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Casopis pro p&stovani matematiky, ro&. 90 (1965), Praha

ON CERTAIN PROPERTIES OF A SYSTEM OF LINEAR
DIFFERENTIAL EQUATIONS

Ivo VrkoC, Praha
(Received Novemeber 9, 1964)

This paper deals with properties of the expression > x(t) a; depending on
the non-homogenous terms f;(t), where x;(¢) is a solution of the system of
differential equations (1). Primarily, the derivative Y x;(¢) a; is investigated.

This paper was initiated by a generalization of Lemma 1 and 3 given in paper [1].
Lemma 3 in [1] is equivalent with the second part of Corollary 2. Lemma 1 is a parti-
cular case of Theorem 3 and remark 3 (if ; = « > Oand p;; = p; 2 1). Theorem 1,
which is in fact a generalization of Lemma 3, is equivalent with the statement that
each component x (1) of a solution of the system (1) is also a solution of the difference-
differential equation (2). Having proved this theorem, Theorem 3 can be proved in
a simpler fashion.

We shall use the following notation: Let A4 be a constant matrix of complex
numbers of the type n x n, a, b vectors with n components. The expression (a, b)

n n

may have the meaning either of . a;b; or of Y a;b;, where a;, b; are components of
i=1 1

vectors a, b respectively, and b; are complex-conjugates to b;. In the first case A* will
denote the matrix symmetric to 4 and in the second case the matrix which is Hermi-
tean symmetric to A.

Theorem 1. Let the functions fi(t) be defined on 0, ) and integrable on every
interval 0, T). Put ¢(t) = (x(t), a), where x(t) is a solution of the equation

(1) x = Ax + f(1).

Then to each y > O there are n constants 0 < a; < ... < a, < y such that (p(t) is
a solution of the difference-differential equation

) (1) = x(1) + ¥(1) +';ui ot + o),
where u; are certain constants, x(t) is a linear combination of functions f,-(t), nll(t)
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are characteristic

is a linear combination of functions [§ e *%¢* f (1t + &) d¢, 4,
k < n;, where n; is the

numbers of the matrix A and k is an integer with 0 <
multiplicity of A,.

Proof. Let the regular matrix Ttransform A into the Jordan’s canonical form, and
putx = Ty. We have ¢(t) = (x(2), a) = (y(1), b), where b =T*a,y = By + f*(1), B
is the Jordan’s canonical form of A and f+(t) = T~* f(). For each characteristic
number A, there are r; groups of differential equatlons

(3) .}.’g?j= 1y(813]+ys?+1]+f81 fOI' @=1’29-~34i,j'— 1,
y(el,)lzlzy(el,)l +f01 fOI' @ = qi,j’ .I = 1’2;---7r

Let us denote by; the coefficient at y§’; in the expression (y, b). Now, we are going

to transform thls system of differential equations into a new one. If for a given i at

least one coefficient by, is different from zero, we put wi” = Z ¥9 b8 (or Yy$ by,

where we are summing up those indices for which b(" # 0 We derive easily the
differenctial equation for w{’: w{¥ = Zy“) by = Aw(" + D yeh 1 06% 1,08 +

+ Zf;lbg),, where 85, ;=0 for © > q,, and 65 1,; = 1for other @, j. Letus
put fT = Y fa by’ and further w$’ = Zyg)ﬂ, 96% 1,68, where the summe is taken
for such @, j (i is fixed) for which 6§ ; ;b5’; # 0. Then we get the equation w{? =

= 2w’ + wd + f¥. Evidently, we can introduced new variables w(?, v = 1, ..., s,,
where s; < max g, ; so that the following group of differential equations hold

(4) w<'>—,1w<'>+w< D 4 fF for v=1,2,...5—1,
Wi = 2wl 4 f£F for v=s,.

We can derive this group so that we consider y3; ,, ys ),, fe.; as variables which obey

the relations (3). Furthermore, if w{? = Y 1 ;¥5’;, then we put W’ = Yo 95

We define w?), as a linear combination of variables y{”;, which enter with nonzero
sJ

coefficients in w{? — A,w(? expressed by ;. fo ; (and which can be transformed

by (3) so that there are no y(‘) ). We define f.} in a similar manner.

