, β be such that α < J < 2α and β < K < 2β. If β · J+ = α · K+

and there is γ such that J !K = γ + α · K+, then either there are α1, β1 such that
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J = α1 + J+ and K = β1 + K+, or J × K has no cut. (Note that in the first
case |J × K| = γ + α · K+.) In the same manner we can restate in the dual form
the third characterization of couples of nonadditive cuts such that their cartesian
product has no cut. We do not give here these dual versions precisely and their
proofs are left to the reader.

2. Product of the form (α + J)× (α − J).

In this section, we find product of some special cuts. By this we prove that if

J×K has no cut and J, K are nonadditive cuts, then in “almost all cases” J = α+J̃

and K = β− (β/α) · J̃ where J̃ is “small with respect to α ” (and (β/α) · J̃ is “small
w.r.t. β ”). Hence we converse, in a sense, the fact that (α + FN) · (α − FN) =

α2 − α · FN and (α + FN)× (α − FN) = α2 + α · FN.

Theorem 2.1. Let J and K be additive cuts, α > J and β > K. If β · J = α ·K,
then (α+ J) · (β − K) = α · β − α · K and (α + J)× (β − K) = α · β + α · K.

Proof: Let us begin with the inner cut. If γ < J and 2δ > K, then (α+γ)(β−2δ) =
α · β − 2δ · α + γ · β − γ · 2δ < α · β − δ · α, as γ · β < β · J = α · K < δ · α. The
direct proof of the opposite inequality is left to the diligent reader, as it follows from
Theorem 1.4 and the following step of the proof.

To prove the second equality (outer cut), it suffices to prove that for every set m
such that m ⊃ (α + J) × (β − K), we have m > α · β + α · K and to use the first
part of the proof and Theorem 1.4 (remember that (α + J)+ = J). Without loss
of generality we can suppose that m is “convex” (〈γ1, δ1〉 ∈ m& γ ≤ γ1& δ ≤ δ1 ⇒
〈γ, δ〉 ∈ m). Let us put γ1max {γ; 〈α+ γ, pβ/2q〉 ∈ m}, especially γ1 > J . There is
γ > J such that 4γ < γ1 (due to the additivity of J). Now we put δ = xβ · γ/αy,
hence δ > K (remember β ·J = α ·K). Now we have |m| > (β− δ) ·α+(β/2) ·4γ ≥

α · β + β · γ. We have proved (α+ J)× (β − K) ≥ α · β + α · K ⊃ α · β − α · K ≥
(α+ J) · (β − K). The needed two equalities are obtained by Theorem 1.4. �

Remarks: (1) If β · J > α · K, then |(α + J) × (β − K)| = α · β + β · J and if
α ·K > β · J , then |(α+ J)× (β −K)| = α · β − α ·K (which the reader can easily
prove using Theorem 1.3).

(2) Note that, for additive cuts J, K, we have the following assertion: if β · J =
α · K, α > J and β > K, then α + J = α · β/(β − K) and β − K = α · β/(α + J)
(use Theorem 1.7).

The following theorem is only an appendix to the interesting case solved by the
previous theorem.

Theorem 2.2. If J, K are additive cuts such that α > J and β > K, then |(α +
J)×(β+K)| = α·β+max (α·K, β ·J) and |(α−J)×(β−K)| = α·β−max(α·K, β ·J).

Proof: In the case β · J 6= α · K, we use Theorem 1.3. If β · J = α · K, then the
existence of the cut of the cartesian product follows by the set cofinality α+ J and
β+K (α−J and β−K, respectively). The inner cut of the products can be found
using Theorem 1.4. �



68 K. Čuda

Other typical cases of products are solved by the following two theorems. The
first one asserts that if β is “relatively large w.r.t. (with respect to) α and J”, then
(α + β + J)× (α − β − J) has a cut; the second one asserts that if β is “relatively
small w.r.t. α and J”, then (α+ β + J)× (α − β − J) has no cut.

