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EXISTENCE OF n-FACTORS IN POWERS OF CONNECTED GRAPHS 

ELENA WISZTOVA, 2ilina 

(Received November 24, 1987) 

Summary. In this paper the following theorem is proved: Let G be a connected graph of an 
order p ^ n + 2, where n ^ 1. Assume that if n is odd, then p is also odd. Then for an arbitrary 
vertex v e V(G), the graph Gn + 1 — v has an n-factor. 
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By a graph we mean a finite undirected graph with no loops or multiple edges 
(a graph in the sense of [1] and [3]). If G is a graph, then the vertex set of G and the 
edge set of G will be denoted by V(G) and E(G), respectively. The number |V(G)| 
is called the order of G. If W .= V(G), then we denote by <W>G the subgraph of G 
induced by W. For a finite nonempty set M we denote by K(M) the complete graph 
whose vertex set is M. 

Suppose that Tis a tree and u e V(T). We shall say that W £ V(T) is a u-set in T, 
if either W = [u] or there exist distinct components Tl9..., T( (i — 1) of T — u 
such that either W = V(Tt) u . . . u V(Tf) or W = {u} u V(7\) u . . . u V(Tt). 

For every integer n = 1, by the n-th power G" of G we mean the graph with 
V(Gn) = V(G) and E(Gn) = {uv; u,veV(G) and 1 ^ dG(u, v) ^ n], where dG 

denotes the distance between vertices in G. 
If a spanning subgraph F of G is a regular graph of a degree m = 0, then we say 

that F is an m-factor of G. Recall that if m ^ 1 is an odd integer and G has an m-
factor, then the order of G is even. 

The following theorem was proved in [4]: 

Theorem 0. Let G be a connected graph of an order p >̂ n + 1, where n ^ 1. 
Assume that if n is odd, then p is even. Then Gn+1 has an n-factor. 

(Moreover, it was shown in [4] that for any integers n ^ 1 and p > n(n + 1), 
there exists a tree Tof order p such that T" has no n-factor). 

The main result of the present paper is the following: 

Theorem 1. Let G be a connected graph of an order p ^ n + 2, where n ^ 1. 
Assume that if n is odd, then p is also odd. Then for any arbitrary vertex v e V(G), 
the graph G»+1 - v has an n-factor. 



To prove Theorem 1 we use Theorem 0, four lemmas (one of them was proved 
in [4]) and four remarks. 

Lemma 1. [4] Let T be a tree of an order p > n + 1, where n ^ 1. Then there 

exist u e V(T) and disjoint u-sets W and W" in Tsuch that 

(1) WKJ W" + V(T), 
(2) T - (W u W") is connected, 
(3) \W\ = \W"\ = n < \Wu W"\, and 
(4) // |*V 'u W"\ + n + 1, then \W v W"\ is even. 

Remark 1. Let Tbe a tree, u e V(T), n = 1, and let Wi9 ...,Wk(k^ 2) be disjoint 
u-sets such that \W±\ ^ n,..., \Wk\ ^ n. Then every set Wh, 1 g h ^ k, can be 
arranged into a sequence w M , w / l 2 , . . . , wh\Wh\ such that, for every g, 1 ^ g ^ |PVft|, 
we have 

^ T K , ^ u)^g if w £ ^ . 

This means that if u e Wh, then whtl = w. 
Let h' and h" be arbitrary integers such that 1 = h! < h" ^ fc. It follows from 

Remark 1 in [4] that the set Wh. u Wh>. can be arranged into a sequence 

W l , W 2 , . . . , W M , 

where m = \Wh\ + | ^ | , with the following property: Assume that 1 ^ i ^ I ^ m. 
Let I - i = n for w £ Wfc. u W ,̂., and j - i <L n + 1 for M e Pf̂  u JYV. Then 
dT(Wi,Wj) <J n + 1. 

