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ANISOTROPIC SOBOLEV INEQUALITIES
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Summary. By anisotropy of the Sobolev space we mean membership of D;u in Lp., with ge-
nerally different pjs. There is proved an imbedding theorem in the form of the Sobolev in-
equality estimating Lq-mixed norm of a function by corresponding L, norms of its first order
derivatives, including known results (Krbec, Kruzhkov and Kolodii, Réakosnik), further, it is
generalized to higher order spaces as well.
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1. INTRODUCTION

In its most basic form, Sobolev’s inequality provides an estimate for the I norm
of a smooth function u, compactly supported in R”, in terms of the I” norm of the
gradient of u. Specifically, if 1 £ p < n then

0 = 53 ol
where g = np|(n — p), thatis

1 1 1
(2) _—= ==,

q p n

Here, of course, D; denotes the partial differential operator 9/dx; and |+|, denotes
the norm in the space L”(R"). The constant K is valid for all compactly supported
functions u for which D;u makes sense as a distribution, but it is common to assert
the inequality for smooth such functions. Throughout this paper we assume
u € C3'(R"), the space of infinitely often differentiable functions with compact support
in R". (Note that (1) does not, for example, hold for constant functions.) Best
constants K for Sobolev’s inequality are known, (see, for instance, Duff [3] or Talenti
[11]), but will not concern us here.

*) Research partially suppérted by the Centre for Mathematical Analysis, Australian National
University, and by the Natural Sciences and Engineering Research Council of Canada under
Operating Grant A3973.
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Our purpose is to generalize Sobolev’s inequality to the anisotropic case where
the various derivatives D;u belong to different I” spaces, and then to extend the first
order anisotropic version to higher orders.

It is well known that no inequality of type (1) is possible for allu € C3(R") unless g
satisfies (2). To see this, observe that for given u € C3(R"), the dilated function u,
defined by u;(x) = u(Ax), (2 > 0, x € R"), also belongs to CF(R") and satisfies

luslg = A="4ul,, [ Djual, = A'="7| Djul,
so that if (1) holds we must have, for all A > 0,

2. [Dju,
A=/ +(n/p)=1 < Kizt
lule

This is not possible unless the exponent of A is zero. This uniqueness of g extends,
as we shall see, to the anisotropic case also.

Sobolev [10] originally proved (1) by using potential theoretic arguments based
on convolution with the kernel ]x ~n. Because this kernel is not integrable, Sobolev’s
proof only works if p > 1. The case p = 1 was proved by Gagliardo [5] and
Nirenberg [8]. The case of general p follows easily from the case p = 1. Gagliardo
used a combinatorial argument to obtain the case p = 1 from a refinement of
Holder’s inequality as applied to a product of n functions each of which is independent
of one of the variables. As observed by Fournier in [4], Gagliardo’s method can be
mechanized by the use of Holder’s inequality in the context of mixed norm I” spaces.
We will obtain our anisotropic versions of Sobolev’s inequality via elementary
mixed-norm estimates similar to those in [4]. As a result we will also obtain an
(n — 1)-parameter family of mixed-norm anisotropic Sobolev inequalities.

Some attention has been given in recent years to establishing imbeddings of various
anisotropic spaces (Sobolev spaces, Besov spaces and their generalizations). See,
for instance, the papers by Kruzhkov and Kolodii [7], Krbec [6], Rakosnik [9],
as well as the Monograph [ 2] of Besov, II'in and Nikolskii. Such imbedding generally
involve inequalities similar to Sobolev’s inequality, but including some I norm
of u on the right side so that the inequalities can be be proved for suitably regular
subdomains of R", and for functions without compact support. The mixed-norm
method used here can also be used to obtain some such imbeddings.

