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Časopis pro pěstování matematiky a fysiky, roč. 74 (1949) 

O N T H E R E D U C I B I L I T Y O F B I N O M I A L 
C O N G R U E N C E S A N D O N T H E B O U N D OF THE 

LEAST INTEGER B E L O N G I N G TO A GIVEN 
E X P O N E N T modp 

STEFAN SCHWARZ, Bratislava. 

(Received February 28, 1948.) 
Let 

xn — a ~0 (modp), (n, p) = (a, p) = 1, (1) 

be a congruence of degree n _\ 1. Let k be an integer, 1 <^ k _\ n. Let 
o-jc = ajc(a) denote the number of irreducible factors of degree k of the 
congruence (1). 

In a paper1) published in czech language I found a system of recur­
rent relations, which enable us to calculate the numbers cr1} a2, ...-o*n 

(modp) (except the cases k == 0 (modp)). 
In this paper — which may be read without reference to the former 

investigations — we give essentially preciser results by fincnrig expEeifc 
formulae for the numbers o%(a). 

The method of our investigation is elementary and it is r a t i l ^ 
suprising that I did not found the explicit form of Theorem I m ,#*&•• 
literature, though it deals with a question entirely classical.2) 

In section I we prove the fundamental Theorem 1 giving A& formula 
for the number ajc(a). 

In section I I we give several easy but interesting applications. Some 
of them are known (with other proofs) and useful in the theory of cyclo-
tomic fields. 

In section I I I we give another form to the results obtained in section 
I by introducing the theory of characters. 

In section IV^we use the formula (13) to generalize a result due t o 
I. M. VINOGRADOV. Let g = g(p) be the least primitive root modp. VINO­
GRADOV3) proved g(p) = 0(p^e). We shall show: Let I be an integer; 

1) Čaáopis pгo pëst. mat . fys.; 71 (1945), p . 21—31. 
2) E , g., in L. A. ШЖSO îГS Histoгy of t h Theory of Numb rs I, Washingtori, 

1934, t h re ar 41 pages devot d to related questíons (p. 181—222). 
3) See E ; LAäГDAU, Voгl sung n über Zahlentheorie I I , 1927, p. 180. 



l/p — 1. Let g = g(p, I) be the least integer belonging to the exponent I 
(modp). Then it is g(p, I) = 0(le—lp%) for every positive e. Hence, for 
I = p — 1 we have the result of VINOGRADOV.4) 

I n section V we generalize the results by considering binomial poly­
nomials over an arbitrary finite field as ground field. As an application of 
the results obtained we prove Theorem 8, which is a generalization of 
a theorem due to H. DAVENPORT.6) 

I. 

Theorem I. Let (I) be a congruence of degree n^> I, pa prime. Let t be 
an integer, l<Lt<^n. Put dt= (n^p1 — 1). Let a^ denote the number of 
irreducible factors of degree h of the congruence (1). Let ju(t) be the MOB/us 
function. Let 6t be defined as follows: 

Oif a dt ф 1 (modp); 

dtif a đt =E 1 (modp) 
Then it holds 

= TŽÁT) dt 0k = TZM-ri&t, , ( l a ) 

where t runs through all divisors of h. 
We need the following simple 
Lemma I. Let s ^> 1, n I> 1 be two integers. Let G F(p*) be a GALOIS 

field. Let oc 4= 0 be an arbitrary element, oc e G F(p8). Let us denote ds = 
;= (n, p* -— 1). Then the equation 

£n_(Xi=Q (2) 

has solutions with £ e G F(ps) if and only if6) 

i oc d
s = L (3) 

The condition (3) being satisfied, the equation (2) has exactly ds (different) 
solutions in G F(p8)-

Proof. I t is well-known: the multiplicative group of the field 
GF(p9) is cyclic. That is: there exists an element g c G F(ps) such that 
the sequence 

represents just all non-zero elements of the field G F(p8). 
4) The constant implied b y the symbol O depends only on e. 
*) H . DAVENPORT, Quaterly Journal of Math., 8 (1937), p . 308—312. 
6) 1 denotes the uni ty element of the field G F{p9). 



