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Časopis pro pěstování matematiky, rot. 90 (1965), Praha 

ON CERTAIN PROPERTIES OF A SYSTEM OF LINEAR 
DIFFERENTIAL EQUATIONS 

Ivo VRKOC, Praha 

(Received Novemeber 9, 1964) 

This paper deals with properties of the expression ^xt(t) at depending on 
the non-homogenous terms ff(t), where xt(t) is a solution of the system of 
differential equations (1). Primarily, the derivative ^xft) at is investigated. 

This paper was initiated by a generalization of Lemma 1 and 3 given in paper [1], 
Lemma 3 in [1] is equivalent with the second part of Corollary 2, Lemma 1 is a parti­
cular case of Theorem 3 and remark 3 (if (xt = a > 0 and p(j = p{ > 1), Theorem 1, 
which is in fact a generalization of Lemma 3, is equivalent with the statement that 
each component x((t) of a solution of the system (1) is also a solution of the difference-
differential equation (2). Having proved this theorem, Theorem 3 can be proved in 
a simpler fashion. 

We shall use the following notation: Let A be a constant matrix of complex 
numbers of the type n x n, a, b vectors with n components. The expression (a, b) 

n n 

may have the meaning either of £ atbt or of £ citBi9 where ai9 bt are components of 
i = l i = l 

vectors a, b respectively, and Bt are complex-conjugates to b{. In the first case A* will 
denote the matrix symmetric to A and in the second case the matrix which is Hermi-
tean symmetric to A. 

Theorem 1. Let the functions fit) be defined on <0, oo) and integrable on every 
interval <0, T>. Put cp(t) = (x(t), a), where x(t) is a solution of the equation 

(1) x = Ax + f(t) . 

Then to each y > 0 there are n constants 0 < ai < . . . < an < y such that cp(t) is 
a solution of the difference-differential equation 

n 

(2) y(t) = x(t) + ^(t) + £ iit <p(t + a,) , 

where ftt are certain constants, x(t) is a linear combination of functions fit), \j/(t) 
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is a linear combination of functions j* 0 ' e~k^£kfp(t 4- £) d£, Xi are characteristic 
numbers of the matrix A and k is an integer with 0 :g k S ni9 where nt is the 
multiplicity of X{. 

Proof. Let the regular matrix Ttransform A into the Jordan's canonical form, and 
put x = Ty. We have <p(t) = (x(t)9 a) = (y(t)9 b)9 where b = T*a, y = By 4- /+(?), B 
is the Jordan's canonical form of A andf+(f) = T~x f(t). For each characteristic 
number Xt there are rt groups of differential equations 

(3) y^j^^j + y^tj+fej for <9 = l , 2 , . . . , q f J - l , 

y(J]j-= ^y(e]j + flj f o r ® = « u - J = l ,2, . . . , r , . 

Let us denote b(
0
l)j the coefficient at )4* j in the expression (y9 b). Now, we are going 

to transform this system of differential equations into a new one. If for a given i at 
least one coefficient b(

0
l)j is different from zero, we put w[l) = £ y© jb@>y (or Xye0 /^ L), 

where we* are summing up those indices for which b(
G

l)j 4= 0. We derive easily the 

differencial equation for w(/>: w('> = Yfej^j = V i ° + l y k W e U i ^ j + 
ej 

+ IfejbWj, where <5£>+1 si = 0 for 0 ^ g^ and O^+i tJ = 1 for other 09j. Let us 
put ff = Yfej^ej afld further W20 = Xy©+1 ,/>#+ ijb(

&
l]p where the summe is taken 

for such &9j (i is fixed) for which d^+ijbej =t= 0. Then we get the equation w^0 = 
= Xiw[l) 4- w(

2
l) 4- ff. Evidently, we can introduced new variables w(l), v = 1, ..., si9 

where sf g max qiS so that the following group of differential equations hold 
j 

(4) w(<> = A.w^ 4- w(
 + 1 + fv* for v = 1, 2,..., s( - 1 , 

vv<0 = Afw
(0 4- f* for v = st. 