2. MIXED-NORM L? SPACES ON R"

The general setting for considering mixed-norm spaces is in a Cartesian product X
of sigma-finite measure spaces X,. (See [1] or [4].) Although everything we say in
this section applies in the general case we will be concerned only with functions
defined on R" and so will phrase our discussion in that context.
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Given a measurable function 4 on R", and an index vector p = (py, Ps, ..., Pu)s
where 0 < p; < oo for each j, we can calculate the numbers |u]|, by first calculating
the I*-norm of u(x,, ..., x,) with respect to x;, and then the I’*-norm of the result
with respect to x,, and so on finishing with the I/"-norm with respect to x,,:

Jull, = [l “u”LPx(d«'t)”LPz(dxz)' B P

@ 1/p
U |f(...,t,...)|’dt] if l<p<ow
I/ leoany = & ==
esssup |f(....t,...)| if p=oo.
t

where

Of course, |*||Locar) is not a norm unless p = 1. For instance, if all the numbers p;
are finite, then

® 0 © 2/ /p2 1/pn
ull, = u(xq, ..., x,)|7t dxy ’ “dxz "~ ... dx, ’ .
=ip

We will denote by IP = I?(R") the set of (equivalence classes of almost everywhere
equal) functions u for which "uﬂ p < 00. Provided all p; = 1 this is a Banach space
with norm ”-ﬂp. The reader is referred to Benedek and Panzone [1] for general
information on spaces I7. For our purposes we need only two elementary results
about such mixed norms, Hélder’s inequality and an inequality concerning the
effect on mixed norms of permuting the order in which the I’/ norms are evaluated.

2.1 Hélder’s Inequality. Let 0 < p; < 0, 0<g; < o0 for 1 <j<n Ifuel’
and v € L? then uv € L where

@3) 1, Y icjgn,
ry Py 4j

and also

) Jluv]l. < Jull, o], -

Hélder’s inequality (4) can be proved by n successive applications of the ordinary
Hélder inequality applied one variable at a time. Note that p; and g; are allowed
to be less than 1. Then n equations (3) are usually summarized

1

S=—
r

1
9

N =

Iteration of (4) leads to a version for the product of k functions:
' k k
NTLwslle =TT s,
Jj=1 j=1
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where

5L
r j=1p;
2.2 Permuted Mixed Norms. The definition of ”uﬂp requires the successive I/
norms to be calculated in the order of appearance of the variables in the argument
of u. This order can be changed by permuting the arguments and associated indices.
If o is a permutation of the set {1, 2, ..., n} let 6x = (X,(1), Xs2)s -+ -» Xo(w)> @and let op
be defined similarly. If ou is defined by ou(ox) = u(x), (so that ou(x) = u(s~'x),)
then ﬂau",p is. called a permuted mixed norm of u. For example, if n = 2 and
o{1,2} = {2,1} then

o o p2/P1 1/p2
”””p = [J‘ l] I“(xl’ x2)|" dx1] dxz:l

© © P1/p2 1/ps
fouley = [ [ et e [ 0]

Note that |ul|, and |ou|,, involve the same I’ norms with respect to the same
variables; only the order of evaluation of those norms is changed.

and

2.3 Permutation Inequality. Given an index vector p let g, and ¢* be permuta-
tions of {1, 2, ..., n} such that o, p and o*p have components in nondecreasing order
and nonincreasing order respectively:

IIA

. é paa(n) )
-2

Pou(1) = Pou2)
2

v

Por1) = Por(2) Porn) +

Then for any permutation o of {1, 2, ..., n} and any function u we have

(5) lostlose = loulep < llo*ule -

Since any permutation can be decomposed into a product of special permutations
each of which transposes two adjacent elements and leaves the rest unmoved, proving
(5) reduces to demonstrating the special case: if p; < p, then

© © Pz/m\ 1/p2 © L) P1/p2 1/py
IR G RIS e

But this is just Minkowski’s inequality for integrals:

S j It )

- Lr(dx2)

Lr(dx;) dx,

applied to v = |u["* with r = p,/p;.
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3. FIRST ORDER ANISOTROPIC SOBOLEV INEQUALITIES

An inequality of the form

© lul <K3

"D.iu"w

is called an anisotropic Sobolev inequality because different I? norms are used to
estimate derivatives in different coordinate directions. We assume p; = 1 for 1 £
< j < n, and shall show that such an inequality holds for all u € C3(R") for

(7)

provided that Y (1/p;) > 1.
i=

Let us begin with a dilation argument to show that (7) defines the only possible
value of g for which (6) can hold.