Theorem 2.3. Let J be a nonadditive cut such that there is no γ with J = γ+J+

or J = γ−J+ and let α > J . If ω ∈ N has the property α/ω > J &(∀ δ ∈ J+)(ω·δ ∈
J+), then (∀ β > α/ω)(|(α + β + J) × (α − β − J)| = (α + β + J) · (α − β − J)).
Moreover, there is no γ such that (α + β + J) · (α − β − J) = γ − α · J+ or
(α+ β + J) · (α − β − J) = γ + α · J+. (Obviously we suppose α − β > J .)

Proof: To prove that the product has a cut it is sufficient, by Corollary 1.6, to
check that the inner cut has not the form γ−α ·J+. We prove this by contradiction.

Obviously, we can suppose γ < α2. Let us put β0 = x
√

α2 − γy, i.e. α2−(β0+1)
2 ≤

γ ≤ α2 − β20 .

(1) If β0 > β + J , then there are β1 > β + J and δ > J+ such that β1 <
β0, β1−δ > β+J and β1−δ−xδ/ωy ∈ β+J . Now we have (α+β+J)·(α−β−J) >
(α + β1 − δ − xδ/ωy) · (α − β1 + δ) ≥ α2 − β21 + 2δ · β1 − δ2 − xδ/ωy · α ≥ γ, as

α2 − β21 ≥ α2 − β20 > γ, δ · β1 > δ2 and δ · β1 > xδ/ωy · α (as β1 > β > α/ω).

(2) If β0 < β + J , then we prove that there is ε > J+ such that γ − ε · α >
(α + β + J) · (α − β − J). Let β1 > β0 and β1 > β be such that β1 ∈ β + J and
there is δ > J+ such that β1 + δ < β + J and β1 + δ + xδ/ωy > β + J . Then we
have (α + β1 + δ + xδ/ωy) · (α − β1 − δ) ≤ α2 − β21 − 2β1 · δ − δ2 + xδ/ωy · α ≤

α2 − (β0 + 1)
2 − xδ/ωy · α as β1 · δ > δ · (α/ω). Now it suffices to put ε = xδ/ωy.

The proof that (α + β + J) · (α − β − J) 6= γ + α · J+ is easy. We proceed
once more by contradiction. If for some γ we have the equality, then there are
κ1 ∈ α + β + J and κ2 ∈ α − β − J such that κ1 > α and κ1 · κ2 > γ. By the
assumption J 6= β1 − J+ there is δ > J+ such that κ2 + δ ∈ α − β − J , hence
κ1 · (κ2 + δ) > γ + δ · α, a contradiction. �

Remark: In [S 1988] there is an example of a cut J̃ such that J̃+ 6= J̃ & J̃+ = FN

and for any γ we have neither J̃ = γ + FN nor J̃ = γ − FN. Let δ be such that

δ < J̃ < 2δ and let us put J = 12δ + J̃ and K = 6δ − J̃ . If we put α = 9δ, β = 3δ
and ω = 4, then by Theorem 2.3 we have that J × K has a cut. If we put α = 10δ
and β = 5δ, then β · J+ = α · K+ and J, K have the opposite set cofinality. Hence
we have the example promised after Theorem 1.3.

Corollary 2.4. Let J be nonadditive cut such that there is no β with J = β+J+

or J = β −J+ and let α < J < 2α and (∀ ω ∈ N)(α/ω > J+ ⇒ α/ω2 > J+); then
(∀ β ∈ J such that 2β > J)(|J × (β − (J − β))| = J · (β − (J − β)) and there is
no γ with J · (β − (J − β)) = γ − α · J+ or J · (β − (J − β)) = γ + α · J+.

Remark: Note that the cuts from the example in the remark after Theorem 2.3 do
not have the property required in Corollary 2.4. An example of such cuts is given
in Sect. 3.

