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Summary. This paper is a direct continuation of [1], where fundamental concepts and notation
were introduced. The compactness of the imbedding of the weighted Sobolev space Wé P(Q, S)
into the weighted Lebesgue space LP(£, p) is investigated and this imbedding is again considered
as a limit case of compact imbeddings of Sobolev spaces defined on bounded domains.
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1. PRELIMINARIES
In the subsequent sections we use the following assertions:*)

1.1. Lemma. Let p e {1, ©), n € N. Then there exist functions
(1.1) ¢;=¢x), xeR, j=nn+1,n+2, ..

and a positive constant K such that
a) 0< ¢i(x) <1, xeR;
b) ¢;'" € C'(R), supp ¢; = (j — 1, j + 1);

c) (% [¢}7(x)]| < K, x e R (K is independent of j);

Q) ¥ ¢x) = 1, xe(n, 0)*%)
Jj=n
If0<r; <r, £ oo wedefine

(1.2) P(ry,r;) = {xeR"; ry < |x| < r,}.

1.2. Lemma. Let p € {1, ©), n € N. Then there exist functions

(1.3) Y=y x), xeR", j=nn+1,n+2, ..

*) Their proofs can be found in Appendix (see Section 3).
**) The sum in question contains at most two nonzero summands for each x€ R.
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and a positive constant K such that

a) 0 < yy(x) < 1, xeRY;

b) y}?e C'(R), suppy; = P(j — 1, j + 1);
c) é—a—- [w}/”(x)]‘ <K, xeR", i=1,...,N (K is independent of j);
X

d) Ji::nl//j(x) =1, x € P(n, 00).**)

1.3. Lemma. Let 1 £ p< 0, —00 £a<b=< +o0, let ay, a; be measurable,
a.e. in (a, b) nonnegative functions. Let there exist numbers c € (a, b), de R and
C > 0 such that

(1.4) |fZ ao(s) ds + d| < Cay/*(x) a}/?(x) for a.e. xe(a,b).
Then the inequality
(1.9 RGP ao(s) dx < (CpP ()P an(s) dx
holds for each function fe Cy((a, b)).
1.4. Remark. (i) Let us note that the condition fe Cy((a, b)) in Lemma 1.3 can
be weakened; it suffices to assume that fe AC((a, b)) and that supp f is a compact

subset of (a, b).
(ii) In Lemma 1.3 there are no assumptions on the convergence of

Jao(s)ds or [bag(s)ds for xe(a,b)

(we have c € (a, b)). This is the principal difference e.g. from Theorem 5.10 in [2]
where a more general class of functions f is considered.

1.5. Lemma. Let o € R\ {0}, N € N. For x € R let us denote

N

(16) IN,a(x) — J.:eattN—l dt + (_1)N—1 (Na_ 1)' )

Then there exists ny € N such that for x > n,,

(1.7) o) < %I N

2. COMPACT IMBEDDING OF WEIGHTED SOBOLEV SPACES ‘
2.1. Using Cartesian coordinates
For pe(l1, ) we shall consider the weighted spaces W'"?(®, S) and I, o)

(see [1]). The points x = (xy, ..., xy) € RN will sometimes be written in the form
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x = (x', xy) where x’ = (Xy,..., Xy~y) € R¥"!. In this section we suppose the fol-
lowing two conditions to be satisfied:

Cl. Q is an unbounded domain in RY, Q@ = (—a,a)""! x (—a, o), where a > 0.

C2. Whr(Q,, S) QQ I/(2,,¢) Vne N,
where Q, = {x€ Q; xy < n} for ne N.
We shall investigate under what additional assumptions

(2.1.1) Wo'?(2, S) QQ (2, 0)
holds.

