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ANISOTROPIC SOBOLEV INEQUALITIES 

ROBERT A. ADAMS*), Vancouver 

(Received June 23, 1986) 

Summary. By anisotropy of the Sobolev space we mean membership of D-u in Lp. with ge­
nerally different p\s. There is proved an imbedding theorem in the form of the Sobolev in­
equality estimating L -mixed norm of a function by corresponding Lp. norms of its first order 
derivatives, including known results (Krbec, Kruzhkov and Kolodii, Rakosnik), further, it is 
generalized to higher order spaces as well. 
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A MS classification: 46E35. 

1. INTRODUCTION 

In its most basic form, Sobolev's inequality provides an estimate for the 13 norm 
of a smooth function u, compactly supported in Rn, in terms of the IF norm of the 
gradient of u. Specifically, if 1 ^ p < n then 

J = i 

where q = np\(n - p), that is 

(2) i.i-i. 
q p n 

Here, of course, Dj denotes the partial differential operator djdxj and | | - | | p denotes 
the norm in the space U(Rn). The constant K is valid for all compactly supported 
functions u for which DjU makes sense as a distribution, but it is common to assert 
the inequality for smooth such functions. Throughout this paper we assume 
u e Co(Rn), the space of infinitely often differentiable functions with compact support 
in Rn. (Note that (l) does not, for example, hold for constant functions.) Best 
constants K for Sobolev's inequality are known, (see, for instance, Duff [3] or Talenti 
[11]), but will not concern us here. 

*) Research partially supported by the Centre for Mathematical Analysis, Australian National 
University, and by the Natural Sciences and Engineering Research Council of Canada under 
Operating Grant A3973. 
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Our purpose is to generalize Sobolev's inequality to the anisotropic case where 
the various derivatives D-u belong to different If spaces, and then to extend the first 
order anisotropic version to higher orders. 

It is well known that no inequality of type (1) is possible for all u e CQ0^") unless q 
satisfies (2). To see this, observe that for given u e C^^"), the dilated function ux 

defined by ux(x) = u(Xx), (X > 0, x e Rn), also belongs to CQ(RK) and satisfies 

NI, = ^"i«L> l ^ - ^ I M , 
so that if (1) holds we must have, for all X > 0, 

ZIIIvL 
^-(n/q) + (n/p)-l < j£ J^l 

This is not possible unless the exponent of X is zero. This uniqueness of q extends, 
as we shall see, to the anisotropic case also. 

Sobolev [10] originally proved (l) by using potential theoretic arguments based 
on convolution with the kernel \x\~n. Because this kernel is not integrable, Sobolev's 
proof only works if p > 1. The case p = 1 was proved by Gagliardo [5] and 
Nirenberg [8]. The case of general p follows easily from the case p = 1. Gagliardo 
used a combinatorial argument to obtain the case p = 1 from a refinement of 
Holder's inequality as applied to a product of n functions each of which is independent 
of one of the variables. As observed by Fournier in [4], Gagliardo's method can be 
mechanized by the use of Holder's inequality in the context of mixed norm If spaces. 
We will obtain our anisotropic versions of Sobolev's inequality via elementary 
mixed-norm estimates similar to those in [4]. As a result we will also obtain an 
(n — l)-parameter family of mixed-norm anisotropic Sobolev inequalities. 

Some attention has been given in recent years to establishing imbeddings of various 
anisotropic spaces (Sobolev spaces, Besov spaces and their generalizations). See, 
for instance, the papers by Kruzhkov and Kolodii [7], Krbec [6], Rakosnik [9], 
as well as the Monograph [2] of Besov, IPin and Nikolskii. Such imbedding generally 
involve inequalities similar to Sobolev's inequality, but including some If norm 
of u on the right side so that the inequalities can be be proved for suitably regular 
subdomains of Rn, and for functions without compact support. The mixed-norm 
method used here can also be used to obtain some such imbeddings. 

2. MIXED-NORM Lp SPACES ON Rn 

The general setting for considering mixed-norm spaces is in a Cartesian product X 
of sigma-finite measure spaces Xk. (See [1] or [4].) Although everything we say in 
this section applies in the general case we will be concerned only with functions 
defined on Rn and so will phrase our discussion in that context. 
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Given a measurable function u on Rn, and an index vector p = (pl9 pl9..., pn)9 

where 0 < p} ^ oo for eachj, we can calculate the numbers ||w||p by first calculating 
the Lpl-norm of u(xl9..., xn) with respect to xl9 and then the LP2-norm of the result 
with respect to x2, and so on finishing with the LPn-norm with respect to xn: 

where 

\\LP(dt) 

ÌUÌP - 1--'I lrlІLpiíd̂ l̂ІLpгCdxг)- • •||Lpn(dxn) 

Г Г |f(...,ř,...)|мЛ1/p if í<P 

esssup|f(...,ř, .. .) | if p = oo . 