3.1 Lemma. If there exists a constant K such that inequality (6) holds for all
u € C3(R") then q must satisfy (7).

Proof. Let 4 = (Al, wesy 4,) where 0 < A; < oo for all j. Choose a function
ue C3(R") for which both sides of (6) are positive, and let u, be the anisotropic dilation

u(x) = u(Ayxq, .oy 4,%,)
It is readily shown that

lusle = (Aelas - )74 |u]l,,
1Djus]lp, = A(Ashz, ... 20) ™17 [ D], -
If t > 0 we can choose 4 so that
A(Ahgy ey A)™HPr =71 (1 Zj<n).
It then follows that

Mgy ey Ay = tMENPDD)

Since all the dilations u; belongs to Cg’(R") we must have, by (6),

n

Z " Diu"p/

(8) t—"/[qu(‘l/m)—l)]*'l < Ki=!

el

Observe that ¢ is large if |).| is large and small if |}.| is small. Therefore the exponent
of t on the left side of (8) must vanish, and (7) follows. O
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3.2 Theorem. Supposep; = 1 for 1 < j < n, and Z(l/pj) > 1. If

]v—-
|i—-

=Ir—~
=

1_
1 p;

(S

then there exists a constant K such that the anisotropic Sobolev inequality
n
lule = K 5 10,
holds for all u e C3(R").

Proof. Throughout this proof (and subsequent ones) K denotes a generic constant
independent of u. Its value may change with each usage; we make no attempt to
keep track of its value.

Let s; = 1 for 1 £ j < n. Since u has compact support we have

x)
Iu(xl, ceny x,,)l’-' = J. Djlu(xl, ceey xj_l, t, xj+1, ceey x")ls'l dt ’
-
so that

sup |u(xy, ..., x,)|¥ < JH20 Djlu(xy, ..., x,)|* dx;
x4 -

and integration with respect to the other n — 1 components of x leads to the permuted
mixed norm estimate

losullco,,t, .y < (D52 =
= sl Dyl < Kluft o [0l

where o; is a permutation of {1, 2, ..., n} for which ¢,(1) = j, and p; = p;/(p; — 1),
(or pj = o0 if p; = 1), is the exponent conjugate to p;. For each j let v; = (1, 1, ...
..y 0, ..., 1) be the index vector with j’th component infinite and all other com-
ponents equal to 1. By the permutation inequality

Q I ulle, = loluf*lcw, 1, ... 1y = K= 100, [ D], -
Let s =s; +... + s, and let 1/r = Z 1/v;, so that r; = 1/(n — 1) for each j and
j=1
l, =" _1y. Using Holder’s inequality for mixed norms we obtain
” ”r " Ul/(n 1) g q y
lulsin-15 = I [l l1jenmny = [ [l "] <

< TLL ]y = KT Rulis=sons 12405,

Now choose the numbers s; so that
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’ ’ ’ S
(10) (Sl—l)pl =(Sz—'1)p2=,“=(s"_.1)pn=,;___-_1=q’

where q is defined to be the common value of the other n + 1 expressions in (10).
(If any p; = 1 then the corresponding s; = 1 also.) Assuming this done, we will have

n
lule = K TTTulz™" [Psul,
whence, by cancellation,

lul < K([T10u1,)" S K3 Dyl

It remains to find the common value g of the expressions in (10). If p; > 1 we have

q=(;-0)pj=(s5; -1
pi—1

J

sj=1+4[1——1-:|,'
p;

and this latter formula evidently holds if p; = 1 also. Therefore

so that

G |
(n—l)q=s=s1+...+s,,=n+nq—qz—~
j=1Dp;

1t follows that 1/q = (Y. (1 /p;) — 1)/n as required. [
i=1

3.3 Remark. Of course Theorem 3.2 gives the (isotropic) Sobolev inequality
if p; = pforall j,and 1 < p < n.Observe that p in the isotropic version is replaced
by the harmonic mean of the n indices py, ..., p, in the anisotropic version.

3.4 Remark. Using the result of Theorem 3.2 the mixed-norm estimates (9)
can be rewritten as

[l < Kl 1Djul,, < KQ¥™* |Dju],, < K@

$jvj
where

" Dju ”w

These estimates lead, in turn, to an (n - 1)‘parameter family of mixed-norm, ani-
sotropic Sobolev inequalities as follows. Let 4, ..., 4, be positive numbers such that
Ay + ...+ 4, = 1. We have

Il Iull,”Sﬂj/‘-j “uus,u, S KQM .