Put m = Ys;, (i) = 2 Sjs Woys1 = Wi¥ for I = 1,..., s;. Arranging the system
ji=1
(4) for w,, we get a system of differential equations in Jordan’s canonical form

() W= Cw + f*,

where w is a column vector with components w;, | = 1, ..., m, m < n. The characte-
ristic numbers of the matrix C constitute a subset of characteristic numbers of
matrix A, but to each characteristic number of matrix C there corresponds only one
group (see (4)) of differential equations. Next, put

(6) Coper =1 for i=1,2,..., ¢, =0 forotherl.
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Evidently, we can write ¢(t) = (w(2), ¢). Recalling that c,;,+, = 0 for ¢, the vector ¢
does not belong to any invariant subspace of the matrix C*. According to [2] pp.
149 —150, (see (32) and the footnote), to each y > 0 there are the numbers 0 < a; <
< ... <a, <y such that the vectors “**c are linearly independent (in (32) we can
change the sign at ¢ and numbers «,, ..., ®, are dependent only on the matrix C and
number 7).

Using the method of variation of constants we get

() olt) = (w0 ©) = (S Dm(ty), ¢) + ( f €0 () d, ) .

to

Putting ¢ = ¢, + «;, we obtain after some arrangements

o(to + ;) = (w(to), €7'c) + (j "o (i, + 0) e, ec""6> :

0

Because the vectors e“**ic are linearly independent, the components of w(t,) are
linear combinations of functions ¢(¢, + «;) and

J“ e £ty + &) de .
0

With regard to (4) we have w(t) = Aw(t) + w,,4(¢) + f1*(f) for I + w(i + 1) and
W, = Aw, + f1* for | = w(i + 1). Then Ww(t) is a linear combination of f,(f) and of
the former functions. With regard to (7) the statement of the theorem is true.

Without any further difficulty it can be verified that in fact the following remark
was proved.

Remark 1. Let the matrix 4 be divided into blocks A4,,. Let 4,, = 0 for u # v,
and let A,, be square matrices. Let each matrix A,, have only one characteristic
number 4,, 4, # 4, for v & u. Denote aj, ..., a} the components of the vector a
which correspond to the matrix A,,, and similarly for x}, ..., x]. Recalling the fact

that in constructions mentioned formerly one component of vector w corresponds to
1

all components xJ, ..., x}, the statement of Theorem 1 is also true for Y x}a} or

1 i=1
Y. xya.
i=1

Theorem 1 remains also true in the case of a complex variable. If the statement
of Theorem 1 is weakened slightly a theorem is obtained which may be formulated
in a more compact and for applications more suitable form.

Notation. Let H be a linear space of functions,

i) defined and locally integrable on <0, ),
ii) if f(f) € H, then f®(t) = f(t + h) € H for each h = 0,
iii) if (1) € H, then [% €&+ f(z + &) dEe H

for arbitrary « > 0, A and integer k = 0.
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Theorem 2. Let x(t) be a solution of equation (1), H an arbitrary linear space of
functions which fullfil i) to iii), f() € H, (x(t), a) € H. Then also ((1), a) € H.

Using the Riemann integral in abstract spaces we can formulate the following
remark.

Remark 2. Let x(1) be a solution of equation (1) and let Q be a Banach’s space of
functions defined on <0, o) and locally integrable on every <0, T) (or a Banach’s
space of classes of equivalent functions) which has the following properties:

i) if fe Q then f®(t) = f(t + h) € Q for each h = O (if f is an element of a class
of equivalent functions from Q then the class of equivalent functions which contains
f™(t) belongs into Q. If f(z), g(r) belong to the same class, then f®(t), g*r) belong
into the same class, t00).

ii) The mapping of the interval {0, o) into the set Q defined by the relation §(¢) =
= f@(t) has a bounded total variation [3] on each interval <0, T). (In every class of
equivalent functions there is at least one function for which 3(¢) has a bounded total
variation on each interval <0, T).)

iii) (x(t), a) € Q (the class containing (x(t), @) belongs into Q);
then (%(t), a) € Q (Q contains the class of equivalent functions with (x(z), a)).