Let us denote by the symbol X the set C3(R) with the norm |[+[x = |[*]1.5.0.s-
It is possible to prove (see [1]) that (2.1.1) is true if

(2.1.2) sup |up.ane—= 0 for n— oo,

llullx=1
where Q" = {xe Q; xy > n}, ne N.
If Q = R" then Py(Q) stands for the orthogonal projection of the set Q into the
hyperplane xy = 0. '
Let us further assume that the following condition is fulfilled:

C3. There exist numbers C > 0, noe N, d,eR (n€ N, n > n,) and nonnegative
measurable functions p: (ng, ) = R, v: (ng, ©) > R, x: (ny, o) — R,
&: Py(2™) > R such that

(2.1.3) o(x) < Cp(xy) é(x') forae. xeQ™;
(2.1.4) V(xy) &(x") £ Cmin {w, .. 0)(X), Wo,...0,1(X)} forae. xeQ™;

(2.1.5) the function x is nonincreasing on (n, ) and lim »(n) = 0;
n-* o0

(2.1.6) ”; y(s) ds + dnl < Cy”p'(t) xl/p(‘) vl/p(t)
forae. te(n—1,n+1) andforall n> n,.

Now we are going to investigate the validity of (2.1.2). Let u€ X and n > ny
where ng is the number from the condition C3. We extend the function u outside Q
by zero (then, clearly, u € C3(R")) and put

o(x) =1 for xeR"\Q, &(x')=1 for x' eR¥ ™'\ Py(Q").
Let ¢;(j = n,n + 1, n + 2....) be the functions from Lemma 1.1. Then we have
(.17) (B me = S )7 ) x =
= IR"“‘X(n,oo) |u(x)|” Q(X) dx =

= Jar-sxcney [0 [ ] ) x =

295



= .;,,IR"" X [(n,0)nsuppé,] lu(x)l” é,(xn) o(x) dx =

8

;Iawlxu L+ [#(x) @5"7(xn)|? o(x) d

j=n

" J(x)”pﬂ" Ix(j-1,j+1),0>

TMa

where

) = u(x) 8}/°(xn) xRV,
Using Fubini’s theorem and (2.1.3), we get
(2.1.8) [u(x)]5 re-1x - 1,5+ 17,0 S Clan-1 [JI21 Ju,(x', x)|? s(xy) dxn] E(x") dx” .
For x' e RN, set
(2.1.9) fi(s) =ulx’,s), seR.
Evidently, f;€ Co((j — 1,j + 1)). Applying Lemma 1.3 we obtain from (2.1.6)

[ )P uls) ds < (Cp) JIZ1 £3(5)] o(s) v(s) ds -

As the function x is nonincreasing on (n,, ) (see (2.1.5)) we get

(110) B AOF 6 ds S (CoP i — 1) B O ) 65
From (2.1.8), (2.1.9) and (2.1.10) we derive
(2.1.11) 4,5 - 1x - 1,54 13,0 = C7F1P7 (= 1)
j+1
J. [j. — u(x', xN) v(xy) de] &(x') dx’ .
RN j-1 10xy
Further,
14
% u;(x', xN) s 2t [ :: + K?Ju(x, xN)I’]
N

(K is the constant from Lemma 1.1) and therefore

(2.1.12) ) F -1 xs= 154170 S C7F1P7 277 (i = 1)
-
RN-1| Jj-1 oxy

— (%', xy) v(xN) dxy +
j+1
+ K“J‘ [u(x’, xx)|? v(xx) de:I &(x") dx’.
i-1

In view of (2.1.7), (2.1.12) and (2.1.5) we have
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p
2(x’, xy)| v(xx) dxy +

XN

P At e N P
LKy J e, 5wl o) de] Kx) dx'} <

h i-1

< C"“(ZP)”:(" - {J‘W le

+K? -[ :°_1|u(x', xw)|? (xy) de] H(x') dx’ .

This and (2.1.4) yield

wmmwgawmuuaﬂj

on-1

u
— (', xy)

4
W(xy)dxy +
Oxy

P
We....0,n(x)dx +

du
oy (%)

< CP*2(2pK)? u(n — 1) [[u|% (we have K > 1)
and therefore
(2.1.13) sup [u],an, < Cy %'7(n — 1),

llullx=1

where
C, = 2pKCI+2/7 .
The convergence (2.1.2) follows from (2.1.13) and (2.1.5).

