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EXISTENCE OF n-FACTORS IN POWERS OF CONNECTED GRAPHS

ELENA WiszToVA, Zilina
(Received November 24, 1987)

Summary. In this paper the following theorem is proved: Let G be a connected graph of an
order p = n - 2, where n = 1. Assume that if n is odd, then p is also odd. Then for an arbitrary
vertex v € V(G), the graph G"*1 — p has an n-factor.
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By a graph we mean a finite undirected graph with no loops or multiple edges
(a graph in the sense of [1] and [3]). If G is a graph, then the vertex set of G and the
edge set of G will be denoted by V(G) and E(G), respectively. The number |V(G)|
is called the order of G. If W < V(G), then we denote by (W) the subgraph of G
induced by W. For a finite nonempty set M we denote by K(M) the complete graph
whose vertex set is M.

Suppose that Tis a tree and u € V(T). We shall say that W < V(T)is a u-set in T,
if either W = {u} or there exist distinct components Ty,...,T; (i 2 1) of T — u
such that either W= V(T,)u...u V(T;) or W = {u} u V(T)) L ... v V(T}}.

For every integer n = 1, by the n-th power G" of G we mean the graph with
V(G") = V(G) and E(G") = {uv; u,ve V(G) and 1 < dg(u,v) < n}, where dg
denotes the distance between vertices in G.

If a spanning subgraph F of G is a regular graph of a degree m = 0, then we say
that F is an m-factor of G. Recall that if m = 1 is an odd integer and G has an m-
factor, then the order of G is even.

The following theorem was proved in [4]:

Theorem 0. Let G be a connected graph of an order p = n + 1, where n = 1.
Assume that if n is odd, then p is even. Then G"*! has an n-factor.

(Moreover, it was shown in [4] that for any integers n 2 1 and p > n(n + 1),
there exists a tree T of order p such that T" has no n-factor).

The main result of the present paper is the following:

Theorem 1. Let G be a connected graph of an order p = n + 2, where n = 1.
Assume that if n is odd, then p is also odd. Then for any arbitrary vertex v e V(G),
the graph G"*! — 4 has an n-factor. :



To prove Theorem 1 we use Theorem 0, four lemmas (one of them was proved
in [4]) and four remarks.

Lemma 1. [4] Let T be a tree of an order p > n + 1, where n = 1. Then there
exist u € V(T) and disjoint u-sets W and W" in T such that
(1) wow” £ V(T),
(2) T— (W' v W") is connected,
@ W =s|w|sn<|WouW| and
(4) if WO W’ %n+1, then |W U W’| is even.

Remark 1. Let Tbe a trec, u € V(T), n 2 1, and let Wy, ..., W (k = 2) be disjoint
u-sets such that |W1l <n,..., IW,,I =< n. Then every set W,, 1 £ h £k, can be
arranged into a sequence wy 1, Wy 2, - .-, Wy 1w, Such that, for every g, 1 £ g = IW},I,
we have

di(whgu) <g if ueW,,
dT(wh,g’ u) .S_ g if u ¢ m .
This means that if u € W, then w, ; = u.

Let ' and h” be arbitrary integers such that 1 < k' < h” £ k. It follows from

Remark 1 in [4] that the set W,. U W~ can be arranged into a sequence

Wi, Wo, enn, Wm .

where m = ]W,,l + ]W,,|, with the following property: Assume that 1 < i < j < m.
Let j—iZ<n for u¢ W Wy, and j—i<n+1 for ue W, u Wy.. Then
dr(w;,w;)) £ n + 1.

Remark 2. Let T be a tree, n = 1, and let wy, ..., w,, be a sequence of distinct
vertices in T which has the properties described in Remark 1. Let m be even and
n + 1 < m = 2n. Denote

E, = {lew(m/2)+ 15 WiWim/2)+2s o+ WiWuiq
WaWm2)+2: WaWm2)y+3s « oy WaWpia,
Wimi2Wms Wm2Wmt1s « - o) Wm/2wn+(m/2)} s
where every index i > m is to be replaced by the index i — (m/2). We denote
by F the graph with V(F) = {w,,...,w,} and E(F) = E(K({wy, ..., Wmj2})) U
U E(K({Wms2y+1> -+ Wm})) U Eo. Then F is an n-factor of the graph
<{W1, ooy wm}>1‘n#1-
Remark 3. Let m and n be integers such that 0 < m < n. It follows from

