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Gasopis pro pdstovanf matematiky a fysiky, rot. 74 (1949)

ON THE REDUCIBILITY OF BINOMIAL
CONGRUENCES AND ON THE BOUND OF THE
LEAST INTEGER BELONGING TO A GIVEN
EXPONENT modp

STEFAN SCHWARZ, Bratislava.

(Received February 28, 1948.)
Let

2" —a =0 (modp), (n,p) = (a,p) =1 1)
be a congruence of degree » > 1. Let k be an mteger, 1< k< n Let
03 = ox(a) denote the number of irreducible factors of degree & of the
congruence (1).

In a paper?) published in czech language I found a system of recur-
rent relations, which enable us to calculate the numbers ¢y, 0y, ..., Oy
(modp) (except the cases £ = 0 (modyp)).

In this paper — which may be read without reference to the former
investigations — we give essentially preciser results by finding explicit
formulae for the numbers a1(a). :

The method of our investigation is elementary and it is rather
suprising that I did not found the explicit form of Theorem 1 in the
literature, though it deals with a question entirely classical.?)

In section I we prove the fundamental Theorem 1 gnn.ng the formula.
for the number oy(a).

In section IT we give several easy but mterestmg applications. Some
of them are known (With other proofs) and useful in-the theory of eyclo-
tomic fields.

In section ITI we give another form-to the results obtained in section
- I by introducing the theory of eharacters.

In section IV we use the formula (13) to generalize a result due to °
I. M. ViNnograDOV. Let g = ¢(p) be the least primitive root modp. ViNo-
6RADOVS) proved g(p) = O(pt*°). We shall show: Let I be an integer;

1) Casopis pro pést. mat. fys., 71 (1945), p. 21—31.

2). E. g.,in L. A. DICKSON’S History of the Theory. of Numbers I, Washington,
1934, there are 41 pages devoted to related questions (p. 181—222).

3) ‘See E. LANDAU, Vorlesungen iiber Zahlentheorie IT, 1927, p. 180.



l/p—1. Let g = g(p, 1) be the least integer belonging to the exponent I
(modp). Then it is g(p, I) = O(l=—1p?) for every positive ¢. Hence, for
l = p —1 we have the result of VINOGRADOV.%) v

In section V we generalize the results by considering binomial poly-
nomials over an arbitrary finite field as ground field. As an application of
the results obtained we prove Theorem 8, which is a generalization of
a theorem due to H. DAVENPORT.5)

‘L.

Theorem l. Let (1) be a congruence of degree n. > 1, p a prime. Let t be
an integer, 1 < t< n. Put dy = (n, p* — 1). Let oy, denote the number of
~ drreducible factors of degree k of the congruence (1). Let u(t) be the MoBrus
function. Let 6; be defined as follows: - .

pi—1

0'if a 9% ==1 (modp),
o

d,; if ot .=_v1 (modop).

Op=
Then it holds

Z,u( ) at! . (I'a’)
t[k
where t runs through all divisors of k. .
" We need the following simple A :
Lemma L. Let s > 1, n > 1 be two integers. Let G F(p*) be a Gazors
field. Let.o == 0 be an arbitrary element, x € G F(p®). Let us denote ds =
= (n, p* — 1). Then the equation

P —a=0" )
has solutions with E € G F(p®) if and only if®)
R pS—1
r x5 =1 ' (3)

The condition (3) being satisfied, the equation (2) has exactly d, (different)
solutions in G F(p?).

Proof. It is well-known: the multlphcatlve group of the field
GF (p*) is cyclic. That is: there exists an element g € ¢ F(p‘) such that‘
the sequence »
, 99595 g’ =1
repreéents just all non-zero elements of the field G F(p?).

4) The constant implied by the symbol O depends only on &.