We can derive this group so that we consider y(e]p y
(e]p f0j as variables which obey 

the relations (3). Furthermore, if w(0 = I^d jykj , then we put w(0 = Y/lejy{ej 
We define w(

 + 1 as a linear combination of variables ye
l]j9 which enter with nonzero 

coefficients in w(f) — Afw
(l) expressed by y(e]pfej (and which can be transformed 

by (3) so that there are no yej). We define f* in a similar manner. 
i - l 

Put m = ~?sb Q>(i) = Xs1> wa>(iy+i = wi° f° r / = 1,..-, st. Arranging the system 
1=1 

(4) for wh we get a system of differential equations in Jordan's canonical form 

(5) vv = Cw+ f* , 

where w is a column vector with components wl9 I = 1,..., m, m _" n. The characte­
ristic numbers of the matrix C constitute a subset of characteristic numbers of 
matrix A, but to each characteristic number of matrix C there corresponds only one 
group (see (4)) of differential equations. Next, put 

(6) Ca>(o+i = 1 for z = 1, 2,.. . , cx = 0 for other / . 
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Evidently, we can write q>(t) = (w(*), c). Recalling that cm(i)+1 4= 0 for c, the vector c 
does not belong to any invariant subspace of the matrix C*. According to [2] pp. 
149 — 150, (see (32) and the footnote), to each y > 0 there are the numbers 0 < at < 
< ... < an < y such that the vectors ec*aic are linearly independent (in (32) we can 
change the sign at e and numbers a1 ?..., an are dependent only on the matrix C and 
number y). 

Using the method of variation of constants we get 

(7) <p(t) = (w(t), c) = (ec«-<«w(t0), c) + f JV'-*> /*(-) dr, c) . 

Putting t = t0 + a,-, we obtain after some arrangements 

cp(t0 + «,) = (w(f0), e
c*«c) + (r'e~Cif*(t0 + {) d{, ec*"c) . 

Because the vectors ec*aic are linearly independent, the components of w(*0) are 
linear combinations of functions cp(t0 + cct) and 

V A ^ * / ^ o + {)df. Г / o 

With regard to (4) we have wt(t) = ^{t) + w i+1(r) + /**(r) for / 4= co(i + 1) and 
vv. -= AfWi + /**, for / -= tt>(i + 1). Then w^r) is a linear combination oift(t) and of 
the former functions. With regard to (7) the statement of the theorem is true. 

Without any further difficulty it can be verified that in fact the following remark 
was proved. 

Remark 1. Let the matrix A be divided into blocks A^. Let AflV = 0 for /i 4= v, 
and let Avv be square matrices. Let each matrix 4̂VV have only one characteristic 
number Av, Xv + AM for v + /i. Denote a\9..., a] the components of the vector a 
which correspond to the matrix ^4vv, and similarly for x\9..., xj. Recalling the fact 
that in constructions mentioned formerly one component of vector w corresponds to 

i 

all components x\,..., x], the statement of Theorem 1 is also true for Y**^ o r 

l i = l 

i = l 

Theorem 1 remains also true in the case of a complex variable. If the statement 
of Theorem 1 is weakened slightly a theorem is obtained which may be formulated 
in a more compact and for applications more suitable form. 

Notation. Let H be a linear space of functions, 

i) defined and locally integrable on <0, oo), 

ii) if f(t) e H9 then /<*>(*) =f(t + ti)eH for each h ^ 0, 

hi) if /(*) e H9 then f0 e*?f{t + Z)di;eH 

for arbitrary a > 0, X and integer k ^ 0. 
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Theorem 2. Let x(t) be a solution of equation (1), H an arbitrary linear space of 
functions which fullfil i) to iii), ft(t) e H, (x(t), a) e H. Then also (x(t), a) e H. 

Using the Riemann integral in abstract spaces we can formulate the following 
remark. 

Remark 2. Let x(t) be a solution of equation (1) and let Q be a Banach's space of 
functions defined on <0, oo) and locally integrable on every <0, T> (or a Banach's 
space of classes of equivalent functions) which has the following properties: 

0 if / e Q then fih)(t) =f(t + h)sQ for each h = 0 (if / is an element of a class 
of equivalent functions from Q then the class of equivalent functions which contains 
fih)(t) belongs into Q. If/(*)> g(0 belong to the same class, then fih)(t), g(h)(t) belong 
into the same class, too). 

ii) The mapping of the interval <0, oo) into the set Q defined by the relation S(£) = 
= f^\t) has a bounded total variation [3] on each interval <0, T>. (In every class of 
equivalent functions there is at least one function for which #(£) has a bounded total 
variation on each interval <0, T>.) 

iii) (x(t), a) e Q (the class containing (x(t), a) belongs into Q); 

then (x(t), a) e Q (Q contains the class of equivalent functions with (x(t), a)). 
By Theorem 3.3.2 in [3] there are integrals fo e'^^f/t + £) d{ which in accord­

ing to definition 3.3.1 in [3] belong into Q. Instead of the assumption that/(^(r) have 
a bounded total variation, we can assume that the mapping <0, oo) into Q defined 
by the relation 9(£) = /(^(f) e Q is strongly continuous. 