Theorem 2.5. Let J be a nonadditive cut. If (∃ ω)(∃ δ)(α/ω > J & δ > J+& δ/ω
< J+), then for every β < α/ω there is β1 ∈ J such that (α+ β + J)× (α − β − J)=
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α2 − (β + β1)
2 − α · J+ and (α+ β + J)× (α − β − J) = α2 − (β + β1)

2 + αJ+

Proof: Due to the assumption J 6= J+ we may suppose δ < J . We prove, at first,
that there is β1 ∈ J such that (α+β+J) · (α−β−J) = α2− (β+β1)

2−α ·J+. Let
us fix δ having the property from the assumptions (δ < J & δ > J+& δ/ω < J+).
There is β1 < J such that β1+ δ > J . The product of a couple of numbers from the
investigated cuts may be expressed in the form (α+β+β1+ε)·(α−(β+β1+ε+ε1)) =
α2−(β+β1)

2−2ε·(β+β1+ε/2)−ε1(α+β+β1+ε). Hence we know that the product
is less than α2−(β+β1)

2. By Theorem 1.4, we know that ((α+β+J)·(α−β−J))+ =
α · J+ and hence (α + β + J) · (α − β − J) ≤ α2 − (β + β1)

2 − α · J+. To prove
the opposite inequality, let us choose an arbitrary γ > J+. We prove that there is
a couple of numbers of the investigated cuts such that the product is larger than
α2−(β+β1)

2−γ ·α. Let us choose ε1 such that J
+ < ε1 < γ/3. To this ε1 there is ε

such that β1+ε < J & β1+ε+ε1 > J . Then we can estimate β < α/ω, β1+ε < α/ω
(as β1+ ε < J < α/ω). Hence 2 · (β+β1+ ε/2) · ε < 2 · (α/ω+α/ω) · ε ≤ 4α · (δ/ω).
Now we have δ/ω < J+ (by the assumption) and thus 4 · (δ/ω) < J+ (additivity
of J+), hence α · 4 · (δ/ω) < α · (γ/3). The estimation β + β1 + ε < α is obvious
and thus the inequality is proved.
To prove (α+ β + J)× (α − β − J) = α2 − (β + β1)

2 + αJ+, it suffices to show
that for every setm ⊃ (α+β+J)×(α−β−J) we have |m| > α2−(β+β1)

2. We may
assume thatm is “convex” ((∀ α, β)((∃ 〈α1, β1〉 ∈ m)(α ≤ α1& β ≤ β1)⇒ 〈α, β〉 ∈
m)). Let γ1 be the largest natural number such that 〈α+β+β1+γ1, xα/2y〉 ∈ m. Let
us suppose that J 6= β1+γ1−J+. Then there is γ > J+ such that β1+γ1−γ > J .
In the same way as in the first part of the proof, we can find ε1, ε such that β1+ε <
J, β1+ε+ε1 > J, (α+β+β1+ε) · (α− (β+β1+ε+ε1)) > α2− (β+β1)

2−γ ·α/2.
But the set m contains more than γ · α/2 elements out of the cartesian product of
the mentioned couple of numbers. In the case that J = β1 + γ1 − J+, we proceed
analogously using the second coordinate, as α− β − J = α− β − β1 + γ1 + J+. �

Remark: Note that if we have even α/ω < δ (hence α/ω2 < J+), then we obtain
the following more pleasant expressions (α+ β + J)× (α − β − J) = α2−αJ+ and

(α+ β + J)× (α − β − J) = α2 + α · J+. In Sect. 3 we give an example in which
both β, β1 play a substantial role.

The following theorem solves further two cases which enter the mind after last
two theorems.

Theorem 2.6. Let J be a nonadditive cut such that there is no β with J = β+J+

or J = β−J+. If α > J , then (α+J+) ·(α−J) = α ·(α−J) and (α+J)(α−J+) =
(α+ J) · α.

Proof: (α+J+) ·(α−J) ≥ α ·(α−J) is obvious. We prove the opposite inequality.
If γ < α − J , then there is ε > J+ such that γ + ε < α − J . For δ ∈ J+ we know
that (α+ δ) · γ < α · (γ + ε) as δ · γ < α · ε.
(α+ J) · (α− J+) ≤ (α+ J) · α is obvious. To prove the opposite inequality, we

choose for γ ∈ J a number δ such that δ > J+& γ+3δ < J &3δ < α. Now we have
(α+ γ) ·α < (α+ γ+3δ) · (α− δ) = (α+ γ) ·α+2δ ·α− (α+ γ) · δ+ δ ·α− 3δ2. �
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Corollary 2.7. With the same assumptions as in Theorem 2.6, we have |(α+J+)×
(α − J)| = α · (α − J) and |(α + J)× (α − J+)| = (α+ J) · α.