Let oc = gb, | = gx (l<±b<:p* — I, 1 <; x <T ps — 1). The equa­
tion (2) will be satisfied if and only if 

xn—b = 0{modps — l). : (3a). 

ps — 1 
Let us denote — - — = m. 

d8 

i) Let be dsfb. Then (3a) — and therefore (2) — have not solutions. 
In this case it is certainly ocm = gbm + 1 since the exponent is not divi­
sible by ps — 1. Conversely, if ocm =)= 1, the number bm is not divisible 
byps — 1, i. e. dsfb. The relations (3a) and (2) have not solutions. 

ii) Let be d8/b. The congruence (3a) has just ds (incongruent) solu­
tions, namely xQ + i . m (i = 0,-1, ..., ds — 1), where x0 is the unique 
solutions of 

n b 
x == o (modm). 

as ds 

The equation (2) has in G F(ps) just ds different solutions: | = gr*«+*-» 
(i = 0, 1, 2, ..., ds — 1). Since the exponent bm is a multiple of ps — 1 
there holds ocm = gbm = 1. Conversely, if gbm = 1 it is ds/b; the relations 
(2) and (3a) have just d8 solutions. This proves our Lemma. 

Proof of Theorem I. Let us consider the congruence (1) as an 
equation in G F(p), field of residue-classes (modp). Let k be a positive 
integer. Let ¥ > ¥' > hm > ... > 1 be all divisors of k less then k. Let 
<p(x) be an irreducible polynomial of the field G F(p) of degree k. Let / 
be one root of op (x) = 0. Then all roots of all irreducible equations 
* GF(p) of degrees k, ¥,¥,..., I are in the field G F(p){j] = GF(pk). 

Let the polynomial xn — a,aeGF(p) have ajcirreducible factors of 
degree k, ov irreducible factors of degree k',..., ox linear factors. Then the 
equation xn — a = 0 has just 

kah + k'ak> + ... + al 

solutions in G F(pk). 
Now we use Lemma 1. 
i) If 

a djc -== i (xnodp) 

the number of solutions of xn — a = 0 in the field G F(ph) is just dk. In 
this case it must hold therefore 

kajc + k'oh<+ ... + a1 = dk. (4) 
ii) If 

1 a dh =^ 1 (modp) 

the number of solutions is equal to zero. Comparing the results, we ob-



tain again 
iok + k'ov+... + o1 = 0. . (5) 

By introducing the symbol dh defined above, we can write (4) and (5) 
in the common form 

kojc + k'ov + ... + ox — dh, 

Jtot = dh. (6) 
tjk 

We write the equation (6) for ifc =-= 1, 2, 3 , . . . Using the MOBIUS formula 
for, inversion, we get 

- j të) : kok 
ilk 

This proves Theorem 1. -

II . 

We shall apply the result of Theorem 1 to some special congruences. 
Theorem 2. Let a belong modp to the exponent I. Then the polynomial 

p — l 
xP—1 — a is (modp) equal to a product of —-— irreducible polynomials 

i , 

of degree I. 
Proof. Since dt= (p — 1, p% — 1) = p — 1, we have 

?L^=tzzl^pt-i + pt~2+ t_ + i - j (modp —1). 
dt p — 1 

Therefore 
/0 if a% =|= 1 (modp)., 

\ p — 1 if a1 == 1 (modp). 

Since I is the least value of t for which a1 == 1 (modp) 

/p — l if t =1,21, ...,^1.1, 
St = / l 

\0 otherwise. 
By Theorem 1 

^ ^ ^ l l ) ' . . (7) 

where E' denotes that t runs through those of the divisors of k which are 

contained among the numbers t = lr 21, ..., - . I. 
a) If Ifk, the sum in (7) is empty. Therefore ok = 0. 
b) If l/k, the formula (7) can be written in the form -



<?k ——, 

For T > 1, ah = 0. For k = I, ak = -?——J) This proves Theorem 2. 
t I 
Theorem 3. Let p, q be two different primes. Let p belong modq to the 

' exponent L Then the polynomial , 

x* — a, (a, p) = 1, (8) 

is decomposable (mod^p) in the following manner; 

i) Jf I == 1 and a - == 1 (mod^)} ^e polynomial (8) $;pfeY$ in g di//e-
rentf factors. 