By Theorem 3.3.2 in [3] there are integrals [§* e~ *°¢* fi(t + &) d¢ which in accord-
ing to definition 3.3.1 in [3] belong into Q. Instead of the assumption that f)(¢) have
a bounded total variation, we can assume that the mapping <0, o) into Q defined
by the relation 3(¢) = f©(t) € Q is strongly continuous.

A series of consequences may be derived from Theorem 2 and the remark 2. We
shall mention only the most interesting ones.

Corollary 1. Let the functions (x(t), a) and f{t) be bounded; then (x(t), a) is also
bounded.

Corollary 2. Let the functions f(t) and (x(t), a) have limits as t > oo; then (X(t), a)
has also a limit as t — oo. If the limits of f{t) and (x(t), a) are equal to zero, then
the limit of (X(t), a) is also equal to zero.

Corollary 3. Let a nonnegativé, nonincreasing function @(t) exist such that
If{1)] £ C; 0(2),|(x(¢), a)] < C O(t); then there is a constant D such that |(x(t), a)| <
< D o(¥).

Corollary 4. Let the function O(t) equal either "+ ¢, £>0 or €, and let |f(t)| <
< C; 0(1), |(x(1), a)] £ C O(t); then a constant D exists such that |(X(t), a)| <
S Do)

Using the Holder’s 1nequahty, the following corollary may easily be deduced:

Corollary 5. Let the functions f(t) and (x(t), a) belong into L, p Z 1: then
(%(¢), a) also belongs into L,.
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Corollary 6. Let the functions f(t) and (x(t), a) be almost periodic; then (x(t), a)
is also almost periodic. (Every continuous alsmost periodical function defined on
<0, o) can be uniquely continuated on the whole interval (— 0, ).)

We may also impose more complicated requirements on the space H.

Corollary 7. Let constants M; 20, i =0, 1,...,n and nonnegative functions
g{t)eL,, p=1,i=0,1,...,n exist such that

Ol S M+ g(t), i=1,..,n, |x{t),a) £ M, + go(t) ;

then a constant N 2 0 and a nonnegative function h(t)€ L, exist such that
|(x(2), @)] £ N + h{2).

Corollary 8. Let nonnegative, nonincreasing function ©(t), nonnegative
constants C;, i = 0, 1, ..., n and nonnegative functions g(t)€ L,, p Z 1 exist such
that

If()l s C,0() +g(t), i=1,...n, |(x(2),a)] £ CoO(t) + go(?)

then a constant D = 0 and a function h(t) 2 0, h(t) € L, exist such that |(x(¢), a)| <
< D 6(t) + h(1).

Corollary 9. Let the functlons fi(t) and their derivatives be bounded |f{"(1)| £ M,
forn=z0, My <M, £..,liminf n/\/(M > 0 and let (x(t), a) be bounded; then

n— oo
the function (x(t), a) may be expanded in a power series in a neighborhood of every
point to > 0. The radius of convergence is not less than ¢ = min (t,, ), where gq
is a certain positive constant or + co.

Proof. If |f ()] £ M, |(x(¢), a)] £ M, then |(x(t), a)] < M, where & is a positive
number with § = 1, which depends only on the matrix 4 and the vector a and is
independent of functions f{f) and the constant M. Let us choose M_; so that
|(x(1), a)| £ M _,. Using successively Theorem 2 we conclude that a nondecreasing

integral-valued function v(n) with v(n) < n exists such that 2— (x(2), @)| £ "M, ().
t’l

For the coefficients of the power series for (x(t), a) at t, we get la,,l < 0"M, (/0.
The radius of convergence of this series is given by the formula

(8) lim inf —— > lim inf ——n———— 2 lim inf

n
n—oo \/a| n— oo /Mv(,,) T omew 58:/(M,,) ’

as M;, i =0, 1, ... form a non-decreasing sequence and lim inf (n/de V M_]) =
But we have assumed that the last expression in (8) is positive and we may denote
it by q.

We may expect that the knowledge of the derivative ¢(f) could help us to establish
more involved properties of ¢(r). This fact is exploited in the following theorems.
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However, we shall not proceed directly in this way, but use the vector w for reaching
this aim. Nevertheless, the idea mentioned above played an important role by the
formulation of following results.