" 5) H. DAVENPORT, Quaterly Journal of Math., 8 (1937), p. 308—312.
$) 1 denotes the unity element of the field G F(p3). A



Let x =¢% £ =¢* 16 p*—1, 1< < pf—1). The equa-
tion (2) will be satisfied if and only if

xn—b=0 '(modp‘ — 1) C (3a).

p’—1
A o
i) Let be d,fb. Then (3a) — and therefore (2) — have not solutions.
In this case it is certainly a” = gb» == 1 since the exponent is not divi-
sible by p* — 1. Conversely, if o™ = 1, the number bm is not divisible
by ps — 1, i. e. ds/b. The relations (3a,) and (2) have not solutions.
ii) Let be d,/b. The congruence (3a,) has just d, (mcongruent)‘so‘lu-
-tions, namely x, + ¢.m (¢ = 0,-1, ...,d; — 1), where z, is the unique
solutions of

Let us denote

= m.

b
ds ‘
The equation (2) has in G F(p*) just d, different solutions: £ = g%+im

“(¢=0,1,2,...,d; —1). Since the exponent bm is a multiple of p* —1
there holds a™ = gbm = 1. Conversely, if gb™ = 1 it is d,/b; the relations
(2) and (3a) have just d; solutions. This proves our Lemma.

Proof of Theorem I. Let us consider the congruence (1) as -an
equation in G' F(p), field of residue-classes (modp). Let k be a positive
integer. Let k' > k"> k" > ... > 1 be all divisors of kless then k. Let
(%) be an irreducible polynomial of the field @ F(p) of degree k. Let §

_be one root of @(z) = 0. Then all roots of all irreducible equations

«GF(p) of degrees k, k', k", ..., 1 are in the field G F(p)[j] = G F(p*).

Let the polynomial z® —a, a € @ F(p) have oy irreducible factors of

. degree k, oy irreducible factors of degree &/, ..., g, linear factors. Then the
equation 2" —a = 0 has just

kO'k—-f—-k’O’k'—I—-...—{—O'l

=0 kmodm).

& s

solutions in @ F(p’c).
Now we use Lemma 1.
i) If
pk—1
a % =1 (modp)
the number of solutions of 2* — @ = 0 in the field G F(p*) is just dy. In
this case it must hold .thereff)re ‘
ko + Kop + ... + 0y = di. - (4)
i) If . :
' a % =1 (modp)
the number of solutions is equal to zero. Comparing the results, we ob-

1% 3



tain again
kok+k'ak/—{~...+01=0. ’ ) (5)
By introducing the symbol d; defined above, we can write (4) and (5)
in the common form '

koy + Koy + ... + 01 = g, .
Sior = b (6)

ik E
We write the equation (6) for £ = 1, 2, 3, ... Using the M6s1us formula

for inversion, we get 4
’ k
kO’k = z,u(—i—) 6t'
ik

This proves Theorem 1.
II.

‘We shall apply the result of Theorem 1 to some special congruences.

Theorem 2. Let a belong modp to the exponent 1. Then the polynomial.

p—1
l

z¢—1 — g is (modp) equal to a product of

of degree 1.
" Proof. Since d; = (p — 1, p! — 1) = p — 1, we have

- 1rreductble polynomials

i t__ ‘ o
2171——1—1; ;?'pt—1+p“2+---+1,_:—=t (modp — 1).
: —

Theréfore o
/0 if af == 1 (modp);
\p——l if @' =1 (modp).

Since 1 is the least value of t for which a* = 1 (modp) ‘

8 =

p—-lift=z,2z,...,p—_l—1.z,'

8=
\0 otherwise.
By Theorem 1 ‘ :
| _r—ls ﬁ) o
Or ="~ t/k,u(‘t ' . (7).
where X’ denotes that ¢ runs through those of the divisors of % which are

contained among the numbers ¢t =1, 21, ..., zj—l——l A

a) If I{k, the sum in (7) is empty. Therefore oy, = 0.
b) If ljk, the formula (7) can be written in the form -



.
. p—1 T

t/l

L .
ForT>1 o, =0.Fork =1,0; =

Theorem 3. Let p, q be two différent primes. Let p belong modq to the
“exponent 1. Tken the polynomial

@t —a, (a,p) =1, (8).
1s decomposible (modp) in the following manner : -
p—l. :
iyIfl=1anda ¢ =1 (modp), the polynomial (8) splits in q diffe-
rent factors. :

7) This proves Theorem 2.

ii) Ifl=1and a ¢ == 1 (modp), the polynomial (8) is irreducible.
ii) If 1 > 1, the polynomial (8) is @ product of one linear and Z__?_l

irreducible polynomials of degree 1. ,
Proof.8) i) By supposmon g/p —1, therefore dt g, pP—1)=gq
for every t. ‘
It is further
pl—t p—l t—1 p—tL. -
@@ =g @ CTPEETT (modp). - 9)
Sincea ¢ =1 (modp) we have alsoa % =1,1i.e.0d; = ¢ foreveryt.