The following theorem is in a sense the converse of Theorem 2.5. But at first we
find two equivalents of the property (∃ α)(∃ δ)(∃ ω)(α < J < α + α/ω& δ/ω <
J+ < δ) known from Theorem 2.5. Another (complicated) equivalent proving how
infrequent the negation of the property is, will be described later.

Lemma 2.8. The following three properties are equivalent.

(1) (∃ α)(∃ δ)(∃ ω)(α < J < α+ α/ω& δ/ω < J+ < δ);
(2) (∃ α)( ∃ω)(α < J < α+ α/ω&α/ω2 < J+ < α/ω);
(3) J is nonadditive proper cut such that (∀ α, α < J < 2α)(∃ ω)(α/ω2 <

J+ < α/ω).

Proof: (3) ⇒ (2) Let us choose α1 such that α < α1 < J < α1 + α/ω. Then we
have α < α1 < 2α and due to additivity of J+, the property α1/ω2 < J+ < α1/ω
is preserved.
(2)⇒ (1) It suffices to put δ = pα/ωq.
(1)⇒ (3) Let us fix an arbitrary triple α1, δ1, ω1 satisfying (1) and let α be such

that α < J < 2α. If α/ω1 ≤ δ1, then it suffices to put ω = ω1 and the property
J+ < α/ω holds due to additivity of J+ (analogous to (3) ⇒ (2)). If α/ω1 > δ1,
then ω be the least number such that α/ω < δ1. �

Theorem 2.9. Let J and K be nonadditive cuts such that J × K has no cut. If
one of the cuts (e.g. J) has the property (∃ α)(∃ δ)(∃ ω)(α < J < α+α/ω& δ/ω <
J+ < δ), then the second cut (e.g. K) has this property, too. In this case we have,
moreover: There are α, β such that α < J and K = β− (β/α) · (J −α). (For α = β,
we obtain exactly the product described in Theorem 2.5.)

Proof: From the fact that J × K has no cut, it follows that there is γ such that

J · K = γ − β̃ · J+ (where β̃ < K < 2β̃, see Theorem 1.4). By Theorem 1.7
we know that K = γ/J . Let us put β = pγ/αq. Now it suffices to check that

K = β − (β/α) · J̃ , where J̃ = {δ;α+ δ < J}. The proof that K has the property
can be left to the reader. For the sake of simplicity we suppose γ = α2 (the general
case is only somewhat more incomprehensive). If δ is such that α + δ < J , then

α2/(α+ δ) = (α− δ) ·α2/(α2− δ2) > α− J̃ – hence K ≥ α− J̃ . Let δ be such that
α+ δ < J . We want to prove that α − δ > K. We have α − δ = (α2 − δ2)/(α+ δ)
and to prove α − δ > K, it hence suffices to check δ2 < α · J+ (see the remark
after Theorem 1.7). We have α < α + δ < J < α + α/ω, hence δ < α/ω and
δ2 < α · (α/ω2). But we know that α/ω2 < J+ by the assumption. �

Remark: In Sect. 3, we give both examples: a cut having the property and a cut
not having the property.

Next theorem describes another equivalent of the property (∃ α)(∃ ω)(α < J <
α+α/ω&α/ω2 < J+) proving how infrequent the negation of the property is. But
we give a definition before, which is useful when investigating additive cuts.
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Definition 2.10. For a cut J we define lg(J) = {α; 2α < J}.
We left to the reader the proofs of the following easy assertions: lg(J) is a cut,

J ≤ K ⇒ lg(J) ≤ lg(K) and lg(J) is a proper cut, iff J is additive.

Theorem 2.11. The following two properties are equivalent.

(1) (∃ α)(∃ ω)(α < J < α+ α/ω&α/ω2 < J+);
(2) J is a nonadditive proper cut such that if lg(J+) is nonadditive, then lg(J+)

6= γ − (lg(J+))+ where γ is such that 2γ < J < 2γ+1 (there is exactly one
such γ).