Theorems 9.1 and 9.6 in [3] that K, has an m-factor if and only if at least one of the
integers m and n is even.
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Remark 4. Let T be a tree of an order p > n + 2, where n = 1. Assume that
Wy..... W, (k = 2) are disjoint u-sets in T such that |W,| S n,...,|Wi| £ n and
Wyu...u W, = V(T) — {u}. In accordance with Remark 1 every set W,, 1 £ h <
< k. can be arrangsd into a sequence Wy, ..., Wy, w, Such that dg(w,,u) < g
forevery g, 1 < g < |W)|..

For every vertex x € V(Tj and for every h, 1 < h < k, we have

de(x,u) S n, dif{x,wy ) Sn+ 1.

Assume that y e {u, wy 1, Wy 1a..., W1} and T**' — y has an n-factor, say F*.
Let v e V(T) be an arbitrary vertex of T, v # y, and let vxy, vx,, ..., vx, € E(F¥).
Tien the graph ‘
F*¥ — 04y + {¥Xg, YX2 oo0s YXy)

is an n-factor of T"*1! — v.

Lemma 2. Let T be a tree of an order p Z n + 2, where n = 1. Assume that
(L) there exists we V(T) and disjoint u-sets Wy and W, in T such that |W,| £
S|Wo| £ nand Wy o W, = V(T) — {u},
(2) if nis odd, then p is also odd.
Then for an arbitrary vertex ve V(T), the graph T**Y — v has an n-factor.

Proof. If p=n + 2, then T"** — v = K(V(T) — {v}) and thus T"*! — v is
aregular graph of the degres n. Assume that p > n + 2. We distinguish the following
cases:

1. pis odd. Then according to Remark 1, the set W, U W, can be arranged into

a sequence Wy, ..., W, (where m=p—1>n+1and mis even). According to
Remark 2, the graph

Wiseen W ner =T gy
<{ 1 m}>T
has an n-factor.

2. p is even. Then n is even, |W1] < |W2| and |W1 o {u}[ < n. According to
Remark 1, the set W, u {u} U W, can be arranged into a sequence Wy, ..., w,, (Where
m=p>n+2u=w,and 1 <l < mf2). Denote

E, = {wlw(m/2)+ 10 WiWomi2)+25 <o o5 WiWnya

WaWini2y+2s WoWm2)+3s ++ o5 WaWpis,

Wi—tWm2)+1-15> Wi—=1Wm2)+15 <o o5 Wi 1Wpyy,
Wit tWm2)+15 Wi+ 1Wm/2)+1+15 oo Wi 1tWosgeg >
Wm/zwm—ls wm/Zwm’ LR wm/2wn+(m/2)} H]

where every index i > m is to be replaced by the index i — (m/2). Furthermore,
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we denote by F; the graph with V(F}) = {wy, ..., w;—y, W41, ..., W,} and

E(F‘l) = E(K({Wl, coey wl—l’ W‘+ 13 s0es Wmlz})) V) E(K({W‘m/2)+1, ceny Wm})) v El .
Then the graph
Fl. = F’l - {wn+2wn+3, WntaWniss oo wm—2wm—l}

is an n-factor {{wy, ..., Wp}>gns1 — wy = T"*1 — u. It follows from Remark 4
that if T"*' — u has an n-factor, then for an arbitrary vertex v € V(T), the graph
T"*! — v has an n-factor, too.

Thus the lemma is proved.

Lemma 3. Let T be a tree of an order p = n + 2, where n = 1. Assume that
(1) there exists u € V(T) and disjoint u-sets A, B, C in T'such thatn = |4| 2 |B| 2
2|C|,|AuB|>n,|AuC|>n,|BuC|>nand AUBUC = W(T) — {u},
(2) if nis odd, then p is also odd.
Then for an arbitrary vertex ve V(T), the graph T**' — v has an n-factor.

Proof. If p=n + 2, then T"*! — v = K(V(T) — {v}) and thus T"*! — v is
a regular graph of the degree n.
Assume that p > n + 2. Let r be a vertex of T such that

reC and ruekE(T).

Denote a = |4|, b = |B| and ¢ = |C].