Remark 2. Let Tbe a tree, n ^ 1, and let w l 5 . . . , wm be a sequence of distinct 
vertices in T which has the properties described in Remark 1. Let m be even and 
n + 1 ^ m ^ 2n. Denote 

£ 0 = {w 1 W ( O T / 2 ) + l 5 W t W ^ / ^ + 2 , . . . , W1Wn+l9 

>V2>V(m/2) + 2J W2>V(m/2) + 35 • , W2Wn + 2 , 

Wm/2Wm, W m / 2 W m + 1 , . . . , Wm/2WM + ( m / 2 ) } , 

where every index i > m is to be replaced by the index i — (mj2). We denote 
by F the graph with V(F) = {w1? . . . ,wm} and F(F) -= E(K({wi9 ..., wm/2})) u 
u F(K({w(m/2) + 1, ..., wm})) u £ 0 . Then F is an n-factor of the graph 
<{w1,...Jwm}>Tn+i. 

Remark 3. Let m and n be integers such that 0 < m < n. It follows from 
Theorems 9.1 and 9.6 in [3] that Kn has an m-factor if and only if at least one of the 
integers m and n is even. 
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Remark 4. Let T be a tree of an order p > n + 2, where n = 1. Assume that 
Wj,..., Wk (k = 2) are disjoint u-sets in T such that \WX\ = n , . . . , \Wk\ = n and 
Wx u .. . u Wk = V(T) - {u}. In accordance with Remark 1 every set Wh9 1 = h = 

= /c, can be arranged into a sequence w / t f l , . . . , wht\wh\
 s u c ^ t u a t ^r(w«,g» u) _ g 

for every g, 1 = g = |W^|.. 
For every vertex N e V(T) and for every h, 1 _ h _ k, we have 

a*r(.\\ u) <^ n , dT(x9 w M ) g n + 1 . 

Assume that y e {u, w1§1, w2 } 1 , . . . , wfc>1} and Tw+1 — j has an n-factor, say F*. 
Let v G V(T) be an arbitrary vertex of T, v + y, and let vxl9 vxl9..., vxn e E(F*). 

Then the graph 
F* - v + y + {yxl5 yx2,..., yxn) 

is an n-factor of T"+1 — v. 

Lemma 2. Let T be a tree of an order p = n + 2, where n _ 1. Assume f/zaf 
(1) f/iere exists K G K(T) and disjoint u-sets W± and W2 in T such that \WX\ = 

_ |W2| _ » and Wx u W2 = V(T) - {u}, 
(2) if n is odd. then p is also odd. 
Then for an arbitrary vertex v e V(T), the graph T , + 1 — v has an n-factor. 

Proof. If p = n + 2, then T , + 1 - v = K(V(T) - {v}) and thus. Tn + l - v is 
a regular graph of the degree n. Assume that p > n + 2. We distinguish the following 
cases: 

1. p is odd. Then according to Remark 1, the set Wx u W2 can be arranged into 
a sequence wl9..., wm (where m = p — l > n + l and m is even). According to 
Remark 2, the graph 

<K.. ,wm}) r„+ 1 - T" + 1 - u 
has an n-factor. 

2. p is even. Then n is even, 1^1 < |W2| and \WX u {u}| _ n. According to 
Remark 1, the set W± u {u} u W2 can be arranged into a sequence wl9..., wm (where 
m = p > n + 2, U---W! and 1 < I = m/2). Denote 

£x = {w1w(m/2) + 1, w1w(m/2) + 2, . . . , wiwn+29 

w2w(m/2) + 2, w2w(m/2) + 3, . . . , w2wn + 3 , 

W/- iW ( m / 2 ) + Z - i , ^i-iW(m/2) + l9 . . . , W , . 1 W B + I , 

W|+iW ( m / 2 ) + 1 , w / + 1 w ( w / 2 ) + i + 1 , . . . , wl+1wn + l+l 9 

Wm/2Wm-U Wm/2Wm, . . . , Wm/2W,, + ( m / 2 ) } , 

where every index i > m is to be replaced by the index i — (m/2). Furthermore, 
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we denote by F[ the graph with V(Fi) = {wl9..., w,_x, wl + 1,..., wm) and 

E(Fi) = E(K({wl9...9 wt_l9 wl+l9..., wm/2})) u E(K({w(m/2) + l9..., wm})) u F< . 