1).¢g=¢q for k=1,
e ‘
\qzﬂ( )——Ofor k> 1.

i
p—1 pi—1
11) Ifa ¢ =1 (modp) the relation (9) shows thata % =1 (modp)

ifandonly:ft_quél_62 =10, =0,0,=4¢.
<——Z/L( )5t=—[u(1)q__ 1for k=gq.
q t/q

7) We use the well known property of the MOBIUS function: S‘y,(t =0 if

k>1, =1if k=1 4%
8) This theorem is clearly of greatest unportance in connection with the deter-
mination of prime ideal decompositions in KUMMER fields.

Op =

( ) =0 . for 1<k <yq,
kt/L . -

5



i) I 1> 1, then dy=dy=...=dy_1 =1, dy=¢q. For t =1,

ys
2,..., 7 —1 wehave obviously ¢ % = 1 (modp). For ¢t = I we conclude:
11
pl—1 i
since qfp —1 the mteger ———é-—- is divisible by p—1 and a =
pl—1 '
=a %2 =1 (modp). Therefore 6, =6, = ... =1 =1, §;,=¢.
' 6, =1 for k=1,
// 11 A |
op =5—— —].1=0 - for 1 <k <,
AN k%"(t)
gt zall) 1 o) -
lt/z'u t]™ llt/lt:}:l[u t]’ !
1

=) + 9 =L for k=1

Theorem 3 is completely proved.

The result (la) enables us to give a great number of other simple
formulae. We restrict ourselves to quote the following two Theorems
4 and 5.

Theorem 4. The number of irreducible factors of degree k of the
polynomial z* — 1 (modp) is given by the formula

o = lEﬂ(—"-) n pt—1). (10)
kﬁk t

Proof: Follows from (la) if we pose d; = J; for every ¢.

Remark. We can use the result of this and similar theorems to deduce some
identities concerning the MUBIUS function. One of them is the following. ‘

Corollary. Let k, n be positive integers, 1 < n Xk, p a prime. Then it holds
z[‘( ) (ﬂ, t— 1)
t/k‘

Proof. Since x?» — 1 is reducible with respect to every modul p we have in
{10) oz, = O for all k& = n.

Theorem 5. Let F,(x) be the cyclotomic polynomial of degree ¢(n).?)
Let (n, p) = 1. Then the number of irreducible factors (modp) of degree k of
the polynomial F,(x) is given by the formula

1 k n
Uk:’?ﬂzk%‘u(T)‘u’(_s_) . (8, pt—l). (11)

9) Here and in the following @(n) is the EULER function. The coefficient of the
highest power of F,(x) let be 1.

8



Proof. The polynomial F,(z) can be written in the form -

Fp(z) = Hw n”

According to the formula (10) the number of irreducible fa.ctors (modp)
of degree k of the polynomial z® — 1 is exactly

*24) (s, p —1).
t/k

‘ Summing through all divisors s of » with the proper ,,multiplicity*, we
obtain the formula (11).

Remark. It is easy to transform the result (11) to another form which is used
in the theory of cyclotomic fields:
Let p belong modn to the ewponent l. Then
/ " ifkEL
O =
\— @n) if k=1

g7 be the decomposition of n into prime factors. Then

zﬂ( )(‘%P “D’H Z ,u( )s,,‘,pt——l)z

i=1 8 /q%"

= r_[{(q'p » pt —1)— ( ’i‘ > Pt-— l)},

k2

Proof. Let n = ¢!