IIM;
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If 1/g = ¥ 4)/(s;v;) we have, by Hélder’s inequality,
J=1

full = 1l S TT1 [ “lony, KO

that is,

(11)
The components of g are given by
Lovh A q<rsn),

g ji=1 Sj Sk

lule = X [Dsu],, -

i

where
s,.=1+q(1——1—), (1gjsn),
pj
1 _1¢1 1
q nj=1p; n

Imbedding inequalities analogous to the special case n = 2 of (11) were obtained

by Krbec in [6].
4. HIGHER ORDER SOBOLEV INEQUALITIES

The isotropic Sobolev inequality of order m,
(12 el <X ¥ [l

where ¢ = np|(n — mp), that is, where

holds for all u in C$(R") provided mp < n. (We are using standard multi-index
notation: if a = (ocl, .., ®,) is a vector of nonnegative integers then D* = D{*D3? ...

... DI~ is a differential operator of order |¢| = a; + ... + ®,.) Inequality (12) is
easily obtained by induction from the first order case, inequality (1).

A corresponding anisotropic version,
uly <K 3 D]
. la]=m

1 m]1 m
Lt
n" ld=m| a {p, n

Pa
where

1

q
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can be obtained inductively from Theorem 3.2 under suitable restrictions on p,.
(Here we have used the multinomial coefficient

m] m!
o oy lay!... o

where ]oc| = m.) The restrictions must guarantee that any derivative of order less
than m can be estimated in terms of derivatives of one higher order, so the obvious

condition
1 Y [m]_1>ﬂ
n"la=m|la|{p, n

will not suffice in general. Conditions mp, < n for all a satisfying ]al =m will
suffice, but are stronger than necessary. The appropriate conditions are stated in
terms of averages of certain n-tuples of the numbers p,.

Before formulating the m’th order anisotropic Sobolev inequality we prepare some
combinatorial necessities. Note that

13 A

this is the multinomial theorem. If B is any multi-index and je{1,2,..., n} let

BLi1 = (Bis s Bie1s By + 1, By 15 --r B,)- Evidently |B[j]| = |B] + 1.

4.1 Lemma, If numbers p, are defined for all a satisfying |«| = m then

m-1]& 1 ml1
-lﬂlév;t—l[ ,B ]iglpﬂ[j]_lﬂlgm[a]z'

Proof. Given a with Ia[ = m, for each j such that a; > 0 there exists § such that
BLj] = o; specifically B = (o, ..., j_q, & — 1, o;4 4, ..., &,). Accordingly

m-17a 1 1 m—1
I R el S L
msm-1L B 1iSipyy  Jelmm peusii=al B

_Zi (m — 1) -

la|=m pa{j:a,>0}al! e aj_l!(aj - 1)! Otj+1! e an!

Tm—-)(+a+. .. +a)_

laj=m Pa al!aZ!"‘an!
m]1
5[ @
—lal=m | O | D,
4.2 Corollary. Suppose that
. n 1
Y >m
J=1 Pprj1
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for all B satisfying |B| = m — 1. Then

n"le=m|a|p, n
and if the numbers q, are defined by
1 11 1

9 Ni=1pPppy B

then for all y satisfying Iyl = m — 2 we have

Rk

1 m]1 1 m—-17& 1 m m-—1
A L S
n-lal=m | X_} D, By |Bl=m—1 B di=1 pp[j] B |Bl=m-1 ﬂ

Also

=%i[i—l—-—lq>li(m—l)=m—l. O

i=1|j=1 qv[i][j] _ ni=1

4.3 Theorem. Let p, = 1 for all o with Iocl ="m. Suppose that for every B with
|B] = m — 1 we have

(14)
Then there exists a constant K such that the inequality
(15 Il s K 3 ol

holds for all u € C§(R"), where
(16) l:L ["‘]1_2,
q

Proof. We proceed by induction on m; Theorem 3.2 is the case m = 1. Suppose
the case m — 1 has been established, and consider the case m. For each g satisfying
|B] = m — 11t g, be defined by