Theorem 3. Let h; j(t) be nonnegative functions defined on <0, co) and integrable
on each {0, T) such that

limhiot) = 0. hif)€Ly,,, P21, jz 1, [0 <3 i),

ts 0

and let g (t) be also nonnegative functions defined on <0, o) and integrable on each
<0, T) such that

lim go(t) = 0, ngﬁ‘(t) dt<oo, a;>0, ix1, |(x(t),q) = Zg

t—> o0

Then we have lim (x(t), a) = 0.

t— oo
Proof. In the proof of Theorem 1 there was shown that the function (p(t) can be
written in the form ¢(t) = (w(?), ¢), where w(¢) is a solution of (5) and the vector ¢
is defined by relations (6). Further, it was shown that each companent w(t) is expres-
sible as a linear combination of functions ¢(t + 9;) and [§' e % f(t + &) d&.

From this it follows that for each component w(t) we have
Si @©
[wi®)] < X u,j(f), limu,q(t) =0, J‘ lus )7 dt < 0, a;;>0.
j=0 t— o 0 i
The functions u; j(t) may be chosen nonnegative and such that
Si
©) [wi(t)] = _Zoui,j(t)-
j=
Then we can write
Si
(10) wit) = Ei(t)jz ui 1)
. =0
where ¢(t) assumes only values +1, —1. We prove first that
(11) lim inf [w(t)] = 0.

t—

In the opposite case any £ > 0, t, > 0 would exist such that |w(t)| = & for ¢ > ,.
Further, let us choose t; 2 t, so that uy(t) < &2 for t = t;. According to (9) it

follows that Z u; () > &2 for ¢t > t;. Denote A4; the set of those numbers ¢ for which

t2t, u j(t) > &/2S,. We have 2 Aj; = (t;, ) and consequently, there is at least
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one set A; with infinite measure. Due to the fact that the functions u; ; are nonnegative
we get [§ ui'f(t) dt = co; but this is a contradiction with the assumptions. Hence,

the relation (11) is proved. We shall now prove that lim w,(¢) = 0. Suppose conversely
t—o00

that lim sup |w(t)| > O; then there are numbers a, b, 0 < a < b < 1 and an infinite
t— oo

number of intervals {¢{”, t{”) such that
[w(tP)| = a, [w(t)| = b, a < |w(f)] £ b for teld?, ).

Assume now that there is a subsequence of such intervals that [t — #{”]| = d,
where d is a positive constant. If we confine ourselves on ¢ so large that u,(t) < a/2

S
we get from (9) the inequality Y u; (¢f) > a/2. In the same way as before, we get
ji=1

[& uf#(t) dt = oo for some j. From this it follows that the lengths of all mentioned
intervals converge to zero, i.e.

(12) [t — 1| > 0.

As the system (4) is in Jordan’s canonical form, we can divide the components of
a solution w(f) into groups so that each group of components is a solution of one
system of type (4) In each such system there is an equation

(13) wit) = Aw(t) + f(2)

where A is a characteristic number of the matric C (see proof of Theorem 1). Using
(10) the equation (13) can be expressed in the following form

(14) W) = 2 s,.(t)goui,,.(t) + ef(z)jgou,.,,.(t).

The function f7(f) is a linear combination of functions f(t). As p;; 2 1 a similar
estimate for f7(t) as for f,(¢) can be obtained. The functions v, ;, &* are related to f7
in the same way as u, ;, £ to w,(t).

Let us choose B = max (; j, 3), where a; ; < 1 for each fixed i. (The index i at B
is omitted.) We have 0 < # < 1. From (14) it follows that

(15) b — @] = [lw(E) = [wi(&)] <

n ty(n)

ta(m) s:
= 4 ﬂ'( ug(t) w1 dt + [ BY. ug wif "t dt +
t(n) ji=1

= ty(m)

tz(”) re t(m)
+ B vio|wilftdt + BY, v g|wif "t dr.