A series of consequences may be derived from Theorem 2 and the remark 2. We 
shall mention only the most interesting ones. 

Corollary 1. Let the functions (x(t), a) and fit) be bounded; then (x(t), a) is also 
bounded. 

Corollary 2. Let the functions ft(t) and (x(t), a) have limits as t -~» oo; then (x(t), a) 
has also a limit as t -> oo. 1/ the limits offt(t) and (x(t), a) are equal to zero, then 
the limit of(x(t), a) is also equal to zero. 

Corollary 3. Let a nonnegative, nonincreasing function &(t) exist such that 
\fi(t)\ g C( 0(t), \(x(t), a)\ <; C 0(t); then there is a constant D such that \(x(t), a)\ ^ 
= D 0(t). 

Corollary 4. Let the function 0(t) equal either f+e, s>0 or eKt, and let \ft(t)\ g 
<a Ct 0(t), \(x(t), a)\ S C 0(t); then a constant D exists such that \(x(t), a)\ ^ 
= D 0(t). 

Using the Holder's inequality, the following corollary may easily be deduced: 

Corollary 5. Let the functions ft(t) and (x(t), a) belong into Lp, p ^ 1: then 
(x(t)9 a) also belongs into Lp. 
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Corollary 6. Let the functions fit) and (x(t), a) be almost periodic; then (x(t), a) 
is also almost periodic. (Every continuous alsmost periodical function defined on 
<0, oo) can be uniquely continuated on the whole interval ( — 00, 00).) 

We may also impose more complicated requirements on the space H. 

Corollary 7. Let constants Mi ^ 0, 1 = 0, 1, ..., n and nonnegative functions 
gi(t)eLp, p _ 1, i = 0, 1, ..., n exist such that 

\f{t)\ SM, + gt(t), i = l,...,n, \(x(t), a)\ = M 0 + g0(t) ; 

then a constant N _ 0 and a nonnegative function h(t) e Lp exist such that 
\(x(t)9 a)\ = N + h(t). 

Corollary 8. Let nonnegative, nonincreasing function 0(t)9 nonnegative 
constants Ct, i = 0, 1, ..., n and nonnegative functions gt(t)eLp, p = 1 exist such 
that 

\fi(t)\ = C, 0(t) + gt(t) , i = 1,..., n , \(x(t), a)\ = C 0 0(t) + g0(t) ; 

then a constant D ^ 0 and a function h(t) = 0, h(t) e Lp exist such that \(x(t), a)\ g 
^ D G(t) + h(t). 

Corollary 9. Let the functions J\(t) and their derivatives be bounded |ffn)(*)| = Mn 

for n 7> 0, M 0 _̂  Mt ^ ..., liminf njnJ(Mn) > 0 and let (x(t), a) be bounded; then 
n-+oo 

the function (x(t), a) may be expanded in a power series in a neighborhood of every 
point t0 > 0. The radius of convergence is not less than Q = min (t0, q), where q 
is a certain positive constant or + 00. 

Proof. If \ft(t)\ g M, \(x(t), a)\ S M, then |(x(*), a)\ = 8M, where 8 is a positive 
number with 8 = 1, which depends only on the matrix A and the vector a and is 
independent of functions ft(t) and the constant M. Let us choose M _ t so that 
\(x(t), a)\ S O*M_t. Using successively Theorem 2 we conclude that a nondecreasing 

integral-valued function v(n) with v(n) ^ n exists such that 
d ř „ ( X ř ) ' a ) á č"M v { n ). 

