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CANONICAL 1-FORMS ON HIGHER ORDER ADAPTED
FRAME BUNDLES

Jan Kurek and Włodzimierz M. Mikulski

Abstract. Let (M,F) be a foliated m + n-dimensional manifold M with
n-dimensional foliation F . Let V be a finite dimensional vector space over R.
We describe all canonical (Folm,n-invariant) V -valued 1-forms Θ: TP r(M,F)
→ V on the r-th order adapted frame bundle P r(M,F) of (M,F).

All manifolds and maps are assumed to be of class C∞.
A definition of foliations can be found in [2]. Let Folm,n be the category of

foliated m + n-dimensional manifolds with n-dimensional foliations and their
foliation respecting local diffeomorphisms. Let (M,F) be a Folm,n-object. Then
we have an adapted r-th order frame bundle

P r(M,F) =
{
jr0ϕ | ϕ : (Rm+n,Fm,n)→ (M,F) is a Folm,n-map

}
over M of (M,F) with the target projection, where Fm,n =

{
{a}×Rn

}
a∈Rm is the

n-dimensional canonical foliation on Rm+n. We see that P r(M,F) is a principal
bundle with the standard Lie group Grm,n = P r(Rm+n,Fm,n)0 (with the multipli-
cation given by the composition of jets) acting on the right on P r(M,F) by the com-
position of jets. Every Folm,n-map ψ : (M1,F1)→ (M2,F2) induces a local fibred
diffeomorphism (even a principal bundle local isomorphism) P rψ : P r(M1,F1)→
P r(M2,F2) given by P rψ(jr0ϕ) = jr0(ψ ◦ ϕ).

Definition 1. Let V be a finite dimensional vector space over R. We recall that a
Folm,n-canonical V -valued 1-form Θ on P r is a family of Folm,n-invariant V -valued
1-forms Θ(M,F) : TP r(M,F)→ V on P r(M,F) for any Folm,n-object (M,F). The
invariance means that the V -valued 1-forms Θ(M1,F1) and Θ(M2,F2) are P rΦ-related
(P rΦ∗Θ(M2,F2) = Θ(M1,F1)) for any Folm,n-map Φ: (M1,F1)→ (M2,F2).

It is rather-known the following Folm,n-canonical Rm+n-valued 1-form on
P 1(M,F).

Example 1. For every Folm,n-object (M,F) we define an Rm+n-valued 1-form
θ(M,F) on P 1(M,F) as follows. Consider the target projection β : P 1(M,F)→M
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given by β(jr0ϕ) = ϕ(0), an element u = j1
0ψ ∈ P 1(M,F) and a tangent vector

X = j1
0c ∈ Tu

(
P 1(M,F)

)
. We define the form θ = θ(M,F) by

θ(X) = u−1 ◦ Tβ(X) = j1
0(ψ−1 ◦ β ◦ c) ∈ T0Rm+n = Rm+n .

Let us notice that if n = 0 then (M,F) = M and P 1(M,F) = P 1(M) and
θ(M,F) = θM is the well-known canonical Rm-valued 1-form on the frame bundle
P 1M .

To present a general example of Folm,n-canonical V -valued 1-forms on P r we
need the following lemma.
Lemma 1. Let (M,F) be a Folm,n-object. Then any vector v ∈ TwP r(M,F), w ∈(
P r(M,F)

)
x
, x ∈M is of the form PrXw for some infinitesimal automorphism

X ∈ X (M,F), where PrX ∈ X
(
P r(M,F)

)
is the flow lifting of X to P r(M,F).