Ifa + biseven,weput A = A, B=B,C=Candy = u.If a + bis odd, then
=2a>b,and we put A=4, B=Bu{u}, C=C - {r} and y = r. Denote
= |4], 5=|I§| and ¢=|C|. Thus n2az2bz¢, a+b>n, b+c>n,
a+¢>n, a+bis even and AUBuUC = V(T) — {y}. In accordance with
Remark 1, the set C can be arranged into a sequence zy, ..., Zz such that dy(z,, u) <
< g + 1forevery g,1 < g < ¢ (hence, if r € C, then z, = r). Analogously, we can
arrange the sets 4 and B. Moreover, in accordance with Remark 1, the set A U B
can be arranged into a sequence Wy, ..., w,, (where m = @ + b) such that w,, ...
..owz€A and wsyy,...,wy€B (if ueB, then w;,, = u). Let F be the regular
graph constructed in Remark 2. Thus, V(F) = {wy, ..., Wp}.

Let ¢ be odd. Since p=a + b + ¢ + 1 and a + b is even, we have that p is
even and therefore n is even. This means that at least one of the integers ¢ and n is
even. Thus at least one of the integers cand n — ¢ + 1is even.

According to Remark 1, for 1 £i < ¢ and 1 £j £ b, the inequality i + j <
< n + 1 implies d(z;, wz4;) £ n + 1. We distinguish the following cases:

l.é<(n+1)2. Thenc<n—Cc+ 1.Sinceb+c=n+ 1, wehavem — a =
=bzn—-¢+1>¢c It follows from Remark 3 that K({Wasy»..., War14n-2})
has a ¢-factor, say H;. The graph obtained from the graphs F — E(H,) and K(C) by
adding the edges

QS
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25W5+1, ZeWa42s +++s ZeWatr1+n—c>

Ze—1Wa+1s Ze—1Wa+2> -+ Ze—1Was14n-c>

Z1War1s Z1Was2s -5 Z1Wat14n-z
is an n-factor of T"*1 _ ,

2.¢>(n+ 1)/2. Thenn — ¢ + 1 < ¢ < b. According to Remark 3, K({Was1s---

.+s Wayz}) has an (n—c¢+ 1)-factor, say H,.The graph obtained from the graphs
F — E(H,)and K(C) by adding the edges

ZWar1s ZeWa+2s + o5 ZWar14n-c>

Ze—1Wa+2s Ze~1Wa+3s +++5 Ze~1Was24n-2>

Z1Wate Z1Ware+1s <+ s Z21Watn»
where every index k > a + C is to be replaced by the index k — ¢, is an n-factor
of T"*1 — y.

3. ¢ = (n + 1)/2. Then n is odd, and thus ¢ is even. Obviously, ¢ = n — ¢ + 1.
We denote by d the integer @ if u ¢ B, or the integer @ + 1 if u € B. Obviously,
m — d = ¢. We denote by d’ that of the integers d — 1 and d which has the same
parity as m/2. It is not difficult to see that d’ = ¢. For1 £ i £ ¢and 0 S.j <d -1,
the inequality i + j < n — 1 implies d(z;, wy. ;) < n + 1. Since n is odd, ¢ is even
and ¢ £ n, we have that ¢ < n. The graph obtained from the graphs K(C) and

F — E(K({Wd+la e Wd+r:})) - {Wd'Wd'—n War—aWar =35 +ees Warmz e 2War— 24 1)

by adding the edges

Z1Wate + o5 ZiWas2z-2»
where every index k > d + ¢ means k — ¢, and the edges
ZgWars Zg—1War—1s « o5 Z1War—z+1 5

is an n-factor of T"*! — y.

It follows from Remark 4 that if T"*! — y has an n-factor, then for an arbitrary
vertex v e V(T), the graph T""! — v has an n-factor, too.

Thus the lemma is proved.