= —IE—Z ( ) n{(q;”;p’— 1) — (q’;i—l, ot 1)}& . "
ik i1 - | v

%

The difference (@ Yi, pt— 1) — (CA 2%, pt— 1) is equal to zero or q:‘——g:i_l accor-

‘dmgasq"—;/-p —1 orq"]pt——-l holds. .
Let 7 be the least value of ¢ for wh.lchq 2 pt — 1 for every ¢ holds, i. e. theleaat

value of ¢ for which n | p* — 1 holds. Then for every k <'l we have o} = 0. For

= [ there exmts in (*) one and only one member ¢ = I different from zero. Tt is .
therefore

) 1 .
o= —n )= gln), g-e.d.
i=1 )
_ 11 | . -
* One may express the results obtained in the formula (1a) in another

form by introducing the characters of the multiplicative group B® of
the field G F(p?).



®® is cyclic of order pt — 1. There exist exactly p* — 1 different
characters of &®. The principal character of G® let be x(‘).
We prove first

Lemma 2. Let & be the multzplzca,twe group of the field G F(p').
There exist, among the p* — 1 characters of the qroup W, exacily d; =
= (n, pt —1) characters 7 (j = 0,1, 2, ..., d; — 1) for which the relation

(70 =
holds.
Proof. Let g be a generating element of the group M. Every
character y® is uniquely determined by the value of ¥((g). The number
Z®(g) is a (p* — 1)th root of unity. It is therefore of the form

271

—.b
2Ng) = e 1, 0<b<pt—1.

' 2ai_, . v

The relation (y®)" = y4® implies =1 = 1, i. e. p* — 1/bn. Putting

t—1 —1/,
dy = (n, pt —1) we have 2 /f— b, 1i. e. P b. Therefore

dt dt i dt : .
t__1 '
b=j.2 G=0,1,2 ... d—1).
dy N ’ :

Hence, we have exactly d; characters defined by the property
2mi
2@ =e™ " (=0,1,2,..,d—1).
This proves Lemma 2. N
Lemma 3. Let x;.ﬂ (3=0,1,2,...,di —1) run through all d,
characters of Lemma 2. Then the number of solutions of

P —a—=0,acGF@H); a+0 (12)
in the field G F(pt) is equal to the integer
dy—1
Se= 3 1@
i=0

Proof. Let g have the meaning of Lemma 2. Let a = g°. We know
(see the proof of Lemma, 1): If d;/b (12) has no solutlons with z € G F(p?);
if d¢/b there exist exactly d, such solutgions.

" On the other hand let us calculate
dg—1 dp—1 d¢—1

3B = 36 = 3 e =
j=0 i=0

=0



dg—1 zﬂ.j_b /0 lf d_tfb,

d;
e P .
5 Nd, if dy/b.

 This proves Lemma 3.
*. Using the results of Theorem 1, Lemma 2 and 3 we have:

Theorem 6. Let the characters 1\ have the meaning from Lemma 2.

Then the number of irreducible factors of degree % of the congruence (1) s
given by the formula

dt—l
Z,u,( )Z x(t) ' (13)

t/L

Iv.

"The result of Lemma 3 is valid if a is -any non-zero element of
G F(p?). In the following we shall suppose that a is moreover an element
‘of the subfield @ F(p) C G F(pt). Let us study therefore the values of the
characters y{* in the subgroup &), that is, in the multiplicative group
of G F(p).

We can represent all non-zero elements of the field G F(p) by means
of the generating element g of the group &® in the form
t_p il pi—1
S g LT
pi—1
The element y = g"Tisa generatmg element of the cyclic group &L
A character y of the group BV is uniquely given if we know the va,lue‘

%(y)-

Our d; characters of the group B® defined in Lemma 2 mdmee
the subgroup G® characters of the group &N, Every such ch ;
- naturally a (p — 1)th root of unity. It is namelv SO R

A p‘—l : p‘—l : '
W) =e T LT (14)
where S

2
g=er—L.
The d, different characters of the group G induce in 65(1) d; cha-
racters which (considered as characters of B() must not be all different.
'Especlally, there exists one and only one principal character 7{.of G,
. but among the d; characters induced in 65(1) there can exist several prin-
- cipal characters () of G®. ; i ;
We prove . _ .‘ s