£, i=1J¢m
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As |w(t)| = a for tet{”, 1{”>, B < 1 we can estimate the first and the third term
on the right side of inequality (15) by

t2(n)

<A ﬂaﬁ_lj (o + v;,0)dt.

t (m

This expression tends to 0 as n — oo because ug, v;,0 tend to 0 and (12) is fulfilled.
In the second expression let us take first those terms for which «; ; < 1. From (9) it
follows that u; j(t) < |wi(t)]. In the case u; j(t) > 0 we have |w,|[*™! < |u, ;J#™! <
< |ugy*~' (b is chosen so that u;; £ b < 1). If u; () = 0 then evidently
u, (1) wh “l(t) = u}’¥(t) = 0. For the above mentioned integrals we always get the
estimate < [A| B Zf:jﬁ:: u$» de. Because (¢ uf'fdt < oo these terms tend to O as
n — . The rest of the second expression, i.e. the integrals with u; ; for whicha; ; = 1,
and also the terms of the last expression may be estimated by

t2(n) ta(n)

SPBL T (Cuiy+ Yony)dt <[4 ﬂa"“[Z (J-

ti(m)

Hans 1-1
uff;’dt) (AP — ) Ve

tyi(n)

2 1/pi,;
+Y (J vPi dt> (P - t‘,"))l“””‘-f].
ty(n)

The last inequality follows from Holder’s inequality. According to (12) these expres-
sions also tend to 0 as n — co. Thus, we have proved the convergence of the right
side of inequality (15) to 0 as n — co. However, the left hand side is constant. This
contradiction shows that lim w(f) = 0 must be true. The proof can now be easily

t— ©

finished by induction. Each component wt) is given by the equation w; = Aw; +
+ wi41 + fi. We have lim w;,(f) = 0 in accordance with the induction assumption.

t— o0

Thus, we can put f{(t) = fF(t) + w;+,(t) and so get the equation already treated;
hence, lim w(¢) = 0. Summarizing, we have proved that

t— o0

(16) lim w(t) = 0.

t—®

From (6) it follows that lim ¢(¢) =-lim (x(t), a) = 0.
t— o0 t— 0

Remark 3. If the matrix A has the same type as in the remark 1 and if the assump-
tions of Theorem 3 are fulfilled, then

]im ZXk(t) a, = 0 (Or lim Zxkak = 0) N
t—o0 t—> 00

where the summation is extended over indices corresponding to A4,,.

Theorem 4. Let nonnegative functions g (t), h; j(t) defined on {0, ) and integrable
on each €0, T) exist such that h,(t) is constant, [ h?/(t)dt < o0, p,; 21,
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[ 4
iz 1) £ i h; [(t); let go(t) be constant and [§ g5(t)dt < o0, ; > 0,i =1,
j=0
|(x(2), @)] £ 3. gi(t). Then the function (x(t), a) is bounded on 0, ).
i=0

Proof. We shall proceed as before and use again the function w(t) for which the
estimates as for (x(t), a) are true. Consequently, (9) is true too. As before consider
the equation w; = Aw; + f7(t). First we are going to prove that lim inf |w(#)| < 0.

te oo
Si Si
If we had lim |w(f)| = oo it would be lim Y u; (1) = o0 ie. Y u; ;(t) 2 S, for ¢
) toow j=1 i=1

sufficiently large. Thus we get as before u; jf) = 1 on the set A; such that u(4;) = .
This would imply that [§ u}'y df = oo. This proves that lim inf |w/(t)| < co; further

t— o0

we shall prove that also lim sup |w(f)] < co. Let us assume that lim sup |w(f)| = oo.
t— o

t—= o
Then we can choose a sequence of intervals <t{”, t{”> and a number a such that
max (u;0, 1) < a = |w(t{)], [wt)] = n, a < |w(t)] < nfor 1€t (P, u; 0 =
= sup u; o(t), v;0 = sup v; o(t). Next, put § = min (o; ;, 1), where the minimum is
taken on the set of all «; ; with i fixed. (We do not mark the index i at f.) We have
0 < B < 1.1n the same way as in (15) we obtain

ta(n)

(17) [nf = @] < [w(EP)F = [w(EP)P| < BA o + vig) | WPt de +
ty(n)
Si ™ e piat) !
+ ﬂl’ll z ui,jlwilﬁ—l dt + B Z Ui,jlwilﬂ—l dr.
J=1 ) =1 ) e