Lemma 4. Let T be a tree of an order p = n + 2, where n = 1. Assume that if n
is odd, then p is also odd. Then for an arbitrary vertex v e V(T), the graph T*** — v
has an n-factor.
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Proof. If p =n + 2, then T"*!' — v = K(V(T) — {v}) and thus T"*! — v is
a regular graph of the degrce n. Assume that p > n + 2, and that for every tree T*
of an order p*, where

(i) n+2=p*<p,

(i1) if n is odd, then p* is also odd,
and for an arbitrary vertex v of T* it is proved that (T*)"*' — v has an n-factor.
We distinguish the following cases and subcases:

1. There exists a component R of T — v such that
[V(R)) 2 n+1 and |V(T)— V(R)| =1 or |V(T)- VIR zn+2.

If T — V(R) has exactly one vertex, this must te the vertex v. Then |V(R)| = p — 1
and |V(R)| is even if n is odd. It follows from Theorem 0 that R**! = T"+! — p

has an n-factor. Assume that |V(T) — V(R)| 2 n + 2.

1.1. |[V(R)| is even or |V(R)| = n + 1. It follows from Theorem 0 that R**! has
an n-factor. The induction hypothesis implies that (T — V(R))**' — v has an n-factor.
Hence, the statement of the lemma is correct.

1.2. |V(R)|is odd and |V(R)| > n + 1. Let v’ be a vertex of T'such that

(*) v'eV(R}) and v’ eE(T).

It follows from the induction hypothesis that R"*' — v’ has an n-factor and
{(V(T) = V(R)) U {v'}>gm+1 — v has an n-factor. Hence, the statement of the
lemma is correct.

2. There exists a component R of T — v such that
lV(R)I Zzn+1 and 1< |V(T) - V(R)l <n+2.

Let o' be a vertex of T which fulfils (x). We denote by R’ the graph with V(R'} =
= V(R)u {v} and E(R’) = E(Rju {w'}. Since |V(R')| > n + 1, it follows from
Lemma 1 that there exist u € V(R') and disjoint u-scts W’ and W” in R’ which fulfil
(1)—(4) whereby ve(V(R) — (W u W")).

2.1. |W(T) — (W' U W”)| 2 n + 2. Inaccordance with Remark 1, the set W' U W”
can be arranged into a scquence Wy, ..., w,. Let F be the regular graph of the degree n
constructed in Remark 2. Thus, V(F) = {w,,....w,}. The induction hypothesis
implies that (T — (W' u W”))"*! — v has an n-factor. Hence, T"*' — v has an
n-factor.

22. |W(T) = (W OW)|=n+ 11 [WUW/|=n+1,then p=2n+1)is
cven and so n is even. Let |W’u W"l > n + 1. It follows from Lemma 1 that
|W' o W’ is even. Since p = |[W' U W'| + n + 1. we have that n is even.

22.1. ue(V(T) — (WU W"). Denote A=W, B=W" and C = (V(T)—
—(W' v W”")) — {u}. Then |4| £ n, |B| <n, |C|=n, |[AUB|>n, [AUC| > n.
|[BUC|>nand AU BuU C = V(T) — {uj. It follows irom Lemma 3 that T"*' — v
has an n-factor.
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222, ue W U W and |W U W'|>n+1.Sincen+ 1 <|WuW|<pandn
is even, it follows from the induction hypothesis that (W' U W">1..1 — u has an
n-factor. Since |(V(T) — (W' v W"))u {u}| = n + 2, we have

(T) = (W0 W)U {u}dpmes — v = K(V(T) — (W 0 W)U {u}) — v)
is a regular graph of the degree n. Hence, T"*! — p has an n-factor.

223. ueW UW” and |W U W’|=n+ 1. In accordance with Remark 1,
the set W’ u W” can be arranged into a sequence wy, ..., W, ; such that w, = u and
1 £k <(n+2)2. For every i, 1 £i<n+1—k, and for every j, | <j <
< k — 1, we have dr(u, wis;) < i and do(u, w,_ ;) < j.

In accordance with Remark 1, the set ((V(Tj — (W' v W"}) — {v}) can be ar-
ranged into a sequence zy, z,, ..., z, such that dy(z,, uj < g + 1 for every g, 1 <
< g = n. The graph obtained from the graphs

K({Wis oo W 1}) = {WiWa, wawss ooy w,_yw,) and K({zy, ..., z.})

by adding the edges

ZaWis Zne 1 Wkm 15 - o Zumkt 1W1s Zn— kWit 15 - 0r 21 W,
is an n-factor of T"*! — v,

23. |[W(T) — (W o W) € n.