< oo 

Of course, || • \\LP^t) 1s not a norm unless p _ 1. For instance, if all the numbers p} 

are finite, then 
rr°° r r°° r r°° ~\P2/PI ~\P3/P2 -v^ipn 

|«||p = M . . . I I I |u(x 1,...,x„)| '"dx 1l dx2J . . .dx .1 . 

We will denote by IF = IF(Rn) the set of (equivalence classes of almost everywhere 
equal) functions u for which |w[|p < oo. Provided all p} ^ 1 this is a Banach space 
with norm ||*[|p. The reader is referred to Benedek and Panzone [1] for general 
information on spaces Lp. For our purposes we need only two elementary results 
about such mixed norms, Holder's inequality and an inequality concerning the 
effect on mixed norms of permuting the order in which the HJ norms are evaluated. 

2.1 Holder's Inequality. Let 0 < p} ^ oo, 0 < q} ^ oo for 1 ^ j ^ n. If u e IF 
and v e L? then uv e Lr where 

(3) - = - + - , l^jikn, 
rJ PJ 4j 

and also 

(4) M . = hi W«; 
Holder's inequality (4) can be proved by n successive applications of the ordinary 

Holder inequality applied one variable at a time. Note that p} and q} are allowed 
to be less than 1. Then n equations (3) are usually summarized 

1-1 1 
r p q 

Iteration of (4) leads to a version for the product of k functions: 
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where 

1 " 1 

r j=ipj 

2.2 Permuted Mixed Norms. The definition of \\u§p requires the successive IFJ 

norms to be calculated in the order of appearance of the variables in the argument 
of w. This order can be changed by permuting the arguments and associated indices. 
If a is a permutation of the set {1, 2 , . . . , n] let ax = (x^i), xrf(2)J . . . , *<-(„)), and let ap 
be defined similarly. If au is defined by au(ax) = u(x), (so that au(x) = u(a~1x),) 
then IJcrtilĴ p is. called a permuted mixed norm of w. For example, if n = 2 and 
d{l,2} = {2,1} then 

1P2/PI ~]1/P2 r-/»co T f c o -]P2/PÍ ~|l 

II I ^ „ ^ " ' d x J dx2 

and 
-[P1/P2 " І І / P I r f o o roo -IP1/P2 - | i 

\u(xu x2)\pi dx2 dxr 

Note that ||w||p and I ^ M H ^ involve the same LFJ norms with respect to the same 
variables; only the order of evaluation of those norms is changed. 

2.3 Permutation Inequality. Given an index vector p let cr* and ex* be permuta­
tions of {1, 2,..., n) such that a*p and a*p have components in nondecreasing order 
and nonincreasing order respectively: 

P<f*(l) = P<f*(2) = ••• = Pa*(n) J 

Pa*(\) = P<t*(2) = ••• = Pa*(n) • 

Then for any permutation a of {1, 2,..., n) and any function u we have 

(5) fla*M||^|HU^|k*«|Ui>-
Since any permutation can be decomposed into a product of special permutations 

each of which transposes two adjacent elements and leaves the rest unmoved, proving 
(5) reduces to demonstrating the special case: if px = p2 then 

r/•oo r- /•<» ~\P2/Pi "II/P2 T f00 [ f00 "IP1/P2 " l l/Pi 

[J-JJ-j-H d»] s [L[L H H H • 
But this is just Minkowski's inequality for integrals: 

/•oo /*oo 

|i>(x., x 2 ) | dx. ^ fli^x., O l i ^ ^ d x . 
J - 00 Lr(dx2) J - 00 

applied to v = ji*j-*'- with r = Vi\V\-
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3. FIRST ORDER ANISOTROPIC SOBOLEV INEQUALITIES 

An inequality of the form 

(6) H,^ZMW 
J-1 

is called an anisotropic Sobolev inequality because different U norms are used to 
estimate derivatives in different coordinate directions. We assume pj _ 1 for 1 _ 
_ j _ n, and shall show that such an inequality holds for all u e CQ(RH) for 

q nj=ipj n 

n 

provided that £ (l/py) > 1. 
I=i 

Let us begin with a dilation argument to show that (7) defines the only possible 
value of q for which (6) can hold. 