" p - 1 -

ii) 7/ Z = 1 and a <* ^= 1 (modp), £he polynomial (8) is irreducible. 

iii) 7/ Z > 1, £h-e polynomial (8) is a product of one linear and —-— 
*/ 

irreducible polynomials of degree Z. 
Proof.8) i) By supposition qjp — 1, therefore dt = (a, ^f — I) = q 

for every £. * 
It is further 

----— / - r ( l + P + ...+P<~1) "-—.'t . , . ' 
a dt =a « = a « (mody). (9) 

2?—1 pf—1 

Since a « == 1 (mod#) we have also a ^ === 1, i. e. dt = # for every L 

M(l).q = q f o r k = l , 
0** = / 

* Є ) -^ • | ^ i . ( - ^ | = 0 for * > . ! . 

J ? — 1 yt~i 

ii) If a « ^p 1 (modp) the relation (9) shows that a tft ==1 (modp) 
if and only if t = g. I. e. <$-. = (52 = ..'. = ^ _ i = (),<$<-.= g. 

X 2 ^ ( T ) - 0 = 0 forl<fc<?; 
/k(ik\t! — 

^2/ ' f k = T^ 1 ) ^ = 1 for fc = g. 
qtia \tI q 

7) We use the well known property of the MGBIXJS function: J*fi{t) = 0 if 

k > 1, = 1 if k= 1. "«/* 
8) This theorem is clearly of greatest importance in connection with the deter­

mination of prime ideal decompositions in KUMMER fields. 



iii) If Z > 1, then dx = d2 -= . . . = el^i = 1, d% = g. For $ = 1, 

2 , . . . , I — 1 we have obviously a dt == 1 (modp). For £ = I we conclude: 

*>* — 1 P — 
since qfp — 1 the integer is divisible by p — 1 and a * = 

p l — i 

= a <*/ == 1 (modp). Therefore dx = S2 = . . . = <$*_x = 1, <5Z = ?. 

. (5X = 1 for h = 1, 

=-l(—^(1) + <?) = 3L_i for k = L 

Theorem 3 is completely proved. 
TTie result (la) enables us to give a great number of other simple 

formulae. We restrict ourselves to quote the following two Theorems 
4 and 5. 

Theorem 4. The number of irreducible factors of degree k of the 
polynomial xn — 1 (modp) is given by the formula 

тMт}-(n'-^ = T 2 ^ | - J . ( X ^ - i ) . (10) 

Proof; Follows from (la) if we pose dt = dt for every t. 

Remark. We can use t h e result of th is and similar theorems t o deduce some 
ident i t ie s concerning the M t a l U S function. One of them is the following. 

Corol lary. Let k, n be positive integers, 1 < n <I k, p a prime. Then it holds 

2/.(A).(n,p.—1)=0. 

Proof. Since xn — 1 is reducible with respect t o every m o d u l p we have in 
(10) Gjc = 0 for all h *> n. 

Theorem 5. Let Fn(x) be the cyclotomic polynomial of degree cp(n).9) 
Let (nyp) = 1. Then the number of irreducible factors (mod#>) of degree k of 
tfie polynomial Fn(x) is given by the formula 

•^T^TMT)-*''-* ( I 1 > 
a ) Here and in the following cp{ri) is the EULER function. T h e coefficient of t h e 

h i g h e s t power of Fn(x) let be 1. 



Proof. The polynomial Fn(x) can be -written in the form 

•FnW = Y\(x*— 1)"'T'. 
Bin i • 

According to the formula (10) the number of irreducible factors (modp) 
of degree Tc of the polynomial x* — 1 is exactly 

Summing through all divisors s of n with the proper „multiplicity", we 
obtain the formula (11). 

Remark. I t is easy to transform the result (11) to another form which is used 
in the theory of cyclotomic fields: 

Let p belong modw to the exponent L Then 

/0 */ k 4= I. 

°Ъ =* \ 1 , 
N-т- <p{n) if k == L 

= / " 

Proof. Let n = q^ . . . q*r be t h e decomposition of n into prime factors. Then 

2 f i(-7)(^-i)-IT2^W-x)--
tin ^ ' i = 1sik".i ' 

-=rj{te?,p»-i)--(<i-y--4 

«*-1 2/ (T) n{<^ • * - j> - tfF- * *- 4 ; n 

The difference (a!*, p* — 1) — (#?*~" » P* — 1) is equal to zero or q*—q}~ accor-

ding as q.i-fpv — 1 or q} | p* -— 1 holds. -

L e t Z be t h e least value of t for which q* \ pl —-«1 for every £ holds, L e. the least 
value of t for which n [ p% — 1 holds. Then for every k < I we have oh -= 0. F o r 
k = Z there exists in (*) one and only one member t = I different from zero. I t is 
therefore 

^ t=i - rN^ «f_1> - T • ̂ *q: ••d-
^ s = l * 

I I I . , 

One may express the results obtained in the formula (la) in another 
form by introducing the characters of the multiplicative group ©<° of 
the field G-Ftj)'). 