From the above considerations we have:

2.1.1. Theorem. Let the conditions C1—C3 be fulfilled. Then
(2.1.14) WP (2, S) QQ (2, ) .

2.1.2. Example. Let Q satisfy the condition C1, p € {1, o), and
(2.1.15) BeR, a0, a<f, e¢28,
s,eR for |y|=1, y+(0,...,0,1).
For x e Q we define
o(x) = €™, Wo,..0(%) = €, Weo,...0,0(x) = €7,
' wy(x) =€ for |y|=1, y=+(0,...,0,1).
Let S = {w,; |y| £ 1}. As
whr(Q,, SYy =2 WhH(Q,), IX(Q,e)2I(RQ,), neN,

we obtain from the well-known (unweighted) imbedding theorem
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w2, S) QQ (@, 0), neN.¥)

and hence the condition C2 is satisfied. _
If we further choose C =1, noe N, u(s) = €=, v(s) = €, x(s) = || 77 e~ P"

for se(no, ), 6(x') =1 for x’' GPN(Q"°), d, = a”le™ for n > n,, we can easily

verify that the condition C3 is satisfied, too. From Theorem 2.1.1 we obtain (2.1.14).

2.1.3. Remark. (i) Let Q satisfy the condition Cl, «,, ®, € R, &, < a,. For xe Q

let us take
oix) =€, i=1,2.
Then .
(2.1.16) I7(Q, 0,) Q I7(2, 04) -
The proof is easy: For x € Q@ we have —a < xy, i.e. (¢, — ;) (xy + a) = 0 and
therefore
02(x) 7™ > g/(x), xeQ.

From this inequality (2.1.16) immediately follows.

(ii) Part (i) of this remark and Example 2.1.2 imply that the condition « + 0
in (2.1.15) can be omitted. [Actually, if « = 0 < B then for any o, € (0, f) we have
in accordance with Example 2.1.2

WeP(Q, S) QQ (R, 7).

However, in view of (2.1.16), I#(Q, &™) Q I7(Q).]
For x € RY and e € R let us define

_ /x,‘v, xy>1,
20 =1, x=1.
2.1.4. Example. Let Q satisfy the condition C1, p € {1, ), and let
(2.1.17) BeR, a+ -1, a<B—p, 628,
6,eR for |y =1, y*(0,...,0,1).
For xe Q we put

o(x) = z(x), W(O..:..O)(x) =z(x), Weq,..0,n(*) = z4(x),
wy(x) = z5(x) for [y]=1, y+(0,...,0,1).

Let S = {w,; |y| < 1}. Analogously as in Example 2.1.2 we can verify that the con-
dition C2 is satisfied.

*) As we work with the ‘‘nulled space” W :"’(ﬂ, S), one can assume without loss of generality
that 2, e C%! for each ne N.
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If we further choose C = 1, ny € N, p(s) = % v(s) = s, x(s) = |o + 1| 7P s> F*?
for s € (ng, ©), &(x’) = 1 for x € Py(R™), d, = (« + 1)™' n**! for n > ngy, we can
see that the condition C3 is satisfied as well. The imbedding (2.1.14) follows from
Theorem 2.1.1.

2.1.5. Remark. (i) Let Q be a domain in RY, a;,a, € R, a; < a,. For xe Q let
us take
0i(x) = z,(x), i=12.
Then
(2.1.18) 17(2,0,) Q (2, 0) -

[The proof follows at once from the inequality ,(x) = ¢,(x) for x € Q.]

(ii) Part (i) of this remark and Example 2.1.4 imply that in (2.1.17) the condition
@ + —1 can be omitted. [Namely, if « = —1 < f — p then there exists a; such that
—1 < a; < B — pand from Example 2.1.4 we obtain

W0, 5) QG (@, =) -
However, in virtue of (2.1.18), I/(, z,,) Q (2, z-1).]