Moreover jrxX is uniquely determined.
Remark 1. We inform that a vector field X on M is an infinitesimal automorphism
of (M,F) iff the flow {ExptX} of X is formed by local Folm,n-maps (M,F) →
(M,F) or (equivalently) [X,Y ] is tangent to F for any Y tangent to F . The space
X (M,F) of all infinitesimal automorphisms of (M,F) is a Lie subalgebra in X (M).
Given an infinitesimal automorphism X ∈ X (M,F), the flow lifting PrX is a
vector field on P r(M,F) such that if {Φt} is the flow of X then {P r(Φt)} is the
flow of PrX. (Since Φt are Folm,n-maps we can apply functor P r.)
Proof of Lemma 1. We can of course assume that (M,F) = (Rm+n,Fm,n) and
x = 0. Since P r(Rm+n,Fm,n) is in usual way a principal subbundle of P r(Rm+n),
then by well-known manifold version of the lemma, we find X ∈ X (Rm+n) such
that v = PrXw and jr0X is determined uniquely. An infinitesimal automorphism
Y ∈ X (Rm+n,Fm,n) gives PrYw which is tangent to P r(Rm+n,Fm,n). On the
other hand the dimension of P r(Rm+n,Fm,n) and the dimension of the space of
r-jets jr0Y of Y ∈ X (Rm+n,Fm,n) are equal. Then the lemma follows from the
dimension argument because flow operators are linear. �

Example 2. Let λ : Jr−1
0
(
TInf−Aut(Rm+n,Fm,n)

)
→ V be an R-linear map,

where Jr−1
0
(
TInf−Aut(Rm+n,Fm,n)

)
is the vector space of all (r − 1)-jets jr−1

0 X
at 0 ∈ Rm+n of infinitesimal automorphisms X ∈ X (Rm+n,Fm,n). Given a
Folm,n-object (M,F), we define a V -valued 1-form Θλ

(M,F) : TP r(M,F)→ V on
P r(M,F) as follows. Let v ∈ TwP r(M,F), w = jr0ϕ ∈ (P r(M,F))x, x ∈ M . By
Lemma 1, v = PrXw for some infinitesimal automorphism X ∈ X (M,F), and jrxX
is uniquely determined. Then it is determined the (r − 1)-jet jr−1

0
(
(ϕ−1)∗X

)
at 0

of the image (ϕ−1)∗X of X by ϕ−1. We put
Θλ

(M,F)(v) := λ
(
jr−1

0 ((ϕ−1)∗X)
)
.

Clearly, Θλ = {Θλ
(M,F)} is a Folm,n-canonical V -valued 1-form on P r.

The main result of the present short note is the following classification theorem.
Theorem 1. Any Folm,n-canonical V -valued 1-form on P r is Θλ for some unique
R-linear map λ : Jr−1

0
(
TInf−Aut(Rm+n,Fm,n)

)
→ V .
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In the proof of Theorem 1 we use the following fact.

Lemma 2. Let X,Y ∈ X (M,F) be infinitesimal automorphisms of (M,F) and
x ∈ M be a point. Suppose that jr−1

x X = jr−1
x Y and Xx is not-tangent to F .

Then there exists a (locally defined) Folm,n-map Φ: (M,F) → (M,F) such that
jrx(Φ) = jrx(idM ) and Φ∗X = Y near x.

Proof. A direct modification of the proof of Lemma 42.4 in [1]. �

Proof of Theorem 1. Let Θ be a Folm,n-canonical V -valued 1-form on P r. We
must define λ : Jr−1

0
(
TInf−Aut(Rm+n,Fm,n)

)
→ V by

λ(ξ) := Θ(Rm+n,Fm,n)
(
PrX̃jr0 (idRm+n )

)
for all ξ ∈ Jr−1

0
(
TInf−Aut(Rm+n,Fm,n)

)
, where given ξ in question, X̃ is a unique

(a unique germ at 0 of) infinitesimal automorphism of (Rm+n,Fm,n) such that
jr−1

0 X̃ = ξ and the coefficients of X̃ with respect to the basis of the canonical
vector fields ∂

∂xi ∈ X (Rm+n,Fm,n) (i = 1, . . . ,m+ n) are polynomials of degree
≤ r − 1.

We are going to show that Θ = Θλ. Because of the Folm,n-invariance it remains
to show that
(∗) Θ(Rm+n,Fm,n)(v) = Θλ

(Rm+n,Fm,n)(v)

for any v ∈ Tjr0 (idRm+n )P
r(Rm+n,Fm,n).