Then the graph 
Fi = F'i - {wn+2wn+3, wn+4w f l+5 , . . . ,wm_2wm_1] 

is an n-factor <{w l9..., wm}>Tn+i — w1 = Tn+i — w. It follows from Remark 4 
that if Tn+1 — w has an n-factor, then for an arbitrary vertex v e V(T), the graph 
Tn+1 - v has an n-factor, too. 

Thus the lemma is proved. 

Lemma 3. Let Tbe a tree of an order p _ n + 2, where n _ 1. Assume that 
(1) there exists w e V(T) and disjoint u-sets A9 B9 C in Tsuch that n _ |A | _ |B | _ 

_ |C|, | „ u B| > n, |_4 u C| > n, |fl u C| > n and _4 u B u C = V(T) - {w}, 
(2) if n is odd, then p is also odd. 
Then for an arbitrary vertex v e V(T), the graph Tn + 1 — v has an n-factor. 

Proof. If p = n + 2, then Tn+i -v = K(V(T) - {v}) and thus Tn+i - v is 
a regular graph of the degree n. 

Assume that p > n + 2. Let r be a vertex of Tsuch that 

reC and rweF (T ) . 

Denote a = \A\, b = \B\ and c = |C|. 
If a + b is even, we put A = A, B = B, C = C and y = w. If a + b is odd, then 

n = a > b, and we put .A = -A, JB = J3 u {w}, C = C — {r} and y = r. Denote 
a = \A\, B = \E\ and c = \C\. Thus n = a = b~ = c, a + b > n, E + c > n, 
a + c > n, a + E is even and AuBuC = V(T) — {y}. In accordance with 
Remark 1, the set C can be arranged into a sequence zl9..., z- such that dT(zg, u) _ 
_ a + 1 for every a, 1 _ a _ c (hence, if r 6 C, then z1 = r). Analogously, we can 
arrange the sets A and B. Moreover, in accordance with Remark 1, the set A u B 
can be arranged into a sequence wl9 ...9wm (where m = a + B) such that wl9... 
. . . ,w5e .A and w 5 + 1 , . . . , wme B (if ueB, then w5 + 1 = w). Let F be the regular 
graph constructed in Remark 2. Thus, V(F) = {wl9..., wm}. 

Let c be odd. Since p = a + B + c + l and a + B is even, we have that p is 
even and therefore n is even. This means that at least one of the integers c and n is 
even. Thus at least one of the integers c and n — c + 1 is even. 

According to Remark 1, for 1 _ i _ c and 1 _ j _ 5, the inequality i + j _ 
_ n + 1 implies d r(z i5 w5+J) _ n + 1. We distinguish the following cases: 

1. c < (n + l)/2. Then c < n — c + 1. Since 5 + c _ n + 1, we have m — a = 
= 6 _ n — c + l > c . It follows from Remark 3 that K({w5+1,..., w5+1+„_-}) 
has a c-factor, say Hi . The graph obtained from the graphs F — E(HX) and K(C) by 
adding the edges 
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Zcwa+l9 zcW5+2> •••> zcwa+l+n-c 9 

zc-lwa+l> Zc-lWa + 2-> •••> zc-lWa+1+n-c 9 

Z l w 5 + 1 * zlWa + 29 •••> zlwa+l+n-c 

is an n-factor of Tn + 1 — y, 

2. c > (n + l)/2. Then n - c + l < c ^ 5 . According to Remark 3,K({w f i+1,... 
••> w5+-}) has an (n — c + l)-factor, say H2.The graph obtained from the graphs 

F - _(H 2)'and K(C) by adding the edges 

ZcWa+l9 zcWa+2> •••> zcWa+l+n-c > 

Zc-lWa + 2> zc-lwa+3i •••> z c - l W a + 2 + n - c > 

Z l W 5 + c> ZlWa + c+l9 . . . , z l w a + n 9 

where every index k > a + c is to be replaced by the index fc — c, is an n-factor 
of Tn+1 - j . 