Lemma 4. The number of principal characters of &M induced in G
by the d characters of &® mentioned in Lemma 2 is equal to the number of
integers divisible by p — 1 in the sequence

pt—1  pt—1 pt—1
0, , 2. e _— .
7 gl — =g

. Proof. According to (14) our d; characters applied to elements of
®M give the table

.(15)

Vs »2, ey pPL =1
2911 1 ‘ess 1,
pt—1 i1
PAC PR e % N

! t_1
p"—1 p'—1
(dg—1) d—i 2(dt—1)d_t
x<dt_..1 € > € 5 eees 1.

Those and only those of these characters are principal characters of

@(1) for which th)(y) = 1 holds. That are those for which 717 d_ 1 is
¢

divisible by p — 1. This proves Lemma 4.

Theorem 7. Let be l/p — 1. Let g = g(p, 1) be the least integer which
belongs modp to the exponent . Then it is

g9(p, 1) = O . p32), (152)
for every positive &.2°) a

Proof. According to Theorem 2 the polynomial 2P—1 — g has (modyp)
irreducible factors of degree ! if and only if a belongs (modp) to the
exponent [. If g is the least integer with this property we have

ol)=0y2) = ... = (g —1) = 0.
According to Theorem 6 it holds

'S o) Zu( ) f d;z‘l #P(a) = 0.

a=1

Since dy = (p — 1, pt — 1) = p — 1 for every ¢, we have

p—29—1 o
Y ( )Z 2, 7@ = 0. (16)

10) The result is naturally not trivial only if 1 is of order greater then pl/2+¢,
Concerning the symbol O see footnote 4).

10



Let us establish the number of pnnmpal characters on the left-hand
side of the equation (16). We have to find the number of integers divisible -
by » — 1 in the sequence ;

p—1 pt—1 . pt—1
y ————, 2 y e (p—2 .
p—T  p=1 (» )p_1
. P —1 o . .
Bince » .= %t (mod-p ~— 1) it is sufficient to find how many of the
integers '

0,22t ...,(p—2)¢
are divisible by p — 1. Since further ¢/, i. e. t/_'p'— 1, this number is .

equal to the number of integers < p — 2 (including 0) divisible by P

Therefore, it is equal to ¢.
" " Hence, there exist among the p — 1 characters induced by

20, 205 g0,

in the group G exactly ¢ prmclpal characters of the group G®.
; Let the divisors of the number I be 1 < ¢, < t; < ... < I. The for-
mula (16) has the explicit form

gf{ ( )Elx‘l’ (@) + M( l)pilx“ﬂ(a) +. + u( )pzxg”(a)} =0.

a=1

The first sum in the bracket contains Just one principal character, the

second sum just ¢, principal cha.racters ., the last sum just ! principal
characters. :

We separate the principal characters

[l )l E e
| "(é) 3 + ‘*--+‘/4('§)fo§-‘?<?>}. fny

The bracket on the left hand side is the EvLsg function (). The

| sign' X’ on the right hand side denotes that the sum extends to the non-
principal characters.

Now we use the well-known estimation:!1) .

- ¥ p>2,1Z g <op there holds for every non- prmclpal character
(modp)

g

>, 7(m)
1

n=

< 1/1—0 logp.

Tt is therefore

1) See e. g. LANDAU, Vorlesungen iiber Zahlentheorie I1, 1927, p. 178.




o). (g—1) < (p—1—1) |plogp +
: +@—1—t) |plogp +

....................

+@—1—1 |/plogp,

g—1< (l)[T(n (p—1) — 8@ | logp, as)

where T(l) and S(Z) denote the number of divisors and the sum of divi-
sors of 1.
From (18) it follows further

I<20 () - p*12 logp.

Using the formulae:12)
T(l) = O(I¥) for every positive &,
4.