For the coefficients of the power series for (x(t), a) at t0 we get \an\ ^ 8nMv(JI)/n\. 
The radius of convergence of this series is given by the formula 

(8) lim inf —;—- > lim inf 7 ^ lim inf 7 , 
- c o l/\an\ n^oo 8e\/My{n) n-00 8e l/(Mn) 

as Mt, i = 0 , 1 , . . . form a non-decreasing sequence and lim inf (nj8e !j/[M_ t ] ) = 00. 
But we have assumed that the last expression in (8) is positive and we may denote 
it by q. 

We may expect that the knowledge of the derivative cp(t) could help us to establish 
more involved properties of (p(t). This fact is exploited in the following theorems. 
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However, we shall not proceed directly in this way, but use the vector w for reaching 
this aim. Nevertheless, the idea mentioned above played an important role by the 
formulation of following results. 

Theorem 3. Let hitj(t) be nonnegative functions defined on <0, oo) and integrable 
on each <0, T> such that 

limhif0(t)~09 hu(t)eLPij9 Pu£l9 j = U \ft(t)\S I hu(t), 
f~*oo j = 0 

and let gt(t) be also nonnegative functions defined on <0, oo) and integrable on each 
<0, T> such that 

lim g0(t) = 0, VgV(t) dt < oo , a, > 0, i = 1, \(x(t), a)\ £ I git) . 
*-*ao J O 1 = 0 

Then we have lim (x(t)9 a) = 0. 
f-+oo 

Proof. In the proof of Theorem 1 there was shown that the function cp(i) can be 
written in the form q>(t) = (w(t)9 c), where w(t) is a solution of (5) and the vector c 
is defined by relations (6). Further, it was shown that each component w{t) is expres­
sible as a linear combination of functions <p(t + $t) and f0

f e~A^£* ft(t + £) d£. 

From this it follows that for each component wt(t) we have 

St /•oo 

W O I ^ L X / ' ) . limMi>o(0 = O. h i ' ) ! " ' ' d t < °° > * w > < > -
1 = 0 .-•oo JO 

The functions utj(t) may be chosen nonnegative and such that 

(9) h(t)| = LX/0 . 
1=0 

Then we can write 

(10) ^(0 = ei(.)£«u(t), 
j=0 

where e^f) assumes only values +1, —1. We prove first that 

(11) lim inf \wt(t)\ = 0 . 
f~>oo 

In the opposite case any e > 0, t0 > 0 would exist such that \wt(t)\ ^ s for t J> ;>0. 
Further, let us choose *t ^ t0 so that u0(*) < e/2 for * ^ ft. According to (9) it 

st 
follows that £ W;j(t) > e/2 for t ^ ^ . Denote Aj the set of those numbers t for which 

1 = 1 ' St 

t ^ fl!# Mf j(t) > s/lSi. We have £ ^ = <fx, oo) and consequently, there is at least 
1=i 
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one set Aj with infinite measure. Due to the fact that the functions uitj are nonnegative 
we get Jo° u*l}J(t) dt = oo; but this is a contradiction with the assumptions. Hence, 
the relation (11) is proved. We shall now prove that lim wt(t) = 0. Suppose conversely 

t-*oo 

that lim sup \wi(t)\ > 0; then there are numbers a,b90<a<b<l and an infinite 
t-+co 

number of intervals <r(
1
l,), t^} such that 

H*?)\ = «. HW)\ = b,aS Ht)\ S b for *e <.<">, #>> . 

Assume now that there is a subsequence of such intervals that [f^ — f^J = d9 

where d is a positive constant. If we confine ourselves on t so large that u0(t) < a/2 
Si 

we get from (9) the inequality £ uitj(t) > a/2. In the same way as before, we get 
j = i 

Jo ^f'/CO df = oo for some j . From this it follows that the lengths of all mentioned 
intervals converge to zero, i.e. 

(12) \tf - tf\ -> 0 . 

As the system (4) is in Jordan's canonical form, we can divide the components of 
a solution wt(t) into groups so that each group of components is a solution of one 
system of type (4). In each such system there is an equation 

(13) Wi(t) = Awt{t)+f*(t) 

where A is a characteristic number of the matric C (see proof of Theorem 1). Using 
(10) the equation (13) can be expressed in the following form 

(14) w((t) = X sit) | uu(t) + e*(r) t *ijt) . 
j * = 0 j = 0 

The function ff(t) is a linear combination of functions ft(t). As pitj ^ 1 a similar 
estimate for ff(t) as for ft(t) can be obtained. The functions vitji e* are related to ff 
in the same way as uitj, s to wt(t). 