2.1.6. Remark. (i) The case when @ is unbounded in both directions of the axis xy
and

Qc(—a,a"' xR (0<a< o)

can be investigated analogously as in Theorem 2.1.1 (see Remark 3.1.8 in [1]).

(ii) Let us note (again as in [1]) that some curvilinear coordinate can play the role
of the variable xy. In the next section we will consider the case of spherical co-
ordinates.

(iii) Let us add the following assumption to the condition C1:

There exist numbers a;, b;eR (i = 1,2,...,N — 1) and ny € N such that

Q0 ={xeR% a;<x;<b, i=1,2,..,N— 1, xy > ng}.*

Then one can show that the method proposed (with minor modifications) can be used
to prove the compact imbedding

w2, S) CQ (2, 0) .

2.2. Using spherical coordinates

We shall consider spherical coordinates (r, ©) in RY, where r = |x| is the distance
from the point x to the origin and ® = x/|x| is a point on the unit sphere E =
= {xeR"; |x| = 1}. If @ = R" then P(Q) will denote the projection of the set Q
into the unit sphere E, i.e,, Py(Q) = {0 € E; 3r > 0, (r, ©) € Q}.

*) Le., the domain £ has a special form.
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Let W'?(Q, S), I?(, ¢) and X be as in Section 2.1. Throughout this section we
consider the following two conditions:

C1*. Qis an unbounded domain in R".

C2*, W'(Q,,S) QG I/(Q,,0) Vne N, where Q, = {xeQ; |x| <n} for ne N.
Again, we shall look for additional assumptions implying

(2.2.1) WP (Q,8) QQ (2, 0) -

It is possible to prove (see [1]) that (2.2.1) is true if

(2.2.2) ' sup [u],0n, =0 for n-— oo,

llullx=1

where Q" = {xe Q; |x| > n}, ne N.
Let us further suppose that the following condition is fulfilled:

C3*. There exist numbers C > 0, nye N, d,e R (ne N, n > n,) and nonnegative
measurable functions p: (ng, ©) = R, v: (ng, ©) = R, x: (ny, ) > R,
&: Pg(Q™) — R such that

(2.23) o(x) = Cul]x]) & <|x—|> forae. xeQ™;
X

(224) v(IxI)é(

)<Cmmw(x) forae. xeQm™;

(2.2.5) the function x is nonincreasing on (ny, ©) and lim »(n) = 0;

(226)  |fsu(s) ¥t ds + d,| < Cpt/P(e) xtP(t) vHP() V!
forae. te(n—1,n+1) andforall n > ny*)

Now we shall investigate the validity of (2.2.2). Let u € X and n > n, where n,
is the number from the condition C3*. We extend the function u outside Q by zero
(then, clearly, u € C3(R")) and take

o(x) =1 for xeR"'\Q, §O)=1 for @eE\PLQ™).
Lety;(j=n,n+1,..)be the functions from Lemma 1.2, Then we have
(2.27) lu(x)]5.0me = fon [u(x)] o(x) dx =
= [oin,m) [U(X)]P 2(x) dX = [pen,my |(x)]” [j;'/’j(x)] e(x)dx =
*) Let us remark that the inequality (2.2.6) can be written in the form |{fu(s) s" "1 ds + d,| <

£ Clu(e) NP [e(e) w(r) £V 1) UP,
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IP(n @)Nsuppyy Iu ]p lp.i(x) Q(X) dx é

jP(; Li+n [u(x) W”"(X)I” (x)dx =

I\
Ms iMMs TMB

” J(X)IIPPU 1,j+1),0

] n

where

ujx) = u(x) yj’®(x), xeRV.
In view of (2.2.3) we get

(228)  [u()7pu-1.5+ 00 £ € Js [0 [ur, O u(r) P~ dr] &(6) dO .
For a fixed © € E we denote
(2.2.9) filr) =ufr,0), r>0.
Clearly, f,€ C(j — 1, j + 1)). Applying Lemma 1.3, in view of (2.2.6) we obtain
FE A u(r) 7Nt dr < (Cp)? FIE ()| o) v(r) V7 dr
As the function x is nonincreasing on (n,, ) (see (2.2.5)) we get
(210 [ W) dr = (CoP A — 1) B2 A0 0) P
From (2.2.8), (2.2.9) and (2.2.10) the inequality
(22.11) lw)5.pii- 14 10,0 <
— uj(r, 6)