() > log_logl_ with a posﬂnve constant 4, , (19)

we have

oo, ) = O plogp). . (192)
If | < p'/? the result (15a) is true but trivial, since I*—1p%/2 > I*p.
If1 > pl2, pelt < I¢12, logp = O(p®/*),logp < c(e) . I*/2 with a constant
¢(¢) depending only on ¢. Therefore from(19a) follows
g(p, 1) = O(1=—1 . p302).
This proves Theorem 7.

V.

We shall finally make a slight generalization of the former theory by
considering binomial equations over an arbitrary finite field G F(pf) of
degree f as ground field.

Let us denote P = p/, [P] = G F(p') and let us consider polynomials -
of the form

2* —a, (n,p) =1, ae[P), @ + 0. (20)

We define!?)

' Dy = (n, Pt—1), (21)
and .

12) See, for instance: HARDY-WRIGHT, An Introduction to the Theory of
numbers, 1945, p. 265.

18) In our previous notation it is clearly D¢ = djt, At = Jyt.

12



Pt—1

ifa Pt *1, ‘
At=\ Pty (22)
D, if a Dt =1,

where 1 denotes the unity element of the field [P].

We can now state without detailed proof:

Generalization of Theorem I. Let (20) be a polynomial of degree n
over the field [P). Let t be an integer, 1 < t < m, u(t) the Mosrus function,
Dy and A, defined by (21) and (22) respectively. Let o denote the number of
fbrreduczble factors of (20) of degree k in the field [P]. Then it holds

where t runs through all divisors of k. :
- Asa consequence of Theorem 1 the following theorem can be proved:
Generalization of Theorem 2. Let a € [P] belong to the exponent 1.

~ Then the polynomial P! —a is in [P] a product of P— ! irreducible
polynommls of degree 1. ‘

’ As in section III we introduce the characters of the multiplicative

group of the field [P] and of its extension-fields [P1].

In our previous notation the multiplicative group of [Pt] is (BU#,
its principal character y{/”. There exist P?—1 different characters of
the group GUY). Moreover, there exist precisely D; characters ng‘) for
‘which

(P = 240
holds. The element G being a generating element of the group &
these D, characters are given by the property
. 2
20(@) = eDt’ (= 0,1,2,..., Dy—1). . (23)
We find: ’
Generalization of Theorem 6..Let the D, characters y{/ be defined

by the relation (23). Then the number of irreducible factors of degree k of
the polynomial (20) in [P] 1s given by the formula

Dy—1 ' '
=—ZH( ) Z 0@, (24)

tjk

Using the formula (24) we shall prove a generahzatlon of a result due
" to H. DAVENPORT.2)

. 14) Seel. c. %) (cited a.ccording to the 'Zentra.lblatt 18 (1938), p 109).

13



DaveNporT proved: To every integer f there exist an integer p, =
= p,(f) with the following property. Let be p > p,, ¢ an arbitrary genera-
ting element of G F(p') with respect to G F(p). Then there exist an ele-
ment ¢ ¢ G F(p) so that # — ¢ is a generating element of the multiplica-
tive group of the field [P] (i. e. a primitive root of the field [P]). ‘

The proof of this result is based upon the following estimation of
a character sum: For every generating element ¢ and every non-principal
character y of the field [P] the following relation holds

. p—1

1
2,10 +0) = O(p' XDy, - | 25)

We use Davexrorrs formula (25) to the proof of the following more
general '

Theorem 9. Let be | > 1, @ F(p!) a Garors field, ¥ an arbitrary
generating element of G F(p!) with respect to Q F(p) Let further be: 1 an

integer, /P —1, P=1p/, | > K . P 2f(f+1) *, K >0,¢> 0 being two
arbitrary constants. Then there exists a constant Py = Py(f, &, K) with the
following property: If p > p, it is always possible to find an element
c-€ G F(p) so that & — ¢ belongs to the exponent 1.35)

Proof. The polynomial 2P—1 —g has in [P] irreducible factors of
degree I if and only if a belongs to the exponent .