3.1 Lemma. If there exists a constant K such that inequality (6) holds for all 
u e CQ(RH) then q must satisfy (l). 

Proof. Let X = (Xi9 ..., Xn) where 0 < Xj < oo for all j . Choose a function 
u e CQ(R") for which both sides of (6) are positive, and let u^be the anisotropic dilation 

uk(x) = u(XyXu...,Xnxn). 

It is readily shown that 

N, = ( u ^""'M,. 
\\DMPj = Wi^,...,KrllPJlDju\\Pj. 

If t > 0 we can choose X so that 

xj(xlx2,...,xnyl/pj = r1, ( l _ j _ n ) . 
It then follows that 

; ; ; _ ,n l(I( i lpj)- i) 

Since all the dilations ux belongs to CQ(RH) we must have, by (6), 

AA r-n/[ .7(I(l /pj)-l)]+l < 2C 1_i 

\\U\\« 

Observe that t is large if |A| is large and small if \X\ is small. Therefore the exponent 
of t on the left side of (8) must vanish, and (7) follows. • 
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3.2 Theorem. Suppose pj = 1 for 1 ^ ; ^ n, and £ (1/P/) > 1- U 
1=i 

1 = 1 y ± _ I 
q nj=ipj n 

then there exists a constant K such that the anisotropic Sobolev inequality 

1=1 

holds for all ueC%(Rn). 

Proof. Throughout this proof (and subsequent ones) K denotes a generic constant 
independent of u. Its value may change with each usage; we make no attempt to 
keep track of its value. 

Let Sj = 1 for 1 = j ^ n. Since u has compact support we have 

rxJ 
\u(xl9...9xn)\

sj = Dj\u(xl9 ...9Xj-l9t9xJ+i9 ...9xn)\
SJdt, 

J — 00 

so that 
/•oo 

sup \u(xl9 ..., xn)\
SJ

 = Dj\u(xl9..., xn)\
SJ dxj 

XJ J - c o 

and integration with respect to the other n — 1 components of x leads to the permuted 
mixed norm estimate 

I W I U M i,s|->il«Ni-
- - j i » r i Mi - -«M8 ; -w rM« 

where Oj is a permutation of {1, 2 , . . . , n] for which <x7(l) = j , and p) = P,/(P/ — 1), 
(or pj = oo if pj = 1), is the exponent conjugate to pj. For each j let fly = (1, 1 , . . . 
..., oo,. . . , 1) be the index vector with fth component infinite and all other com­
ponents equal to 1. By the permutation inequality 

WPJ ' (9) IIHJL = NttrlU, i i, = K\*\fi-\>,ADA, 
n 

Let s = st + ... + sn and let 1/r = £ \jvj9 so that rj = \\(n — 1) for each j and 
1=i 

|]* | | r = II* J !/(„-!). Using Holder's inequality for mixed norms we obtain 

I H ^ - 1 ) = IIMS||l/(n-1) = IIHS, + - + ir = 

1=1 1=1 

Now choose the numbers Sj so that 
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(10) ( S l - i)p[ = (s2 -l)p'2 = ... = (s, - l)p'n = = q, 
n — 1 

where q is defined to be the common value of the other n + 1 expressions in (10). 
(If any Pj = 1 then the corresponding Sj = 1 also.) Assuming this done, we will have 

l-IU-ШMľ-ЧM,, 
1=i 

whence, by cancellation, 

1=1 1=1 

It remains to find the common value q of the expressions in (10). If pi > 1 we have 

q = (sj- 1) p'j = (sj - 1) Pj 

pj-l 

so that 

"-i+t[i-j} 
and this latter formula evidently holds if pj = 1 also. Therefore 

n 1 
(n - l)q = s = sx + ... + sn = n + nq - q£ — . 

1 = i Pj 
n 

It follows that 1/q = ( £ (1 /pj) - 1)1 n as required. • 
1=i 

3.3 Remark. Of course Theorem 3.2 gives the (isotropic) Sobolev inequality 
if pj = p for allj, and 1 = p < n. Observe that p in the isotropic version is replaced 
by the harmonic mean of the n indices pl9..., pn in the anisotropic version. 