Let us choose /? = max (<xitj9 £), where aitj < 1 for each fixed i. (The index i at p 
is omitted.) We have 0 < p < 1. From (14) it follows that 

(15) |6" - a"\ =- \\Wi(t?f - Mtf>)|'| g 
*f 2

( n > St /»r2<n> 

Jřl(
n> I^ljtií") 

/• ř2(«) re /»ř2(n> 

+ j? »,>,!'--dt + zřj: ^ K r 1 ^ . 
Jti(n) i^-Jř^n) 
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As \wi(t)\ = a for te<t(
1

n), r(
2
n)>, /? < 1 we can estimate the first and the third term 

on the right side of inequality (15) by 

rg |A| /řa'"1 P ( « 0 + ».,„) dí 
Jt,<») 

This expression tends to 0 as n -> oo because w0, vi0 tend to 0 and (12) is fulfilled. 
In the second expression let us take first those terms for which aitj < 1. From (9) it 
follows that uitJ(t) = |w,(f)|. In the case uitj(t) > 0 we have [w^""1 ^ l " ^ " 1 ^ 
= \uu\*iJ~l (b i s c h o s e n s o t h a t uij = b -= !)• I f wi,/0 = ° t h e n evidently 

w u ( 0 w i - 1 ( 0 = wi!/(0 == 0. For the above mentioned integrals we always get the 
estimate = |A| /? J] /$«>"*'/ df. Because j 0 u'lf dt < oo these terms tend to 0 as 
n -» oo. The rest of the second expression, i.e. the integrals with u,j for which ai?J- = 1, 
and also the terms of the last expression may be estimated by 

^ w /* f '2'\i»ij+5>u) d '=w /»«'~1 fe ( f 2<"<'/ aY'"''. (#>- try -i/"-' + 
Jfi(") L \Jfi(») / 

0
M2(") \l/Pi,J 1 

vfydA .(^>-rW)1_1/"J • 
The last inequality follows from Holder's inequality. According to (12) these expres­
sions also tend to 0 as n -» oo. Thus, we have proved the convergence of the right 
side of inequality (15) to 0 as n ~* oo. However, the left hand side is constant. This 
contradiction shows that lim wt(t) = 0 must be true. The proof can now be easily 

finished by induction. Each component wt(t) is given by the equation wf = Xwt + 
+ w i + 1 + ff. We have lim wi+1(t) = 0 in accordance with the induction assumption. 

f->oo 

Thus, we can put ft(t) = ff(t) + w i+1(t) and so get the equation already treated; 
hence, lim wf(r) = 0. Summarizing, we have proved that 

it-* 00 

(16) lim w(t) = 0 . 
f->00 

From (6) it follows that lim cp(t) = lim (x(t), a) = 0. 
f->00 f->00 

Remark 3. If the matrix A has the same type as in the remark 1 and if the assump­
tions of Theorem 3 are fulfilled, then 

lim 5>*(0 ak = 0 (or lim £>fcafc = 0) , 
f->00 t->oo 

where the summation is extended over indices corresponding to Avv. 

Theorem 4. Let nonnegative functions gt(t)9 hitj(t) defined on <0, oo) and integrable 
on each <0, T> exist such that hit0(t) is constant, §0 hftj

J(t) dt < oo, pitj = 1, 
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ri 

j = 1, |/,(r)| g £ Kii*)> let 0o(O be constant and f£ g"<(*) d* < oo, a, > 0, i = 1, 
i=o 

ro 

\(x(t), a)\ <£ ]T g»(0- ̂ ^ r t the function (x(t), a) is bounded on <0, oo). 
i = 0 

Proof. We shall proceed as before and use again the function w(t) for which the 
estimates as for (x(t)9 a) are true. Consequently, (9) is true too. As before consider 
the equation wt = Xwt -+• /*(*)• First we are going to prove that lim inf \w/t)\ < oo. 

f+*00 
St Si 

If we had lim \w/t)\ = oo it would be lim £ u^fa) = oo i.e. ]T uij(t) ^ S{ for f 
f-*co f-+oo j = 1 /= 1 

sufficiently large. Thus we get as before u*,/(*) ^ 1 on the set Aj such that /x(̂ y) = oo. 
This would imply that §0 u^J dt = oo. This proves that lim inf |wf(f)| < oo; further 

f~>00 

we shall prove that also lim sup \wt(t)\ < oo. Let us assume that lim sup \wt(t)\ = oo. 
f-*oo f-*oo 