©(*> is cyclic of order pt — 1. There exist exactly pt — 1 different 
characters of ©<*>. The principal character of ©W let be #<*>. 

We prove first 

Lemma 2. Let ©(<> be the multiplicative group of the field G F(pl). 
There exist, among the pl — 1 characters of the group ©<*>, exactly dt === 
= (n, pt — 1) characters %$< (j = 0, 1, 2, . . . , dt — 1) for which the relation 

(xyr-xtf 
holds. 

Proof. Let $ be a generating element of the group ©<*>. Every 
character x& is uniquely determined by the value of x(t)(9)- The number 
£(t>(<7) is a (pt — l)th root of unity. I t is therefore of the form 

2ni 

xW(g) == ev*-1' , 0=b <pt — l. 

-.Ъn 
The relation (x(t))n = %f imphes e^" 1 " = 1, i. e. pt — l/bn. Putting 

pt — 1 j n p — 1 / 
dt = (n,®1 — 1) we h a v e — - — -=- b, i. e. —-—/ b. Therefore 

dt I dt - dt j 

b==j.tzzl (j = 0,l,2,...,dt-l). 
dt 

Hence, we have exactly dt characters defined by the property 

%f(g)^e~^'] (j = 0,1,2,...,dt-l). 

This proves Lemma 2. 

Lemma 3. Let xf' 0 = 0, 1, 2,. . . , dt — 1) run through all dt 

characters of Lemma 2. Then the number of solutions of 

xn—a = 0,a€GF(pt)~,a*6 (12) 

in the field G F(pt) is equal to the integer 

dt-l 

7 = 0 

Proof. Let g have the meaning of Lemma 2. Let a = gb. We know 
(see the proof of Lemma 1): If dtfb (12) has no solutions with x <= G F(pt); " 
if dt/b there exist exactly dt such solutions. 

On the other hand let us calculate 

2 %fw = 2 4<V) = 2 [x?(g)Y = 
7 = 0 ^ = 0 j = 0 



á'-г Ъ-ь y° .Ц Ь 
- 2 <•* 

7-0 \ i t i f St/6. , _ ' . ( ' ' ;̂'••;•. 
This proves Lemma 3. 

* Using the results of Theorem 1, Lemma 2 and 3, we have: 
Theorem 6. Let the characters #<*> have the meaning from Lemma' $„';' 

'"Tnen the number of irreducible factors of degree h of the congruence (I) i£ 
given by the formula 

IV. 

The result of Lemma .3 is valid if a is any non-zero element of 
G F(pt). In the following we shah suppose that a is moreover an element 
of the snbfield G F(fi) C G- F(pl). Let us study therefore the values of the 
characters %?> in the subgroup ®<1). that is, in the multiplicative group 
QiGF(p). 

We can represent all non-zero elements of the field G F(p) by means 
of the generating element g of the group ©<f> in the form 

v 1 p*—i 

P * - l i 
The element y = gp—1 is a generating element of the cyclic group ®(l). 
A character % of the group ®W is uniquely given if we know the value 
%(y). 

Our dt characters of the group ©<*> defined in Lemma 2 induce in 
the subgroup ©<l> characters of the group ©(1>. Every such character is 
naturally a (p•-— l)th root of unity. I t is namely 

4 % ) = " ' d r P _ 1 = e ' r f t ' (14) 

where 

The dt different characters of the group ©<*> induce in ©<x> dt cha­
racters which (considered as characters of ©W) must not be all different. 
Especially, there exists one and only one principal character %f oi ®(tK 
but among the dt characters induced in ©<x> there can exist several prin­
cipal characters %̂ > of ©W. 

We prove 

e 
ì ўt—1 

• p—1 

2яi 

= 

pt— 1 
î dt 

6 z , 

e z= ev-1. 