Proof: By Lemma 2.8, we have that (1) is equivalent to J is nonadditive proper
cut such that (∀ α, α < J < 2α)(∃ ω)(α/ω2 < J+ < α/ω). Due to additivity
of J+, this is equivalent to (∃ α, α < J < 2α)(∃ ω)(α/ω2 < J+ < α/ω). The last
inequality can be equivalently rewritten to lg(α)−2 ·lg(ω) < lg(J+) < lg(α)− lg(ω).
If lg(J+) is additive, then we have lg(J+) < lg(α) (as J+ < α) and lg(J+) <
xlg(α)/2y. It suffices now to choose ω such that lg(ω) = xlg(α)/2y − 2. If lg(J+)
is nonadditive and lg(J+) 6= γ − (lg(J+))+ (in this case we have lg(α) = γ or
lg(α) + 1 = γ), then lg(J+) < γ − (lg(J+))+. Hence there is ω̃ > (lg(J+))+

such that lg(α) − 2ω̃ < lg(J+) < lg(α) − ω̃. Now it suffices to choose ω such that
lg(ω) = ω̃. If lg(J+) = γ − (lg(J+))+ (now we have lg(α) = γ or lg(α) + 1 = γ),
then lg(J+) < lg(α)− lg(ω) implies lg(ω) < (lg(J+))+. Hence 2 · lg(ω) < (lg(J+))+

and lg(J+) < lg(α) − 2 · lg(ω). Thus the inequality does not hold for any ω. �

The following theorem solves the question which immediately arises after the last
theorem.

Theorem 2.12. Let J be a nonadditive cut such that for no δ we have J = δ+J+

or J = δ − J+. If γ is such that 2γ < J < 2γ+1 and lg(J+) = γ − (lg(J+))+, then
for every α such that 2γ < α < J , the product J × (α − (J − α)) has a cut.

Proof: By Theorem 2.3 it suffices to prove that for every α, having the properties
from the assumption, there is β < J − α such that β is “relatively large w.r.t. α
and J − (α + β)”. Hence we are to find ω such that β > α/ω > J − (α + β) and
(∀ δ < J+)(ω · δ < J+). Let us choose β such that α + β < J < α + β + β/4
which is possible as J is not of the form δ + J+. Let us put ω = pα/βq + 1. The
conditions β > α/ω and α/ω > β/4 > J − (α+ β) are fulfilled. It suffices to prove
the property (∀ δ < J+)(ω ·δ < J+) and due to the additivity of J+, the inequality
is equivalent to lg(ω)+ lg(δ) < lg(J+). As α/ω > J+ we know that lg(α)− lg(ω) >
lg(J+) = γ − (lg(J+))+ = lg(α) − (lg(J+))+ and hence lg(ω) < (lg(J+))+. From
this we know that for every δ such that lg(δ) < lg(J+) = γ − (lg(J+))+, we have
lg(δ) + lg(ω) < lg(J+). �

Remark: The results of Theorem 2.9 and Theorem 2.12 can be collected to the
following fact. If J × K has no cut, then K can be expressed “almost surely” in
the form K = (β/α) · (α − (J − α)) for suitable α, β. Moreover, α is “a good
approximation” of J (e.g. ∀ k ∈ FN)(α < J < α/k) holds). Only in the case that
one (and hence also the second) of the cuts has neither the form J = δ+J+ nor J =
δ−J+ (hence J is not real – see [S 1988]) and simultaneously lg(J+) = γ−(lg(J+))+
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where 2γ < J < 2γ+1, we have that for no α, β, the equalityK = (β/α)·(α−(J−α))
holds.