3. c = (n + l)/2. Then n is odd, and thus c is even. Obviously, c = n — c + 1. 
We denote by d the integer a if u $ B, or the integer a + 1 if u e B. Obviously, 
m — d ^ c. We denote by d' that of the integers d — 1 and d which has the same 
parity as m/2. It is not difficult to see that df ^ c. For 1 fg i ^ c and 0 ^ I ^ dr — 1, 
the inequality i + j ^ n - 1 implies dr(zf, wd,_;) ^ n + 1. Since n is odd, c is even 
and c ^ n, we have that c < n. The graph obtained from the graphs K(C) and 

F - E(K({wd+u ..., wd+-})) - {wd.vv-i, wd,_2wd,_3,..., wd,_-+2wd,_£+1} 

by adding the edges 

z-.w,,+ 1 , . . . , z ? w. •> - ^ č ^ t i + č - l > 

z l w d + c> •••> z l w d + 2c-2 9 

where every index k > d + c means fc — c, and the edges 

zcWd'> z c - l W d ' - i , . . . , z i > V _ - + 1 , 

is an n-factor of T , , + 1 - y. 
It follows from Remark 4 that if Tn + 1 — y has an n-factor, then for an arbitrary 

vertex v e V(T), the graph Tn+1 — v has an n-factor, too. 
Thus the lemma is proved. 

Lemma 4. Let The a tree of an order p ^ n + 2, where n ^ 1. Assume that if n 
is odd, then p is also odd. Then for an arbitrary vertex v e V(T), the graph Tn+1 — v 
has an n-factor. 
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Proof. If p = n + 2, then Tn + 1 - v = K(V(T) - {v}) and thus Tn + 1 - v is 
a regular graph of the degree n. Assume that p > n + 2, and that for every tree T* 
of an order p*, where 

(i) n + 2 ^ j?* < p, 
(ii) if n is odd, then p* is also odd, 

and for an arbitrary vertex v of T* it is proved that (T*)n+1 — v has an n-factor. 
We distinguish the following cases and subcases: 

1. There exists a component R of T — v such that 

\V(R)\ ^ n + 1 and |V(Tj - V(R)| = 1 or \V(T) - V(R)| ^ n + 2 . 

If T — V(R) has exactly one vertex, this must be the vertex v. Then |V(R)| = p — 1 
and |V(R)| is even if n is odd. It follows from Theorem 0 that Rn + 1 = Tn+1 - v 
has an n-factor. Assume that |V(T) - V(R)| ^ n + 2. 

1.1. |V(R)| is even or |V(R)| = n + 1. It follows from Theorem 0 that Rn+1 has 
an n-factor. The induction hypothesis implies that (T— V(R))n+1 — v has an n-factor. 
Hence, the statement of the lemma is correct. 

1.2. |V(R)| is odd and \V(R)\ > n + 1. Let v' be a vertex of Tsuch that 

(*) v'eV(R) and vv' e E(T). 

It follows from the induction hypothesis that Rn + 1 — v' has an n-factor and 
<(V(T) — V(R)) u {i/}>r»+i — v has an n-factor. Hence, the statement of the 
lemma is correct. 

2. There exists a component R of T — v such that 

\V(R)\ ^ n + 1 and 1 < |V(T) - V(R)\ < n + 2 . 