3.4 Remark. Using the result of Theorem 3.2 the mixed-norm estimates (9) 
can be rewritten as 

M3-, = KHr1 IM„ = w 1 IM,, = KQSJ 

where 

e = l l - t y « | , , . 
1=1 

These estimates lead, in turn, to an (n — l)-parameter family of mixed-norm, ani­
sotropic Sobolev inequalities as follows. Let Xl9..., Xn be positive numbers such that 
Ax + . . . + Xn = 1. We have 

I I»IA 'IUM, - M & = KQX) • 
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If 1/fl =* S hl(sJvj) w e nave> by Holder's inequality, 
1=i 

M . = II MAl+-+A1, = n I l - f U - , = KQ 
1=1 

that is, 

(11) M . = t flIVlU • 
1=1 

The components of q are given by 

i _ £ _*__*, (i = k _ „ ) , 
qJk 1=1 5y S* 

where 

sy_l + , A - i . V (l=f = n), 

i _ i V i - i 
q nj=ipj n 

Imbedding inequalities analogous to the special case n = 2 of (11) were obtained 
by Krbec in [6]. 

4. HIGHER ORDER SOBOLEV INEQUALITIES 

The isotropic Sobolev inequality of order m, 

(12) M . ^ K I 1-N, 
\a\-m 

where q = wp/(n — mp)9 that is, where 

1 _ 1 _ m 
q p n9 

holds for all u in C£(lRn) provided mp < n. (We are using standard multi-index 
notation: if a = (a1?..., a„) is a vector of nonnegative integers then D* = D^DJ2 ... 
... D*n

n is a differential operator of order |a| = ax + ... -j- art.) Inequality (12) is 
easily obtained by induction from the first order case, inequality (1). 

A corresponding anisotropic version, 

M . ^ E ML 
\i\=m 

where 
m i - _L V f~m~l * - — 

4 «w |a |=wLaJpa « 
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can be obtained inductively from Theorem 3.2 under suitable restrictions on pa. 

(Here we have used the multinomial coefficient 

[m~l _ m! 

a j a 1 ! a 2 ! . . . a и ! 
where |a| = m.) The restrictions must guarantee that any derivative of order less 
than m can be estimated in terms of derivatives of one higher order, so the obvious 
condition 

1 _ [»]!>!! 
n w | « | = m _ a j p a n 

will not suffice in general. Conditions mpa < n for all a satisfying |a| = m will 
suffice, but are stronger than necessary. The appropriate conditions are stated in 
terms of averages of certain rc-tuples of the numbers pa. 

Before formulating the m'th order anisotropic Sobolev inequality we prepare some 
combinatorial necessities. Note that 

03) E r m l = "m; 
|a|=m _ a j 

this is the multinomial theorem. If /? is any multi-index and j e {l, 2,.. ., n] let 

fill] = (Pi, -,PJ-I,PJ + hPj+i, .-,Pn). Evidently |/?[/J| = \p\ + 1. 

4.1 Lemma. If numbers pa are defined for all a satisfying |a | = m then 

z r m - i i z — = z r m i - . 
|/M=m-1_ P JJ=1PfiUl M=™LaJ-?a 

Proof. Given a with |a| = m, for each j such that ccj > 0 there exists ft such that 
/?[/] = a; specifically p = ( a l 5 . . . , a ^ , a,. - 1, a y + 1 , . . . , a„). Accordingly 

m 
E r--'it-L-z:i i r--'i-
= m - l _ P JJ=iPfilJl M=m Pa{j:Ptn = *}[_ P J 

_ s JL 2 0* - 0' _ 
M=» PaUra^ojaj! ... a J _ 1 ! ( a y - l ) ! a y + 1 ! ... aM! 

_ y 1 (m - l ) ! ( a t + a 2 + ... + ccn) __ 

|«l=mpa a 1 ! a 2 ! ... a„! 

- £ [l1- ° 
- I*l=m_ajp a 

4.2 Corollary. Suppose that 
n j 
__ > m 
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for all ft satisfying |j?| = m — 1. Then 

i s Mi>_ 
nm\*\=m[_cc_\pa n 

and if the numbers qfi are defined by 

1 __ 1 " 1 1 

90 "J-iPw n 

then for all y satisfying \y\ = m — 2 we have 
n 1 Z — > m - l . 