< (p+1 , A ? N-1
S CPHIpP o(j — 1) v(r) r dr ﬁ(@) do
E j-1 ar

follows. Further,

a p
—uyr,@) <27
or

p
! [ aﬁu(r, 9)‘ + K?|u(r, 9)|P] < ¢, Y |Du(r, O)F
r la] £1
(where C, is a constant independent of the function u and the number n) and therefore
(22.12) N 51,54 13,0 <
S CPHIpPCy x(j — 1) Z e [J3%1 |D*u(r, ©) ]P w(r)r¥ "t dr] ¢(O) de .

In virtue of (2.2.7), (2.2.12) and (2.2.5) we have
”u(x)":.ﬂ",e s
< crHic PP #(n — 1) z el Z I |Du(r, @) v(r) PNt dr] E(@) dO <

< CPHIC,pP 2u(n — 1) agl jE [f=y |Du(r, ©)|7 v(r) PNt dr] &(@) dO .
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Using the last chain of inequalities and (2.2.4) we arrive at
lu(x)[5.0me < CP*2C1 27 %(n = 1) 3 fon-1 [D* u(x)|” wi(x) dx <
lel21
S CP*2C 2p" x(n — 1) |u|x
and therefore
(2.2.13) sup [|u,.an, S Cox'/?(n — 1),
llullx=1
where
C, = pC[2c*C,]' .

Now (2.2.13) and (2.2.5) imply (2.2.2).
We have proved

2.2.1. Theorem. Let us suppose that the conditions C1*—C3* are fulfilled.
Then

(2.2.14) WP (Q, S) QQ X(2, 0) .

For x € RY and ¢ € R we define
N T
wi(x) —<1 N
2.2.2. Example. Let Q be an unbounded domain in R", p € {1, ),

(2.2.15) BeR, a+ —-N, a<B—p, e6=f.
For x « Q we set

o(x) = 0, (x), We,...0x) = @fx),
wy(x) = wy(x) for |y| =1.
Let S = {w,; |y] < 1}. Since '
whe(Q,, S) = Whe(Q,), L(Q,o) =I1/(?,), neN,

we obtain from the imbedding theorem for the classical Sobolev spaces

wh(Q,, S) QQ (R, 0), neN,
hence the condition C2* is satisfied.

If we further choose C = 1, nge N, u(s) = 5% v(s) = 5%, u(s) = |« + N|?s*#*P

for se(no, ), &(@) = 1 for @€ PHQ™), d, = (¢ + N)™* n**" for n > no, we

can easily verify the validity of the condition C3*. The desired imbedding (2.2.14)
now follows from Theorem 2.1.1.

2.2.3. Remark. The condition o« = —N can be omitted in (2.2.15). This follows
at once from the last example and from the imbedding
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(2, v,,) Q (2, »,,)
where Q = RY and «, = .

2.2.4. Example. Let Q be an unbounded domain in RY, p e <l, ),
(2.2.16) BeR, a0, a<f, e=p.
For x e 2 we put

Q(X) = " s Wo,.., 0)(") = ¢l s
wy(x) =l for |y =1.

Let S = {w,; |y| < 1}. We can verify analogously as in Example 2.2.2 that the con-
dition C2* is satisfied.

If we choose C = 1, u(s) = e, v(s) = e, x(s) = (N]|«|)” e*~#* for s € (ny, )
where ny > n, (the number n, is from Lemma 1.5), (@) = 1 for O € Pg(Q™),
d, = Iy ,(n) for n > n, (we use the notation from Lemma 1.5), we can sce that the

conditions (2.2.3)—(2.2.5) are satisfied. Let us verify (2.2.6). For n > n, and t€
e(n — 1, n + 1) we obtain by means of Lemma 1.5

[fau(s)sN =" ds + d,| = |fne=s" "1 ds + d,| =
= Iat) = Iyon) + do] = |1,.(0)] < ILVI SN
o
Further, we easily get

N o=t = G2 (1) () vo(e) ¥

lo|
for n > ng and te(n — 1, n + 1), hence (2.2.6) is true. From Theorem 2.2.1 we
obtain (2.2.14).