We prove our Theorem indirectly. Let us suppose that none of the
elements

KO+ L9+2,..,94+p—1 (26)
belongs to the exponent . With respect to (24) we have
p—1
2 oy + ¢) =0,
=0

. p—1 l Ds—1
2 Zu(——) 2 2400 +0) =0,

. c=0 t/l
and since D;=.(P—1,Pt—1) =P —1,

p—1 P—2
2 D ( ) 2, 400 + o) = @7)

c=0 t/l
We shall prove that there exists a constant p, = p(f, ¢, K) so that
: 1 o
for p > p,,l > K P the equation (27) cannot hold.
First it can be proved by a reasoning analogous to that used in the

proof of Theorem 7: among the P — 1 characters
(0 1) 1)
VANEY A NIRRT 4 N

1
15) For K = }, £ = ————— we have DAVENPORT’S result.
) 7 E Y
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of the group B¢/t there exist exactly ¢ characters which induce in the
subgroup &G (multiplicative group of [P]) principal characters of &.

Let the divisors of I be: 1 < #, < #; < ... < I. Separating the prin-
cipal characters we write (27) in the form

Sl eofg) - -

—1 P—2 1 P2
S S sl o

1\
+ #(—) 2 700 + c)}.

The sign 2’ on the right hand side denotes that the sum extends to
the non-principal characters. The first sum in the bracket contains P — 2
non-principal characters, the second sum P —1 —%, non-principal
characters, ..., the last sum P —1 —1 non-principal characters.
* With respect to (25) we have

),
p-ol) = ( M. (P—1).p =+D '
where T'(l) is the number of divisors of /. The constant implied by
the symbol O depens only on f.

With respect to (19) we have further

1
p= O(T(l) 1. loglogl. P. p1—2(f+1))_
Now one can write -
T(l) = O(I#*), loglogl = O(I¢4),
the constants implied by O depending only on & > 0. Therefore
) L
p=0@2.1-1.p. Pl_'zf(r-i—l))_
Finally it is 1> < P*/2. Following to the supposition
. 1 —1+ 1
<= 2T+
-1 < % P _

we would have therefore
p= 0P, P p. P TIE),
‘ - p = O(p'~#). C(28)
The relation (28) shows that our assumptlon concerning the sequence

(26) cannot hold for p > Py, o = Po(f, &, K) sufficiently large. This proves-

our Theorem.
. *
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O rozloZitelnosti binomickych kongruencii a o najmensom
celom &isle patriacom k danému exponentu (modp).

(Obsah predo&lého élanku.)

Nech je dand kongruencia (1). Nech o znaéi podet ireducibilnych
faktorov k-tého stupha kongruencie (1). Obsahom odstavcov I—III
predloZenej price je uréenie vzorcov pre &islo oy. _

V odstavci I dokazujeme: Pre &islo o} = ox(a) plati vzoree (la),
kde u(t) je MoBIUsova funkcia a &sla d; su veli¢iny definované v textu.
; V odstavei IT poddvame niekol’ko aplikdcii vzorca (la) na $pecidlne
kongruencie.

Obsahom odstavca III je doékaz vzorca (13), v ktorom d&isla xg.‘)

znadia isté, jednoznadne definované, charaktery multiplikativnej grupy
komneéného telesa o pt elementoch.

-V odstavei IV dokazujeme pomocou vzorea (13) tito vetu: Nech I je
celé &slo, I/p — 1. Nech g = g(p, 1) je najmensie celé &islo patriace modp
X indexu I. Potom j je g(p, 1) = O(l*—1 . p3/2) pre kazdé ¢ > 0.

V odstavei V zovieobecnujeme vysledky odstavceov I—III na bino-
mické rovnice vo vieobecnych koneénych telesiach. Ako analogiu vy-
sledku odstavca IV dokazujeme napokon tito vetu:

Nech f > 1, @ F(p’) Garoisovo pole, 9 jeho 'ubovolny vytvorujdci
element vzhl’adom k telesu G' F(p). Nech je dalej: I celé ¢&islo, I/P —1,

1
P —pl, >0, &> 0 dve 'ubovolné konStanty, I > K . P~ F7+D*°,
Potom existuje takd konstanta p, = py(f, ¢, K ) %e pre p > P, Moino

néjst vidy eclement ce G F(p) tej vlastnosti, Ze 9 — ¢ patri k expo-
nentu /.
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