2.3.1. There cxist disjoint u-sets W; and W, such that |[W,| < |W,| < n and
Wy U W, = V(T) — {u}. It follows from Lemma 2 that T""' — v Lus an n-factor.

2.3.2. For arbitrary disjoint u-sets W; and W, such that |W, < noand |W2i <n
we have W, U W, + V(T) — {u}. Since |W'| < n, |W/|<n and [T}~ (W' U
u W")| £ n, we conclude that there exist disjoint u-sets 4. B and C such that |4 < i,
[Bl<n, |C|<n, |[AUB|>n, |[AUC|>n, |BUC|>n and AUBUC =
= V(T) — {u}. It follows from Lemma 3 that T"*! — v has an n-factor.

3. For every component R of T — v we have |V(R)| < n. Since p > n + 2, it
follows from Lemma 1 that there exist disjoint v-sets W’ and W” in T which fulfil
(-

3.0, |W(T) — (W O W")| 2 n + 2. From the fact that T — (W' U W”) isa e
and |V(R)| £ n for every component R of T — v it follows that ve (V(T) —
—(W' L W")). The induction hypothesis implies that (T — (W' U W"))"*! — v has
an n-factor. The set W u W” can be arranged into a sequence wy, ..., w,, desciibed
in Remark 1. From Remark 2 it follows that there exists an n-factor of the graph
(W' U W"ypa+s. Hence, T"*' — v has an n-factor.

32 |W(T) = (W U W) =n+ 1. Then ve(V(T)— (W u W")). Denote A =
=W.B=W"C=(V(T)— (WU W) — {v}. Then |A] < n, |B| £ n.|C| = n,
|AUB|>n.|40C|>n, [BUC|>nand AUBUC = V(T) - {v}. It follows
from Lemma 3 that T**! — v has an n-factor.

33.UT) = (W o W) <n+ L.



3.3.1. There exist disjoint v-sets W; and W, such that |W1| = |W2| <nand W;u
u W, = V(T) — {v}. It follows from Lemma 2 that T"*! — v has an n-factor.

3.3.2. For arbitrary disjoint v-sets W, and W, such that |W;| < n and |W,| < n
we have W, U W, + V(T) — {v}. Since |W|<n, |W"|<n and |V(T)— (WU
U W")| £ n, we conclude that there exist disjoint v-sets 4, B and C such that |4 < n,
|B|=n, |C|<n, |AUB|>n, |[AuC|>n, [BuC|>n and AUBUC =
= V(T) — {v}. It follows from Lemma 3 that T"*! — y has an n-factor.

Thus the lemma is proved.

Proof of Theorem 1. Let G be a graph satisfying the conditions of Theorem 1.
Then G is connected, and thus there exists a spanning tree of G, say T. According to
Lemma 4, T**! — v has an n-factor. Thus G*** — v has an n-factor, which completes
the.proof.

Let G be a tree of an order p = n + 3 which is given in Fig. 1. It is obvious that
G"*! — v, — v, has not n-factor. Hence Theorem 1 cannot be improved in the
sense of removing more vertices than one.

o o &—...—0
Vo v Va Vo-t
Fig. 1.

Note that for n = 2 a stronger result is known. Chartrand and Kapoor [2] proved
that if G is a connected graph, then G* is 1-hamiltonian.
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Sahrn

EXISTENCIA N-FAKTOROV V MOCNINACH SUVISLYCH GRAFOV

ELENA WiIszZTOVA

V &lanku je dokadzana nasledovna veta: Nech G je suvisly graf s p vrcholmi, kde p = n+ 2
a n = 1. Predpokladajme, Ze ak n je neparne, tak p je tieZ neparne. Potom pre IubovoIny vrchol
v € V(G), graf G"*1 — v ma n-faktor.
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Pesome

CYIIECTBOBAHHUE N-®AKTOPOB B CTEIIEHAX CBSI3HBIX I'PA®OB

ELENA WiszToVA

B craThe goKazaHa cieayromas teopema: ITycts G-csizHbi rpad ¢ p = n + 2 BepiMHAMH,
rae n = 1, ¥ OPeamoNoXuM, YTO p HEYETHO, €CITH n HedeTHO. Toraa it TpOH3BOJILHOM BEpIIHHBI
v e V(G) rpad G — p umeer n-dakTop.
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