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ON 3-BASIC QUASIGROUPS AND THEIR CONGRUENCES
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Summary. A subgroup G of the full autotopy group of a given 3-basic quasigroup Q is said
to be special if its component groups I'y, I';, I'y; form a 3-basic quasigroup (I'y, I, I'3; %),
where a * f== y<>(a, B, 7)€ G forae 'y, fel,, yerl;.

In this paper a one-to-one correspondence between special subgroups G and normal con-
gruences @ of a given 3-basic quasigroup Q is proved.

Keywords: 3-basic quasigroup, autotopy, normal congruence, special autotopy group, (n + 1)-
basic quasigroup.

AMS Classification: 20N0S.

V. A. Beglarjan proved in [1] that every normal subgroup I' of the associated
group Q. of a given quasigroup (Q, *) induces a normal congruence R', and their
corresponding decompositions fulfil Q/R" = Q/I'. Conversely, every normal con-
gruence ¢ on a quasigroup (Q, +) induces a normal subgroup I'® of the associated
group Q. of (Q, *) such that the decomposition Q/I'® is a refinement of the decompo-
sition Q/e. Further, every normal congruence ¢ on a quasigroup (Q, *) admits a re-
finement o' such that Qo' = Q[I'® < Qle.

If we have a 3-basic quasigroup it is impossible to define an associated group.
In the present paper we introduce as a certain compensation the connection between
“‘special” subgroups of the full autotopy group of a given 3-basic quasigroup on one
side and normal congruences of this quasigroup on the other side.

1. PRELIMINARIES

The quadruple (s, Q,, Q3; A), where Q,, @,, Q5 are non-void sets with the same
cardinality and A4 is a map'of @, X Q, onto Q3 is called a 3-basic quasigroup if in
the equation A(ay, a,) = a; any two of the elements a, € Qy, a,€ Q,, aze Q,
uniquely determine the remaining one. If @, = @, = Q; we get a usual quasigroup.
The triple of maps 7;: @; > Q;, i = 1,2, 3, is called a homotopy with components
74, T,, T3 of a 3-basic quasigroup (@1, @5, @3; 4) into a 3-basic quasigroup (0}, 05,
Q;; A) if 1'3A(a1,a2) = A'(tay, 1,a,) for all a; € Qy, a;e @,. If in particular
0:,=0,=0; 0 =0, = Q; and 7, = T, = T3 We obtain a quasigroup homo-
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morphism. A homotopy with bijective components is called an isotopy and an isotopy
of (Qy, Qz, @3; A) onto itself is called an autotopy. The set of all autotopies
((pl, @3, ¢3) of a given 3-basic quasigroup forms a group under the composition o:

(@1, 92, 93) 0 (01, 05 ?3) = (P10 9F, @2 0 @3, P30 03).

This group is called a full autotopy group.

Let (Qy, Q,, Q35 A3) be a 3-basic quasigroup. Since any two of the elements
a,, a,, as in the equation A3(a,, a,) = as uniquely determine the remaining one,
we can define operations

Az(asa al) =da;, Al(az, aa) = a4
which are analogous to the left and right inverse operations of a usual quasigroup.
Then
A(A[a,, a;), Afa;, a))) = a;
is fulfilled for (i, j, k) = (1,2, 3), (2, 3, 1), (3, 1, 2). Moreover, (Q;, @3, @;; 4,) and
(03, 01, Q2; A4;) are also 3-basic quasigroups which are called cyclic parastrophes
Of(Ql’ 02, Q33 As)-

In the sequel we shall use symbols Q, Q' as the notation for 3-basic quasigroups
(Qla QZ’ QS; A): (Q’h Q’Z’ QQ? A’), respectively.

A congruence in a 3-basic quasigroup Q is a triple of equivalence relations g; of Q;,
i =1,2,3, such that

(1) xe.y = A(x, z) 03 A(y, z) for all ze Q,,

(ii) xe,y = A(z, x) @3 A(z, y) for all ze Q,.

A congruence (04, 05, 03) of Q is said to be normal if

(i) A(x, z) 03 A(y, z) = xg,y for x,ye Q, and z€ Q,,

(iv) A(z, x) 03 A(z, y) = xg,y for x,ye Q, and ze Q,.