Lemma 4. The number of principal characters of ©t1) induced in © ^ 
by the dt characters of ©<*) mentioned in Lemma 2 is equal to the number of 
integers divisible by p — 1 in the sequence 

0, 
dt 

-,2 Ў 

đt 

-,...,(Ą — 1) pi (15) 

, Proof. According to (14) our dt characters applied to elements of 
©f1) give the table 

7 V—1 — 1 

ytt) 
лo 

y(-) 

1 1 • • *5 1, 
pi__l 

2 P Ѓ - 1 

• • * > 1, 

pt—l 
2 ( ^ - l ) ! í - l ' 

> * * • » L ytf) 
* * , - l 

Those and only those of these characters are principal characters of 
pt i 

@(1> for which %W(y) = 1 holds. That are those for which / ---—— is 0 dt 

divisible by p — L This proves Lemma 4. 
Theorem 7. Let be l/p — L Let g = g(p, I) be the least integer which 

belongs mod^p to the exponent I. Then it is 

g(p, I) = O^-1 . p*>% (15a). 

for every positive e.l°) 

Proof. According to Theorem 2 the polynomial a^ - 1 — a has (modp) 
irreducible factors of degree I if and only if a belongs (modp) to the 
exponent I. If g is the least integer with this property we have 

al(l) = al(2) = ... = al(g — 1) = 0. 

According to Theorem 6 it holds 

2OIW-\2V(T 2 2zf(«)-o. 
« = 1 I* til \ l J « = - i ; - * o ' 

Since dt = (7) — 1, p* — 1) = £> — 1 for every t, we have 

lf\P-^g-i 

2 / 4 T 2 2 *?>(«) = 0. 
(iб) 

1 0 ) The result is naturally not trivial only if I is of order greater t h e n pll2-w. 
Concerning the symbol 0 see footnote 4 ) . 

10 



Let us establish the number of principal characters on the left-hand 
side of the equation (16). We have to find the number of integers divisible 
by p — 1 in the sequence 

pt_ i j » * ^ i ovP' —1 
v —T'J"r—r»--- '(-P — 2) p — V p — l ' " ' ^ } p — V 

pl — 1 , . 
Since % ——~-== ^t (mod ^ — 1) it is sufficient to find how many of the 

JJ A 

integers 
o ,* ,a , . . . , (p—2)« 

-are divisible by £>— 1. Since further t/l, i. e. t/p — 1, this number is , 
p 1 

•equal to the number of integers <1 p — 2 (including 0) divisible by =- . 
Therefore, it is equal to t. 

Hence, there exist among the p — 1 characters induced by 
y(t) y(t) y(t) 

in the group ©<a) exactly t principal characters of the group ©W. 
Let the divisors of the number Z b e l < * 2 < * 8 < . . . < < 8 . The for­

mula (16) has the explicit form 

t{,(i)*i><«>+«({)i><«>+...+/.({)|>/w} -•• 
The first sum in the bracket contains just one principal character, t h e 
second sum just t2 principal characters, . .„ the last sum just ^principal 
characters. 

We separate the principal characters 

+ 
+M(Y) 2'Z!^(«) + -+/•({) 2'4"<4 

The bracket oh the left hand side is the ETJLEB function <p(l). The 
sign E' on the right hand side denotes that the sum extends to the non-
principal characters. 

Now we use the well-known estimation :Xl) 
If p > 2, 1<L g < p there holds for every non-principal character 

(modp) 
9 . , [ • . _ . 

I t is therefore 
n-t 

11) See e. g. LiTOATJv V^r^^^ P- 178. 



cpЏ)Ля — l)<{V — l-l)Ьlogp + 
+ (p — l —t2) îlp\ogp + 

1. e. 

g-l<^[T(l).(p-l)-S(l)]]/plogp, (18) 

where T(l) and S(l) denote the number of divisors and the sum of divi­
sors of I. 

From (18) it follows further 

Using the formulae:12) 

T(l) = 0(l?e) for every positive e, 

A .1 
<p(l) > -—^—- with a positive constant A, (19) 

we have 

g(pil) = 0(l2"1p^2\ogp). / (19a) 

If I < p1!2 the result (15a) is true but trivial, since l^—^l2 > lep. 