3. Examples.

In this section we give examples promised in the first and second ones.
Remember that in Theorem 1.1 it is proved that J × (2α2/J) has no cut for J

nonadditive and α < J < 2α. This fact is also preserved if the cuts are multiplied
by sufficiently large rational numbers (r · J must be a proper cut). Remember,
moreover, that in [Tz 1988] there is noticed that a necessary condition for J × K
having no cut is the opposite set cofinality of J and K. Another necessary condition
is that β · J+ = α · K+ for α < J < 2α and β < K < 2β (by Theorem 1.3). In the
remark after Theorem 2.3, an example of cuts J, K, having the two conditions and
still J × K = J × K, is given.
By Theorem 1.8, an example of cuts J, K (e.g. J = K = α − FN) such that

β · J+ = α · K+, J · K = γ − α · K+ and J × K = J × K, can be obtained. Hence
the second couple of necessary conditions does not suffice.
The example that the last couple of conditions (the opposite set cofinality and

J · K = γ −max (α · K+, β · J+) is not sufficient, we obtain if we put J = α − FN
and K = α2 +FN. In this case we have |(α − FN)× (α2 +FN)| = α3 − α2 · FN by
Theorem 1.3.
Remember from [KZ 1988] that α/FN = |(α/FN)×FN | < (α/FN) ! FN = α·FN

is an example of two cuts such that J × K < J !K. (Both cuts must be additive.)
Now we give an example of a nonadditive cut J such that (∀ β ∈ N)(J 6=

β+J+& J 6= β−J+) and for α such that α < J < 2α we have (∀ ω)(α/ω > J+ ⇒
α/ω2 > J+). We promised this example in the remark following Corollary 2.4. This
example can serve also as one case of cuts noticed in the remark after Theorem 2.9.
As we have mentioned, an example of a cut J such that J+ = FN and (∀ β)(J 6= β+
FN & J 6= β−FN) is given in [S 1988]. Generally, this holds for any additive cut not
being π (i.e. K 6= N and there is no descending sequence {αn;αn ∈ N &n ∈ FN}
such that K =

⋂
n∈FN αn). Such a cut can be constructed as the union of an

increasing transfinite sequence {yβ;β ∈ Ω}. We start with a transfinite decreasing
sequence {xβ ;β ∈ Ω} such that

⋂
{xβ ;β ∈ Ω} = K and β1 > β2 ⇒ 3xβ1 < xβ2

and on the β-th step we guarantee that yβ + xβ < J < yβ + 2xβ . Let
∗ FN

be any revealment (standard extension) of FN (see [SV 1979] or [SV 1980] for the
definitions). If α > ∗ FN, then α/∗ FN is an additive cut not being π and hence there
is a cut J such that α < J < 2α, J+ = α/∗ FN and (∀ β)(J 6= β+J+& J 6= β−J+).
This cut has the property α/ω > J+ ⇒ α/ω2 > J+, as α/ω > J+ ⇒ ω < ∗ FN.

Remark: Note that for α̃ such that 2α̃ < J < 3α̃ the couple J, 2α̃ − (J − 2α̃) is
a new (more complicated but more expressive) example of a couple of cuts such
that β · J+ = α · K+, J, K, have the opposite set cofinality, and J × K has a cut.
In the remark following Theorem 2.5 there is a circumstance which gives us

a more pleasant expression of the product. The following example describes a case
in which β, β1 play a substantial role in the description of the product. We also
give, by this example, the second case of cuts promised in the remark following
Theorem 2.9.
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If γ > FN, then 2γ · FN is an additive cut not being a π class and hence we
are able to construct a cut J such that J+ = 2γ · FN, 23γ < J < 2 · 23γ and
(∀ β)(J 6= β + J+& J 6= β − J+). Using the notation of Theorem 2.5, let us put
α = 25γ , β = 24γ , ω = 2γ−1, δ = 22γ . The assumptions of Theorem 2.5 are fulfilled
and we prove that α2 − β2 > (α + β + J) ! (α − β − J) = α2 − (β + β1)

2 + αJ+

for a suitable β1 < J . If ε is such that FN < ε < γ/2, then there is β2 such that
β2 < J < β2+2

γ+ε and β2 > 23γ . Now we prove the inequality (α+β+β2+2
γ+ε) ·

(α−β−β2) < α2−β2. We have namely (25γ+24γ+β2+2
γ+ε) · (25γ −24γ −β2) <

(25γ)2 − (24γ)2 + 26γ+ε − 2β2 · 2
4γ < (25γ)2 − (24γ)2. For the first inequality, let

us note that only some negative numbers are omitted on the righthand side and for
the second inequality, notice that β2 > 23γ .

References
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