« - - 9 T W 

Proof. By Lemma 4.1 and (13) 

- . - p - i - - 1 E r m : 'U—>- . s P";1!---
nm\*\=m LaJPa /tm|/5|=m-lL £ JJ=1 P^ m « |/?|=m-l[ P } n 

Also 
n 1 i n r n i n 1 n 

E — = A E E — - - > - E ( m - i ) = m - i . a 
< = 1 4y[i] »«-*L.'--«T[iri] J n i = 1 

4.3 Theorem. Let pa ^ 1 / o r a// a wif/i |a| = m. Suppose that for every /? with 
|/?| = m — 1 we have 

(14) E — > m . 
I=iP^[/] 

Then there exists a constant K such that the inequality 

| _ | = I M 

holds for all u e C ^ W ) , where 

(16) i _ l s M!__.. 
q n m | a | = m L a J P a n 

Proof. We proceed by induction on m; Theorem 3.2 is the case m = 1. Suppose 
the case m — 1 has been established, and consider the case m. For each ft satisfying 
\p\ = m — 1 let qfi be defined by 

1 __i y _L _ i 
<_/* nJ=lPfiw n 

n 

By Corollary 4.2, £ l/qy[,] > m — 1 for each y satisfying \y\ = m — 2. Thus we 
»-=i 
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may apply the induction hypothesis and obtain the inequality 

lul^K £ |D»«|f, 
| / ? i = m - l 

where 

1 _ _ 1 _ „ Vm - 1"] i_ _ m - 1 

q nm~1\p\=m-il 0 jqfi n 

But Theorem 3.2 implies that for each p 

Thus 

ЏH^йKZЏjDЦ^^ZW^ul^ 
1=1 1=1 

l f l | = m - l j = l | a |=m 

To complete the induction observe that 

i _____ y Vm- n r i " _ _ _ n _ m - 1 _ 

q nm"1 |fi|=m-iL j8 JLw-'=1.P«j] "J n 

_ JL y fm ~ x ] y _L _ i_ y r m ~ i i - m - 1

 = 
nm|/q=m-iL P JJ=1Pnn nmm=m-i\_ p \ n 

_ JL y l~ml -L _ m 

nm|a|=m L aJPa n 

by Lemma 4.1 and (13). • 

4.4 Remark. The number of distinct partial derivatives of order m for a smooth 
function of n variables (that is the cardinality of the set {a: |a| = m} is given by 
a binomial coefficient: 

> v Vn + m - 1"] (n + m- 1)! 
N(m9 n) = \ = i — - ^ . 

L w J m!(n - 1)! 

To see this, observe that to each a there corresponds a finite nondecreasing sequence 
{ii9 i2,..., im} of elements selected from {1, 2, ...,n}. (Thus it = ... = iai = 1, 
**i + I = • • • = ^2 = 2> • • •)• Such nondecreasing sequences are in one-to-one cor­
respondence with strictly increasing sequences {ii9 i2 + 1, i3 + 2,,.., im + m — 1} 
selected from {1, 2,..., n + m — 1}. There are evidently N(m, n) of these latter. 

Conditions (14) of Theorem 4.3 place N(m — 1, n) restrictions on the N(m, n) 
numbers pa. These conditions guarantee that every derivative Dpu of order m — 1 
can be estimated in terms of the quantities {[|Daw[]Pa: |a| = m}. By induction (based 
on Corollary 4.2) so can all lower order derivatives. 

4.5 Remark. By repeated applications of Lemma 3.1, if conditions (14) are 
satisfied no m'th order anisotropic Sobolev inequality of type (15) is possible for 
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values of q other than that specified by (16). However, the author has been unable to 

generalize Lemma 3.1 directly to the m'th order case, so it remains open whether any 

inequalities of type (15) are possible when conditions (14) are not satisfied. 
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Souhrn 

ANISOTROPNÍ SOBOLEVOVY NEROVNOSTI 

R. A. ADAMS 

Anisotropií Sobolevova prostoru.se zde rozumí fakt, že DlueLpi s obecně různými pv Je 
dokázána věta o vnoření ve tvaru Sobolevovy nerovnosti pro odhad smíšené L^-normy funkce 
pomocí příslušných Lp{ norem prvních derivací, zahrnující známé výsledky (Krbec, Kružkov 
a Kolodij, Rákosník), a dále zobecněná i na prostory vyšších řádů. 
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Резюме 

АНИЗОТРОПНЫЕ НЕРАВЕНСТВА СОБОЛЕВА 

Я. А. АОАМЗ 

Анизотропия здесь обозначает, что .О'иеХ.^, где числа рх не обязательно одинаковы. 
В статье приведено доказательство теоремы вложения в виде неравенства Соболева для 
оценки смешанной 1^-нормы функции при помощи соответствующих I, -норм производных 
первого порядка. Эта теорема, которая содержит в себе некоторые известные результаты 
(Крбец, Кружков и Колодий, Ракосник), далее обобщена для пространств высшего порядка. 

Ашког'з аМгезз: ОераПтеп! оГ МаШетаНсз, Ш^егзНу оГ ВгШзп Со1итЫа, VапсоиVег, 
В.С, Сапаёа V6Т 1У4. 
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