1 12
_=._Z
n

qs J=1Dpgj3 B

51

J=1Dgrj1

>m.

o

By Corollary 4.2, Y 1/q,;;; > m — 1 for each y satisfying |y| = m — 2. Thus we
i=1
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may apply the induction hypothesis and obtain the inequality

sk ¥ [0l

1 1 m-—1]1 m-—1
g n"lpg=m-1 B qs n

But Theorem 3.2 implies that for each f

n n
"D”uﬂ“ = KjZ:l“DiDﬂu"wm =j;l“Dm]“"pml .

where

Thus
"“Hq <K ¥ Z "Dﬂm“"ppm <K Y |,
1Bl=m-1 j=1 laf=m

To complete the induction observe that

1 1 m-1]1& 1 1 m-—1

q n 1Bl=m—-1 ﬂ nij=1 pﬂ[}] n n
1 m—-1]ga 1 1 m-—1] m-1
negl=m-1 B J=1Ppgrjy N IBl=m-1 Ji] n

1 ml|1l m
Ly [riom
R Je|=m | O | D, n

4.4 Remark. The number of distinct partial derivatives of order m for a smooth
function of n variables (that is the cardinality of the set {a: |a| = m} is given by
a binomial coefficient:

by Lemma 4.1 and (13). [

To see this, observe that to each « there corresponds a finite nondecreasing sequence
{iy, i2s...s im} of elements selected from {1,2,...,n}. (Thus iy =... =i, =1,
i+1 = ... = I, =2,...). Such nondecreasing sequences are in one-to-one cor-
respondence with strictly increasing sequences {il, i+ 1,03+ 2,0 i+ m—1}
selected from {1, 2, ..., n + m — 1}. There are evidently N(m, n) of these latter.
Conditions (14) of Theorem 4.3 place N(m — 1, n) restrictions on the N(m, n)
numbers p,. These conditions guarantee that every derivative D?u of order m — 1
can be estimated in terms of the quantities {[|D*u[,,: |¢| = m}. By induction (based

on Corollary 4.2) so can all lower order derivatives.

4.5 Remark. By repeated applications of Lemma 3.1, if conditions (14) are
satisfied no m’th order anisotropic Sobolev inequality of type (15) is possible for
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values of g other than that specified by (16). However, the author has been unable to
generalize Lemma 3.1 directly to the m’th order case, so it remains open whether any -
inequalities of type (15) are possible when conditions (14) are not satisfied.
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Souhrn

ANISOTROPN{ SOBOLEVOVY NEROVNOSTI
R. A. Apams
Anisotropii Sobolevova prostoru, se zde rozumi fakt, e D'ue L,, s obecné riznymi p;. Je
doké4zdna véta o vnofeni ve tvaru Sobolevovy nerovnosti pro odhad smiSené Lq-normy funkce

pomoci pfislunych L, norem prvnich derivaci, zahrnujici znimé vysledky (Krbec, Kruzkov
a Kolodij, Rédkosnik), a dile zobecnénd i na prostory vys$ich rada.
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Pesome

AHM3OTPOITHBIE HEPABEHCTBA COBOJIEBA

R. A. Apams

Anmsotpormst 3aeck o6osHauaeT, yto D'ue L, rne yncna p; He 00513aTeIBHO OAWHAKOBBI.
B craThe nmpHBEAEHO JOKA3aTeJIbCTBO TEOPEMBI BIIOXKEHHMS B BMAe HepaBeHctBa Cobonepa ais
OLICHKH CMelIaHHOi L -HOpMBIL (hyHKIMH IPH IOMOIM COOTBETCTBYIOIMX L, -nopM npOH3BOJHBIX
TIEpBOTO MOpsAKa. JTa TeOpeMa, KOTOpast COAEPXMUT B ceOe HEKOTOphie M3BECTHBIE PE3yNbTaTh
(Kpb6en, Kpyxkos u Konoawuit, Pakocuuk), nanee 0600mena st NpOCTPAaHCTB BHICIIETO NOPSAMKA.

Author’s address: Department of Mathematics, University of British Columbia, Vancouver,
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