If I > p1'2, pei* < lel2, logp = 0(pel*), logp < c(e). l*l2 with a constant 
c(e) depending only on s. Therefore from (19a) follows 

g(p,l) = 0(le~-Kp^). 

This proves Theorem 7. 

We shall finally make a slight generalization of the former theory by 
considering binomial equations over an arbitrary finite field G F(pf) of 
degree / as ground field. 

Let us denote P = pf, [P] = G F(p1) and let us consider polynomials 
of the form 

xn — a, (n, p) = 1- a e [P], a 4= 0. (20) 

We define13) 
Dl=(n,I* — l), (21) 

and 

12) See, for instance: HARDY-WRIGHT, An Introduction to the Theory of 
numbers, 1945, p . 265. 

13) I n our previous notation it is clearly Dt = dft, At— dft* 

12 



Pt~ I 

yO if a Dt 4= l, 
^ = \ p t - i (22) 

Dt if a ^ = 1, 

where 1 denotes the unity element of the field [P]. 
We can now state without detailed proof: 
Generalization of Theorem I. Let (20) be a polynomial of degree n 

over the field [P]. Let t be an integer, l<±t<^n, ju(t) the MOBWS function, 
Dt and At defined by (21) and (22) respectively. Let a* denote the number of 
irreducible factors of (20) of degree h in the field [P]. Then it holds 

Oh = T| / (T) ' 
where t runs through all divisors of h. 

As a consequence of Theorem 1 the following theorem can be proved: 
. Generalization of Theorem 2. Letae [P] belong to the exponent I. 

P —1 
Thvn tTie "polynomial xp~~l — a is in [P] a product of —-— irreducible 

i 
"polynomials of degree I. / 

As in section III we introduce the characters of the multiplicative 
group of the field [P] and of its extension-fields [P1]. 

In our previous notation the multiplicative group of [Pl] is © ( ^ \ 
its principal character %&>. There exist Pt — 1 different characters of 
the group (§<M. Moreover, there exist precisely Dt characters %</*) for 
which 

Ctf))»=4w 

holds. The element G being a generating element of the group ©<M 
these Dt characters are given by the property 

%f)(G) .= eJh* (j = 0 ,1 , 2 , . . . , Dt - 1). (23) 

We find: 
Generalization of Theorem b.Det the Dt characters x(Jt} be defined 

by the relation (23). Then the number of irreducible factors of degree h of 
the polynomial (20) in [P] is given by the formula 

Using the formula (24) we shall prove a generalization of a result due 
to H. DAVENPORT.14) 

14) S 1. c. 5) (cít d according to th Z ntralblatt 18 (1938), p. 109). 

13 



DAVENPORT proved: To every integer / there exist an integer p0 = 
= Po(f) with the following property. Let be p > p0, # an arbitrary genera­
t ing element of G F(pf) with respect to G F(p). Then there exist an ele­
m e n t c € G F(p) so that # — c is a generating element of the multiplica­
t i ve group of the field [P] (i. e. a primitive root of the field [P]). 

The proof of this result is based upon the following estimation of 
a character sum: For every generating element # and every non-principal 
character % of the field [P] the following relation holds 

2 X@ + <>) = 0(p~W+V). (25) 
c = 0 

We use DAVENPORTS formula (25) to the proof of the following more 
general 

Theorem 9. Let be f > 1, G F(p1) a GALOIS field, # an arbitrary 
generating element of G F(pf) with respect to G F(p). Let further be: I an 

i 1_+ . 
integer, l/P — 1, P = pf, l> K . P 2M+*> , K > 0, e > 0 being two 
arbitrary constants. Then there exists a constant p0 = p0(f, s, K) with the 
following property: If p > p0 it is always possible to find an element 
c € G F(p) so that # — c belongs to the exponent l.w) 

Proof. The polynomial x1*-1 — a has in [P] irreducible factors of 
degree I if and only rf a belongs to the exponent I. 

We prove our Theorem indirectly. Let us suppose that none of the 
elements 

0 , 0 + 1, 0 + .2, ..., 0 + p — 1 (26) 
belongs to the exponent I. With respect to (24) we have 

P—I 

2 o0 + c) = 0, 
i . e . 