Then we can choose a sequence of intervals <r(
1
n), f(

2
)> and a number a such that 

max(ui,0, 1) < a = \w/t[n% \w/t[n))\ = n, a <: \wt(t)\ £ n for *e<t(n), r(
2
n)>, «il>0 = 

= sup ui0(t), vi>0 = sup vi0(t). Next, put j? = min (a u , i), where the minimum is 
taken on the set of all atJ with i fixed. (We do not mark the index i aX /?.) We have 
0 < p < 1. In the same way as in (15) we obtain 

f2<"> 

(17) \n' - a>\ = |Wtf>)|' - |wi(^)H g /J(|A| ui>0 + v,0) P " H ' " 1 d* 
J t i < » > 

1=1 Jf<(») 1=1 Jf.00 

Using the inequality |wi|^_1 <[ a**"1 the first integral can be estimated as 

(18) j8(|A| ui,0 + vt,0) f '* (Wil^1 d* £ J?(|A| ui>0 + vi,0) a ^ 1 ! ^ - t[n)\ . 
Jfl(n) 

As in Theorem 3 it can be proved that \t{^ — t^\ -> 0. We choose from the second 
expression first such terms for which atJ < 1 and from (9) we get again utj(i) 51 
:g |wi(*)|. Estimating these integrals however, we must proceed more carefully. 
We devide the interval <^(

1
rt), t(2

w)> into two parts: An9 where uij(t) 51 1 and Bn where 
Uij(t) > 1. We have 

(19) p\X\ f ...jM'"1 dt £ fi\X\ aO-y? - .<">| . 
J An 

As for the set Bn, we proceed as in the proof of the preceding theorem. 

(20) P\X\ f uu\v,t\'-
1 dt S JS|A| f 2 ! "< ' / dt. 
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The integrals from the second expression, for which afJ = 1, and from the third 
expression can be estimated as 

(21) p f f . j h r 1 dt ̂  flae-1 P* vu dt g 

//%f2(») \ l l P . , J 

From (18) to (21) and from the assumptions of the theorem it follows that the right-
hand side of the inequality (17) is bounded while the left-hand side diverges as 
n -> oo. This contradiction shows that Mm sup jw£(̂ )| < oo; hence, w,(f) is bounded. 

f-+oo 

It can be also proved as in Theorem 3 that w(t) and cp(t) = (x(t), a) = (w(t), c) are 
bounded. 
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Výtah 

O JISTÝCH VLASTNOSTECH SOUSTAV LINEÁRNÍCH 
DIFERENCIÁLNÍCH ROVNIC 

Ivo VRKOČ, Praha 

Nechť x(t) jest řešení soustavy lineárních diferenciálních rovnic (1) a (x(t), a) jest 
skalární součin vektorů x(t), a. 

Věta 1. Nechť funkce fi(t) jsou definované a lokálně integrovatelné na <0, oo). 
K libovolnému y > 0 existuje n konstant 0 < ocí < ... < ocn < y tak, že q>(t) = 
= (x(t), a) je řešení diferenčně-diferenciální rovnice (2), kde fii jsou jisté konstanty, 
%(t)je lineární kombinace funkcí fit), ij/(t) je lineární kombinace funkcí ffi e~Xii^k. 
,fi(t + £) d£, k{ jsou charakteristická čísla matice A, k je celé číslo 0 ^ k ^ nh 

n( je násobnost charakteristického čísla Xh 
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Tuto větu lze formulovat také v poněkud slabší, ale přehlednější formě. Nechť H 
je lineární prostor funkcí: 

1. definovaných a lokálně integrovatelných na <0, co), 
2. jestliže f(t) e H, pak f(h)(t) = f(t + h)eH pro každé h £ 0, 

3. jestliže f(t)eH, pak $ ex*íkfi(t + š ) d £ e H pro libovolné X, kladné a a celé 
číslo k ^ 0. 

Věta 2. Nechť x(t) jest řešení diferenciální rovnice (l), H je lineární prostor funkcí 
splňující 1)... 3), /( t) e H a (x(ř), a) 6 H, pak také (x(t), a) e H. 