Using the inequality |w;|’~* < a”~' the first integral can be estimated as

ta2(n)

(18)  B(] uso + vio) f Pt de < BA] o + vr) a1 — 1.

ti(n)

As in Theorem 3 it can be proved that |t5” — ¢{’| - 0. We choose from the second
expression first such terms for which «; ; < 1 and from (9) we get again u, (f) <
=< Iw,-(t)[. Estimating these integrals however, we must proceed more carefully.
We devide the interval (1{”, 15’ into two parts: 4,, where u; (t) < 1 and B, where
u; f(t) > 1. We have '

(19) BIAIJ‘ ui,ilwilﬁ—l dt é ﬂlll aﬁ-llt(zn) _ t(ln)l .
An

As for the set B,, we proceed as in the proof of the preceding theorem.
ty(n)

(20) ﬁlll'[ ugwilP~tde S BJA| | wide.
Bn

t (m
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The integrals from the second expression, for which «; ; > 1, and from the third
expression can be estimated as

ty(n) t(n)

21 B v; ;|w|#~t dt £ BaP~? v; ;dt <
»J sJ

ty () ty(n)

- t2(") 1/pi,y
gﬂaﬂ-lq vgg;:dt) | = (|- res,

ty(n)

From (18) to (21) and from the assumptions of the theorem it follows that the right-

hand side of the inequality (17) is bounded while the left-hand side diverges as

n — co. This contradiction shows that lim sup |w(t)] < oo; hence, w{t) is bounded.
t—o0

It can be also proved as in Theorem 3 that w(z) and ¢(t) = (x(1), a) = (w(¢), c) are
bounded.
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Vytah

O JISTYCH VLASTNOSTECH SOUSTAV LINEARNICH
DIFERENCIALNICH ROVNIC

Ivo Vrkog, Praha

Necht x(t) jest feSeni soustavy linedrnich diferencidlnich rovnic (1) a (x(¢), a) jest
skaldrni sougin vektord x(f), a.

Véta 1. Necht funkce f(t) jsou definované a lokdlné integrovatelné na <0, o).
K libovolnému y > 0 existuje n konstant 0 < o, < ... < &, <7y tak, Ze ¢(t) =
= (x(t), a) je FeSeni diferencné-diferencidlni rovnice (2), kde ; jsou jisté konstanty,
x(?) je linedrni kombinace funkci f(t), Y(t) je linedrni kombinace funkci [§* e~ *4¢* .
. f,(t + &) d¢&, A; jsou charakteristickd Cisla matice A, k je celé ¢islo 0 < k £ n;,
n; je ndsobnost charakteristického Cisla A;.
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Tuto vétu Ize formulovat také v ponékud slabgi, ale ptehledn&jsi formé. Necht H
je linedrni prostor funkci:

1. definovanych a lokdln€ integrovatelnych na <0, o),
2. jestlize f(¢) € H, pak f®(¢t) = f(t + h)€ H pro kazdé h = 0,

3. jestlize f(f)€ H, pak [je* & f(t + £)dé€ H pro libovolné 1, kladné « a celé
éislo k = 0.

Véta 2. Necht x(t) jest FeSeni diferencidlni rovnice (1), H je linedrni prostor funkci
spliiujici 1) ... 3), f{t)€ H a (x(t), a) € H, pak také (%(t), a)€ H.

Z téchto vét je odvozena fada dusledkt. Na zdkladé metody pouZité v dukazu
véty 1 1ze dokdzat dalsi véty.

Véta 3. Necht existuji nezdporné funkce h,-,,-(t), g{t) definované a lokdlné integro-
vatelné na <0, ) tak, Ze lim h;o(t) = 0, h,(t) €L, , p;; 2 1,j = 1, lim go(t) = 0,

t—>o0 t— o0

I8 g5()dt < o0, a; >0, i 21, |f(1)| < Z hift), |(x(2), a)| £ Y g{t), pak plati
lim (x(¢), a) = 0. =0 =0
t— o0

Véta 4. Necht existuji nezdporné funkce hij(t), gi(t) definované a lokdlné integro-
vatelné na {0, ) tak, Ze hy(t), go(t) jsou konmstantni, h;(t)e L, , p;; 2 1,j 2 1,

ri ro
[ g5 () dt <00, ;> 0,i 21, |f{)] = .Zohij(t), |(x(¢), a)| < .Zogi(t), pak funkce
j= i=

(x(2), a) je omezend na <0, ).