2 1Á-T '2 4 ^ + °) = °' 
a n d since Dt = (P — 1, Pt — 1) = P — 1, 

P-I ll\p—2 

I lAT) 2 %f >(# + *) = 0. (27) 
c-o «lz V * li«o ' 

We shall prove that there exists a constant p0 = p0(/, e, K) so that 
i L _ + e 

for p > p0,1 > K . P 2W+1> the equation (27) cannot hold. 
First it can be proved by a reasoning analogous to that used in the 

proof of Theorem 7: among the P — 1 characters 
yUt) yUt) yUt) 

16) For K = J, e = - - we have DAVENPORT'S result. 
2/(/ "T" - ) 
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of the group ©<l*) there exist exactly t characters which induce in t h e 
subgroup ©(!*> (multiplicative group of [P]) principal characters of ©M. 

Let the divisors of I be: 1 < t2 < tz < ... < I. Separating the prin­
cipal characters we write (27) in the form 

I O M T ) + ^ ) + --- + ^ (T)} = ^ ) P = 

= -%{/>({) *%*?& +c)+!*({) f/?°w + ") + ••• + 

+ -"(4)2̂ f̂  + 4 
The sign E' on the right hand side denotes that the sum extends to 

the non-principal characters. The first sum in the bracket contains P — 2 
non-principal characters, the second sum P — 1 —12 non-principal 
characters. ..., the last sum P — 1 —I non-principal characters. 

With respect to (25) we have 

p . 9(l) -= 0\T(l) . (P — 1) . p^W+T)), 

where T(l) is the number of divisors of I. The constant implied by 
the symbol 0 depens only on /. 

With respect to (19) we have further 

p = 0\T(l) . M- . log logl. P . p */+->/. 

Now one can write 

T(l)= 0(1*1% loglQgI = 0(I«/*), 

the constants implied by 0 depending only on e > 0. Therefore 

! L_ 
p =_ 0(l*l'2 . 1 -1 .p . P 2l(l + D). 

Finally i t is le^ < P*12. Following to the supposition 

1 - i +
 l . 

K . 
we would have therefore 

, _ 1 + _ 1 , , . 1 
rp _ 0(PSl'2 . P 2f<' +1> .p .P W + ->), 

p _= 0(pl~h*f). (28) 

The relation (28) shows t ha t our assumption concerning the sequence 
(26) cannot hold for f > fQi To = _°o(/> €> K) sufficiently large. This proves 
our Theorem. 
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O rozložitelnosti binomických kongruencií a o najmenšom 
celom čísle patriacom k danému exponentu (modf>). 

(Obsah predošTého článku.) 

Nech je daná kongruencia (1). Nech 0% značí počet ireducibilných 
faktorov k-tého stupha kongruencie (1). Obsahom odstavcov I — I I I 
predloženej práce je určenie vzorcov pre číslo o*. 

V odstavci I dokazujeme: Pre číslo o'k = Ojc(a) platí vzorec (la), 
k d e ju(t) je MOBITJSOVA funkcia a čísla dt sú veličiny definované v textu. 

V odstavci I I podáváme niekoťko aplikácií vzorca (la) na speciálně 
kongruencie. 

Obsahom odstavca I I I je dókaz vzorca (13), v ktorom čísla x(P 
značia isté, jednoznačné definované, charaktery multiplikatívnej grupy 
konečného tělesa o pl elementoch. 

V odstavci IV dokazujeme pomocou vzorca (13) tuto vetu: Nech Z je 
celé číslo, l/p — 1. Nech g = g(p, l) je najmenšie celé číslo patriace mo&p 
k indexu Z. Potom je g(p, l) = 0(le~~l . p3/2) pre každé s > 0. 

V odstavci V zevšeobecňujeme výsledky odstavcov I — I I I na bino­
mické rovnice vo všeobecných konečných telesiach. Ako analogiu vý­
sledku odstavca IV dokazujeme napokon tuto vetu: 

Nech / > I, G F(pf) GALOISOVO pole, ů jehoPubovolný vytvorujúci 
element vzhťadom k tělesu G F(£>).Nech je ďalej: Z celé číslo, l/P — 1, 

P = pf, K > 0, e > 0 dve Pubovolné konstanty, l> K . p 1 - W + I ) + V 
P o t o m existuje taká konstanta p0 = p0(f, e, K), že pre p > p0 možno 
nájsť vždy element ceG F(p) tej vlastnosti, že ů — c patří k expo­
n e n t u l. 
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