By the definition of λ and Θλ we have (∗) for any v of the form PrX̃jr0 (idRm+n ),
where X̃ is an infinitesimal automorphism of (Rm+n,Fm,n) such that the coef-
ficients of X̃ with respect to the basis of canonical vector fields on Rm+n are
polynomials of degree ≤ r − 1.

Now, let v be arbitrary in question. Then by Lemma 1, v is of the form v =
PrXjr0 (idRm+n ) for some infinitesimal automorphism X of (Rm+n,Fm,n). Clearly
(because of a density argument), we can additionally assume that X0 is not tangent
to Fm,n. Let X̃ be an infinitesimal automorphism of (Rm+n,Fm,n) such that
jr−1

0 X̃ = jr−1
0 X and the coefficients of X̃ with respect to the basis of constant vector

fields on Rm+n are polynomials of degree ≤ r − 1. Let ṽ = PrX̃jr0 (idRm+n ). Then
(we have observed above) it holds Θ(Rm+n,Fm,n)(ṽ) = Θλ

(Rm+n,Fm,n)(ṽ). On the
other hand by Lemma 2, there is a Folm,n-map Φ: (Rm+n,Fm,n)→ (Rm+n,Fm,n)
such that jr0Φ = jr0(idRm+n) and Φ∗X̃ = X near 0. Since jr0Φ = id, Φ preserves
jr0(idRm+n). Then since Φ∗X̃ = X, Φ sends ṽ into v. Then because of the invariance
of Θ and Θλ with respect to Φ, we obtain Θ(Rm+n,Fm,n)(v) = Θ(Rm+n,Fm,n)(ṽ) =
Θλ

(Rm+n,Fm+n)(ṽ) = Θλ
(Rm+n,Fm,n)(v). �

In the case r = 1, we have J0
0 (TInf−Aut(Rm+n,Fm,n))=̃Rm+n. Then by Theo-

rem 1, the vector space of Folm,n-canonical V -valued 1-forms on P 1 is (m +
n) dim(V )-dimensional. Then (because of a dimension argument) we have.

Corollary 1. Any Folm,n-canonical V -valued 1-form Θ = {Θ(M,F)} on P 1 is of
the form

Θ(M,F) = λ ◦ θ(M,F) : TP 1(M,F)→ V
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for some unique linear map λ : Rm+n → V , where θ = {θ(M,F)} is the canonical
Rm+n-valued 1-form on P 1 from Example 1.
Example 3. It is easy to see that

Jr−1
0
(
TInf−Aut(Rm+n,Fm,n)

)
=̃Rm+n ⊕ Lie (Gr−1

m,n) .
Thus by Example 2 for λ = idRm+n⊕Lie (Gr−1

m,n) we have a Folm,n-canonical Rm,n ⊕
Lie (Gr−1

m,n)-valued 1-form

θr(M,F) := Θ
id

Rm+m⊕Lie (Gr−1
m,n) : TP r(M,F)→ Rm+n ⊕ Lie (Gr−1

m,n)

on P r. For r = 1, we have θ1 = θ as in Example 1. In particular, for n = 0 we
obtain the well-known canonical Rm ⊕ Lie (Gr−1

m )-valued 1-form
θrM : P rM → Rm ⊕ Lie (Gr−1

m )
on the r-order frame bundle P rM .

By similar arguments as for Corollary 1 we have.
Corollary 2. Any Folm,n-canonical V -valued 1-form Θ = {Θ(M,F)} on P r is of
the form

Θ(M,F) = λ ◦ θr(M,F) : TP r(M,F)→ V

for some unique linear map λ : Rm+n ⊕ Lie (Gr−1
m,n) → V , where θr is as in

Example 3.
In particular (for n = 0), any canonical V -valued 1-form Θ = {ΘM} on P rM

is of the form
ΘM = λ ◦ θrM : TP rM → V

for some unique linear map λ : Rm ⊕ Lie (Gr−1
m )→ V .

Remark. Recently, we obtained (by a modification of the above paper) a similar
result on gauge invariant vector valued 1-forms on higher order principal pro-
longations of principal bundles. The paper will appear in Lobachevskii Math. J.
2008.
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