Peszrome

OB ONPEJEJEHHBIX CBOMCTBAX CHUCTEM JIMHEMHBIX
JNIN®OEPEHLIMAJILHBIX YPABHEHUIA

NBO BPKOUY, (Ivo Vrkoc), Ilpara

ITycts x(f) — pelieHue CHCTEMBI JIMHEHHBIX JU(depeHIUuaTbHBIX YpaBHEHMI (1)
u (x(t), a) — ckamspHOe Mpow3BENCHHE BeKTOPOB X(1), a.

Teopema 1. ITycmb gynxyuu f (f) onpedesenst na {0, c0) u cymmupyemvl Ha Kancoom
0, T). K mobomy y > 0 cywecmeyem n nocmoauusix 0 < oy < ... < o, < y max,
umo @(t) = (x(?), @) ecmv pewenue pasnocmuo-ougdepenyuasvnozo ypasnenues (2),
20e i; — Kakue-mo nocmosHuvie, ¥(I) — AuHeliHan wrombunayus Gynxkyuii f(1),
Y(f) — auneiinan xombunayus gynxyuii [of e~ *CEf (¢t + &) dE, A, — xapakmepucmu-
ueckue uucaa mampuyvl A, k — yeaoe uucao 0 < k < n;, n; — kxpamnocms xapaxme-
pucmuueckozo uucaa k;.
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OT1y TeopeMy MOXHO chopMyIHPOBaTh TaKxKe B HEMHOTO ociabieHHo#H, Ho Oostee
HarJsgHo! dopme.

Ilycte H — nuHelHOE MPOCTPAHCTBO (DYyHKIIMIA:
1. ompenenennsix Ha {0, 00) 1 cymMMupyemsix Ha kaxiaoMm <0, T,
2. ecmu f(t) € H, 7o f®(1) = f(t + h) € H mns moboro h 2 0,

3. ecnu f(t) € H, 10 [§ &t + &)dée H nns moGoro A, MOJOKHTENBHOTO o
U nenoro k = 0.

Teopema 2. ITycmb x(t) — pewenue oudpepenyuarvnozo ypasnenus (1), H — au-
HeliHoe npocmpancmeo @GyHkyuii, evinoansarwwee 1)...3), f()e H, u (x(f),a)e H,
moezoa (x(t), a) € H.

M3 31X TEeopeM MOXHO BBIBECTH psp cienctBuil. Ha ocHOoBe MeTona, UCHOJIB30-
BaHHOT'O B I0Ka3aTeJbCTBE TEOPEMBI 1, MOXKHO T0Ka3aTh CJICAYIOLINE TEOPEMBI.
Teopema 3. ITycmb cywecmsyiom neompuyameavnsie dyuxyuu h;(t), g{t), onpede-

aennvie Ha {0, o0), cymmupyemoie Ha kancoom {0, T) a maxue, umo lim h;,(t) = 0,

t— oo
lim go(#) = 0, hij(t)ELpU, rij 21, [80 9i(Hdt < o0, o; >0, i=1, ,f,(t)} =<
o

< .;Z:,h‘f(’)’ |(x(t), a)] < iogj(t); moeoalim (x(¢), a) = 0.

t—=

Teopema 4. ITycmo cywecmeyom neompuyamenvivie dynkyuu h; (1), g(t), onpede-
sennvle Ha 0, 00), cymmupyemvie na kaxncoom {0, T mak, umo h;y(t), go(t) — nocmo-
aunvie, hj(eLl, , p;=1, j21, [§g5@)di <o, a,>0, i21, [f(n)] £

< Y ki), |(x(0), @) £ Y g,(t), mozoa Pynxyua (x(1), a) ozpanuuena na {0, o).
=0 j=o
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