2.2.5. Remark. As
02(x) = o4(x)
holds for «, > a, and for x € RY, where ¢,(x) = exp («|x|) (i = 1, 2), we have
Lp(Qa QZ) Q LP(Q’ Ql)

for each domain Q < RN. This and the last example yield that the condition a % 0
can be left out in (2.2.16).

2.2.6. Remark. Let us suppose, in addition to C1*—C3*, that the following con-
ditions hold:
a) There cxist a number n; € N and a measurable set E' < E such that

Q" = {xeR"; |x| > ny, —ieE’}.
x
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b) Wl,p(Q’ S) = C‘(Q) A Whe(Q, S)Il-lll.v,n.s .

Then the given method (with a small modification) can be used for the proof of the
compact imbedding

w2, S) QG (2, o) .

3. APPENDIX (Proofs of lemmas from Section 1)

Proof of Lemma 1.1. Let t: R — R be such a function that
(3.1) ) te C'(R), suppt <= (—1,1),
0<1x)<1 for xeR, 1(x)=1 for |x|<%.
Define the function f by
(3.2) f(x)=Y1(x —j), xeR.
j=n

For each x € R at most two summands on the right hand side of (3.2) are nonzero.
Therefore, in virtue of (3.1), we can see that fe C'(R), 0 < f(x) < 2 for xeR,
f(x) 2 1 for x = n — 3, there exists &,0 < & < } such that f(x) = [ for xe (n — 3,

n + ¢), and the function g,
f(x), x
9(x) = <1( ) .

possesses the following properties:
(3.3.) geC'(R), 1=g(x)<2, xeR,
lg'(x)| < 2p max |7(»)|], xeR.
ye

n,
n,

AV

Putting ¢;(x) = t(x — j)/g(x) for xeR, je N, j = n, we easily verify that 0 <
S ¢j(x) =1 for xeR, ¢}'"e C'(R) and supp ¢, = (j — 1, j + 1). Further, in
view of (3.1) and (3.3), for x € R we obtain

s 5]
T(x = j) g"""(x) — «(x — j) ig‘“’"(X) o'(x) -

g2/p(x) N
[Fx =), Lex =D gtl o
9'"(x) p g'""Vrx)

< [e(x = )| + = o)
p

lIA
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hence

‘—(-1— [¢;7(x)]] S K, xeR
dx

where
K = 3max|t(y)|.
YR
Now, let x € (n, o). Then

which completes the proof of Lemma 1.1.

Proof of Lemma 1.2. Lemma 1.2 immediately follows from Lemma 1.1 if we set
Vi(x) = ¢]x[), xeR

where the functions ¢; are from Lemma 1.1.
Proof of Lemma 1.3. Let
(3.4) feC¥((a, b)), suppf < (a B)
where a < o < B < b. For x € (a, b) we denote
g(x) = [Zao(s)ds + d.

Integrating by parts, we obtain

J2 /)P ao(x) dx = [[f®)I” 9()]z = p J2 [FG)PP ™ (I/)]) g(x) dx .
From this, in view of (3.4), it follows that

B P ao(x) dx = /()P aul) dx =
= —p 2@ (f®)]) 9(x)dx < p L1 £ )] |9(o)] dx =
< pRP] oGl dx .

Then using the condition (1.4) we get
(635 BU@P xS Cp R ()] ab(x) al(x) dx.

If p = 1 then (3.5) is the desired inequality (1.5).
Let further p € (1, o0). Then from (3.5) by Hélder’s inequality we obtain

fa lfGIP ao(x) dx < Cp[ [z [£(x)[" ao(x) dx]"7" [[G |f'(x)|” ay(x) dx]""?
and this implies the inequality (1.5).