Let v' be a vertex of T which fulfils (*). We denote by R' the graph with V(R') = 
= V(R)u {v} and E(R!) - F(R) u {vv'}. Since |V(R')| > n + 1, it follows from 
Lemma 1 that there exist u e V(R') and disjoint u-sets W and W" in R' which fulfil 
( l ) - (4 ) whereby v e (V(R') - (W u W")). 

2.1. |V(T) - (W u W")\ ^ n + 2. In accordance with Remark 1, the set W u W" 
can be arranged into a sequence w1 ? . . . , wm. Let F be the regular graph of the degree n 
constructed in Remark 2. Thus, V(F) = {wi9 ...,wm}. The induction hypothesis 
implies that ( T - (W u W"))n+1 - v has an n-factor. Hence, Tn+1 - v has an 
n-factor. 

2.2. \V(T) - (W u W")\ = n + 1. If \W u W"| = n + 1, then p = 2(n + 1) is 
even and so n is even. Let | W ' u W"\ > n + 1. It follows from Lemma 1 that 
\W u W"| is even. Since p = \W u W"| + n + 1, we have that n is even. 

2.2.L we(V(T) - (W u KV")). Denote A = W', B = W" and C = (V(T) -
~(W u W")) - {u}. Then | A | ^ n, |B | g n, |C| = n, |A u B| > n, |A u C\ > n. 
|B u C| > n and A u B u C = V(T) - {«}. It follows from Lemma 3 that Tn+1 - v 
has an n-factor. 
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2.2.2. w e W u W" and \W u W"\ > n + 1. Since n + 1 < \W v W"\ < p and n 
is even, it follows from the induction hypothesis that <W' u W">T„ + i — w has an 
w-factor. Since |(V(T) - (W u W")) u {ti}| = n + 2, we have 

<(V(T) - (W u IV")) u {u}>T„ + 1 - v = K(((V(T) - (W u W")) u {w}) - v) 

is a regular graph of the degree n. Hence, T" + 1 — v has an n-factor. 

2.2.3. ueW'v W" and | W ' u W"| = n + 1. In accordance with Remark 1, 
the set FT u W" can be arranged into a sequence w1? ..., wn+ - such that wfc = w and 
1 g fc ^ (n + 2)/2. For every i, 1 <; i <£ n + 1 - fc, and for every j , 1 ^ j' S 
S k — i, we have dT(w, wk+i) g i and dT(u, w,^-) ^ j . 

In accordance with Remark 1, the set ((V(Tj - (W u IV")) - {v}) can be ar­
ranged into a sequence z l5 z 2 , . . . , z„ such that dT(z^, u) ^ g + 1 for every a, 1 g 
^ g S n. The graph obtained from the graphs 

K({wx,..., wn+ J ) - { w ^ , w3w4 , . . . , wn_xwn} and K({zl5 ..., z,,}) 

by adding the edges 

z»W/c?
 zn-l^fc-i? •••> z«-fc+iWl5 zB_fcwfc+1, . . . , zpv„ 

is an n-factor of Tn+1 - v. 

2.3. \V(T) - (W u W")| <; n. 

2.3.1. There exist disjoint w-sets Wx and W2 such that \W\\ g | ^ 2 | g n and 
Wx u W2 = V(T) - {11}. It follows from Lemma 2 that T" + J - v has an n-factor. 

2.3.2. For arbitrary disjoint u-sets IV! and W2 such that \WX\ g n and |W2j ^ n 
we have Wx u IV2 + V(T) - {u}. Since \W\ g n, |IV"| g n and |V(Tj - (IT u 
u W")\ ^ n, we conclude that there exist disjoint w-sets A, Band C such that \A\ ^ n, 
|B | g n, |C| ^ n, | A u B | > n , |A u C| > n, |B u C| > n and AuBuC-
= V(T) — {w}. It follows from Lemma 3 that Tn + 1 - v has an n-factor. 

3. For every component R of T - v we have \V(R)\ ^ n. Since p > n + 2, it 
follows from Lemma 1 that there exist disjoint v-sets W and W" in T which fulfil 
( l ) - (4) . 