Z těchto vět je odvozena řada důsledků. Na základě metody použité v důkazu 
věty 1 lze dokázat další věty. 

Věta 3. Nechť existují nezáporné funkce hitj(t)9 gi(ř) definované a lokálně integro-
vatelné na <0, co) tak, že lim hi0(ť) = 0, htj(t) e Lpij, p^- "•> 1, j ;> 1, lim g0(í) = 0, 

f-»oo í-* oo 

J? gV(t) dí < a), a, > 0, i £ 1, |L(í) | <. £ M 0 » |(x(ř), a)\ á £ <J.(ť), J?ak platí 
lim(x(í),a) = 0. J=0 J = 0 

t->0O 

Věta 4. Nechť existují nezáporné funkce hij(t), gt(t) definované a lokálně integro-
vatelné na <0, co) tak, že hi0(t), g0(ť) jsou konstantní, h0(ř)eLPii, p{j ^ 1, j ^ 1, 

Jc° gKO dí < oo, a, > 0, i .> 1, 1/^)1 £ £ *y(í)- |(x(ř), a) | g £ 0i(O> P<*fe / w " ^ 
./ = 0 j = 0 

(x(ř), a) j e omezená na <0, oo). 

Р е з ю м е 

ОБ ОПРЕДЕЛЕННЫХ СВОЙСТВАХ СИСТЕМ ЛИНЕЙНЫХ 
ДИФФЕРЕНЦИАЛЬНЫХ УРАВНЕНИЙ 

ИВО ВРКОЧ, (^о Угкос), Прага 

Пусть х(г) — решение системы линейных дифференциальных уравнений (1) 
и (х(1), а) — скалярное произведение векторов х(*), а. 

Теорема 1. Пусть функции/^) определены на <0, со) и суммируемы на каждом 
<0, Г>. К любому у > 0 существует п постоянных 0 < ах < . . . < ай < у так, 
что <р(г) = (*(г), а) есть решение разностно-дифференциального уравнениея (2), 
где рь — какие-то постоянные, у(1) — линейная комбинация функций /{((), 
ф(() — линейная комбинация функций /о'*""А<*{*/|(* + 5)^?» ^ - характеристи­
ческие числа матрицы А, к — г/елое чмсл0 0 ^ ^ ^ п 4 , л4 — кратность характе­
ристического числа к(. 
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Эту теорему можно сформулировать также в немного ослабленной, но более 
наглядной форме. 

Пусть Я — линейное пространство функций: 

1. определенных на <0, со) и суммируемых на каждом <0, Т>, 
2. если ДО € Я, то /(Л)(0 = /(* + й) е Я для любого к = О, 
3. если ДО е Я, то | 0 ех^^$х(% -4- %)й%е Н для любого Я, положительного а 

и целого к ^ 0. 

Теорема 2. Пусть х(1) — решение дифференциального уравнения (1), Я — лм-
нейное пространство функций, выполняющее 1)... 3), /;(0 е Я, м (х(()9 а) е Я, 
тогда (х((), а) е Я. 

Из этих теорем можно вывести ряд следствий. На основе метода, использо­
ванного в доказательстве теоремы 1, можно доказать следующие теоремы. 

Теорема 3. Пусть существуют неотрицательные функции Ни((), д^), опреде­
ленные на <0, со), суммируемые на каждом <0, Г> а такие, что Нт кю({) = 0, 

Г-ЮО 

Нта о (0 = 0, Ии(1)еЬри, ри = 1, /» ^'(0 & < оо, «. > 0, / = 1, |Я0| ^ 
Г->оО 

г\ Го 

= Е А|/0, |(*(0, «)| й Е а/0; тогдаИт (х(1), а) = 0. 
7 = 0 7 = 0 г-+оо 

Теорема 4. Пусть существуют неотрицательные функции Н^(1), д&), опреде­
ленные на <0, оо), суммируемые на каждом <0, Г> так, что Ню(1), д0(1) — посто­
янные, Аи(0еЬР м, / > у ^ 1 , 1 = 1, $дТ(*)<Ь<«>, а ( > 0 , / ̂  1, | Я 0 | = 

г. го 

= _Е «̂/0> |С*(0> я)| = X 0/О> тогда функция (х(г), а) ограничена на <0, оо). 
у=о 7=о 
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