Proof of Lemma 1.5. First we shall prove that under the assumptions of Lem-
ma 1.5
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(3.6) I o) = % Py-1.4(%)

where
—-1
&) Py-yq(%) = Z( 1)‘(_)x~—1-.-

(thus Py_ ,',(x) is a polynomial of the degree N — 1 and the coefficient at the power

x¥1is 1).
To prove (3.6) we use mathematical induction. We readily get
(3.8) I, (x) = Ieﬂ' dt+ 1o _Cp Po (%),
o o o

so that (3.6) is true for N = 1.
If (3.6) holds for some N e N then using the integration by parts and the induction
hypothesis we obtain

ax N
(3.9) IN.H',,(X) = % xN - ’; IN,a(x) =

e N &*~*
=—xN__'—PN la(x)
o o o

N - 1)
N_{V_Nzl( l)i .xN—l—i -

o i=0

[ N 4 Z( 1):+1N_(N'__1)” N-(i+1)

e*
= — x
o T

+l

- }Af( 1),Q i = %;PN.a(x)’

o j=0

I
Rla

hence (3.6) is verified.
Now we are able to prove Lemma 1.5. From (3.8) we get

[I4(x)] = || * e, xeR

at once and therefore (1.7) holds for N = 1 (it is sufficient to choose n, = 1).
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It remains to prove (1.7) for N = 2,3,.... Writing the number N in the form N =
= n + 1 then, in view of (3.9), we have for x > 0

n J!
(3'10) IIN a(X)l II'I'H,G(X)I = I I Z (—J)__ X" =

i=o |of

n)]_'
=¢ x"1+2 1

0 | ¥

o
o] ™t max j\/<'_1>j!,
Jj=1,..,n J

x(n_l_l)___l_v__axN l,

o

Now, if x > n, where

Ky
Y

then (3.10) yields
IIN ,,(X)I = l l

which is the desired inequality (1.7).
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Souhrn

KOMPAKTNOST VNORENI VAHOVEHO SOBOLEVOVA PROSTORU
DEFINOVANEHO NA NEOMEZENE OBLASTI II

BoHuMiR OPIC

Clanek je primym pokratovanim prace [1), kde byly zavedeny zékladni pojmy a oznaleni.
Je zkoumana kompaktnost vnofeni vahového Sobolevova prostoru W5'P(9, S) (S je systém
vahovych funkci) definovaného na neomezené oblasti do prostoru L?(£, o) (¢ je vAhova funkce).
Dané vnofeni je vySetfovano jako limitni pf¥ipad kompaktnich vnofeni Sobolevovych prostorti
definovanych na omezenych oblastech.
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Pe3lome

KOMITAKTHOE BJIOXXEHME BECOBOI'O ITPOCTPAHCTBA COBOJIEBA,
OITPEEJIEHHOI'O B HEOI'PAHUYEHHOW OBJIACTHU II

BouuMir OPIC

Dra CTabs ABIAETCA NPAMBIM NPONOJDKEHHEM pPaboTwl [1], rae GulM NMpHBEAEHHI OCHOBHBIE
nous1#s 1 o6o3HaveHus1. B pabore nccneuyercz‘ KOMIIAKTHOCTD BJIOXEHHS BECOBOTO HPOCTPAHCTBA
CoGonesa Wg-"(!), S) (S — cucrema BecOBBIX (hyHKUMiA), ONPENENEHHOTO B HEOTDaHMYCHHOK
o6nacti, B npocTpancTBo dynxmmt LP(R2, ¢) (¢ — Becosast dynkums). DTO BIOKEHHE PACCMATPH-
BAaeTCA KaK NpEeeNIbHbIL CIyvall KOMIIAKTHBIX BIIOXeHMA nmpocTtpancTs Cobolnesa, onpeaeneHHbIX
B OrpaHAYEHHBLIX 00NMaCTAX.

Author’s address: Matematicky Gstav CSAV, Zitna 25, 115 67 Praha 1.
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