3.1. \V(T) - (W u W")| ^ n + 2. From the fact that T - (IV' u W") is a irce 
and |V(K)| S n for every component R of T — v it follows that v e (V(T) -
-(W u W")). The induction hypothesis implies that (T - (W u W"))n+1 - v has 
an n-factor. The set W u W" can be arranged into a sequence w l 9 . . . , wm described 
in Remark 1. From Remark 2 it follows that there exists an n-factor of the graph 
(W u W"yTn + u Hence, Tn+1 - v has an n-factor. 

3.2. |V(T) - (W u JV")j = n + 1. Then ve(V(T) - (W u W")). Denote A = 
= W\ B = MT, C = (V(T) - (W u IV")) - {v}. Then |A | ^ n, |B | g n, |C| = n, 
|A u B| > n, |A u C| > n, |B u C| > n and A u B u C = V(T) - {v}. It follows 
from Lemma 3 that T'l+1 — v has an n-factor. 

3.3. | V ( T ) - (IV u W")\ < n + 1. 
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3.3.1. There exist disjoint u-sets Wx and W2 such that \WX\ ^ |W2 | =* n and Wt u 
vW2 = V(T) - {t;}. It follows from Lemma 2 that T n + 1 - v has an n-factor. 

3.3.2. For arbitrary disjoint i?-sets Wt and W2 such that | Ŵ j ^ n and |JV2| ^ w 

we have ^ u W2 4= V(T) - {v}. Since |*V'| ^ n, \W"\ ^ n and |V(T) - (W u 
u FT")! g n, we conclude that there exist disjoint u-sets A, B and C such that | A | =" n, 
|-9| ^ n, \C\ =" n, \AyjB\> n, \A U C\ > n, \B U C\ > n and AUBKJC = 
= V(T) - {t;}. It follows from Lemma 3 that Tn+1 - v has an n-factor. 

Thus the lemma is proved. 

P r o o f o f T h e o r e m l . Let G be a graph satisfying the conditions of Theorem 1. 
Then G is connected, and thus there exists a spanning tree of G, say T. According to 
Lemma A,Tn+1 - v has an n-factor. Thus Gn+* - v has an n-factor, which completes 
the-proof. 

Let G be a tree of an order p ^ n + 3 which is given in Fig. 1. It is obvious that 
Gn+1 — vt — v2 has not n-factor. Hence Theorem 1 cannot be improved in the 
sense of removing more vertices than one. 

v0 v, V2 Vp.i 

Fig. 1. 

Note that for n = 2 a stronger result is known. Chartrand and Kapoor [2] proved 
that if G is a connected graph, then G3 is 1-hamiltonian. 
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Súhrn 

EXISTENCIA N-FAKTOROV V MOCNINÁCH SÚVISLÝCH GRAFOV 

E L E N A W I S Z T O V Á 

V článku je dokázaná nasledovná veta: Nech G je súvislý graf s p vrcholmi, kde p ^ « + 2 
a « ^ l . Predpokladajme, že ak n je nepárne, tak p je tiež nepárne. Potom pre lubovolný vrchol 
v e V(G), graf Gn+1 — v má n-faktor. 
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Резюме 

СУЩЕСТВОВАНИЕ ^ФАКТОРОВ В СТЕПЕНЯХ СВЯЗНЫХ ГРАФОВ 

ЕЬЕЫА VVI32ТОVА 

В статье доказана следующая теорема: Пусть О-связный граф с р ^ п + 2 вершинами, 
где п ^ 1, и предположим, что р нечетно, если п нечетно. Тогда для произвольной вершины 
V е У(С) граф Оп+1 — V имеет и-фактор. 

Ашког'з аййгезз: Уузока §ко1а йоргауу а 8ро̂ ОV, Магха-Еп^еЬа 25, 010 88 ЁПша. 
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