In the definition of normal congruence we can combine conditions (i) and (ii) to

(I) X101Y1s X2Q2Y2 = A(xl, xz) 23 A(J’p }’2) for x,,y,€ Qy and x,, y, € Q,,
and conditions (jii) and (iv) to
(H) if A(xl, X3) 03 A()’p ¥2), then X;0,y; <> X202y, for x4, y; € @y and
X2, Y2 € QZ'
The connection between homotopies of a given 3-basic quasigroup and its normal

congruences is well-known ([3]). Let (zy, 75, 73) be a homotopy of a 3-basic quasi-
group Q onto a 3-basic quasigroup Q’. Then we can define equivalence relations

R*c Q;xQ; by xRy« x=1y, i=123.
We shall show that (R“, R™, R™) is a normal congruence on Q.
(i) For x,ye Q; let xR"y< 1,x = 1yy, then t34(x, z) = A'(t,x, 1,2) =
= A'(11, 122) = 13A(y, 2) = A(x, z) R®A(y, z) for all ze Q,.
(ii) For x,yeQ, let xR2y<>1,x = 1,y, then t34(z,x) = A'(1y2, 1,%) =
= A'(t4z, 1,) = 134(z, y) = A(z, x) R A(z, y) for all z€ Q,.
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(ii1) Let A(x,z) R™ A(y, z) <> 13A(x, z) = 134(y, z), then A'(1,x,1,2) =
= A'(t,y, 122) = 14X = 1,y = xRy for all ze Q, and x, y € Q;.

(iv) Let A(z, x) R™A(z, y) <> 134(z, x) = 134(z, y), then A'(1,z, 7,x) =
= A'(t42,7,y) = 1,X = 1,y = xRy for all ze @, and x, y € Q,.

Conversely, every normal congruence (Ql,Qz, 03) on a 3-basic quasigroup Q
determines a homotopy of Q onto a convenient 3-basic quasigroup Q'. Let ¢ =
= (04, 02, 03) be a congruence on Q = (Q,, @,, @3; *) and let

Ce' = {xe Qs xeia}
be an element of the decomposition Q;/¢; for ae Q;, i = 1,2, 3. Clearly be C¥' =
= C% = C¢' and b ¢ C% = C% n C¥ = 0. Define a map O:(Q4/e,) x (Q2/e2) =
— (Qs/es) by
1) COC2=Cp, forall xeQ, yeQ,.
This map is independent of the choice of x, y because if C3' = C% and C?* = C%,
then C%, = C%,,, for all x,x" € Q, and y, y' € Q,. If (¢4, ¢, 03) is a normal con-

gruence, then (Q/04, @2/0,, Qs/es; ©) is a 3-basic quasigroup. We need to verify
that every equation

() CeOCE=CP, acQ,, yeQ,, ceQ,
and every equation
(2) ClOCE=C", xeQy, beQ,, ceQ;

are uniquely solvable by C% € Q,[0, and C% € Q, /o, respectively.

We have C& © C% = C%, = C? and consequently (a . y) gsc. Let y = b be the
unique solution of the equation a . y = c and let y = b’ be a solution of the relation
(a.y)esc. Then (a. b) esc, (a . b') esc and consequently (a . b) ga(a . b') = bg,b’ =
= C§* = Cg. (Here we have used the fact that (¢,, ¢,, @3) is a normal congruence.)

The equation (2') can be discussed similarly.

The quasigroup Qe = (Q4/e1, @2/e2, Qsfes; ©) is called the factor-quasigroup
of Q under g. The maps 7;: Q; — Q;/o; defined by 1;a = C¥', i = 1, 2, 3, satisfy

73(x.y) = C®, =C* O C® = (t1x) © (129) .

Consequently, (t;, 75, T3) is a homotopy of Q onto Q/e. ®
We shall still prove that

(3) x.C§’=C§‘.y=C§’:, forall xeQ,, yeQ,.

Let us take an arbitrary element ze x . C?* and let be Q, be another element
satisfying the equation z = x . b. Then

732 = 73(x . b) = (11x) O (120) = (11x) O (72¥) = 73(x . y) =

24(x . y) and thus z € C%,. Similarly, choose z € C%,, then zgs(x . y) and 15z =
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= 13(x . ) = (1:%) O (129) = (7:X) O (z2b) = 75(x . b) and zg;(x . b)forall b e CZ,
thus ze x . C¢* and x. C3* = CZ,.
It can be verified analogously that C{' .y = C¥,forall xe Q,, y € Q,.

2. AUTOTOPIES

Let Q = (Q,, Q,, @3; *) be a 3-basic quasigroup, IT, the full permutation group
of Q;, i = 1,2, 3, and &(Q) the full autotopy group of Q. Starting from subgroups
Iy of I, and I', of IT, we introduce I'; by

4 I's = {psell3; ¢1x.0,y = @3(x.y) forall xe @y, yeQ,,
@€l ‘Pzerz}-
Clearly (‘Pb P25 ‘Ps) € &I(Q)-

Lemma 1. I'; defined by (4) together with the map composition o is a subgroup
of IT,.

Proof. Clearly ey = idg, € I'y, e; = idg, € I' and by (4), ey = idgy, € I';. Now let
(@15 92, 03), (01, 02, 03) € #(Q); @1, 91 € T'y; @3, @ € Ty, then ¢y(91x) . @x(02y) =
= @3(01x . 93¥) = @3(@s(x . y)) forallxe @y, y € Q,. Since 910 91 €'y, 92003 €
e I', we have also @3 o ¢4 € I's. If (¢4, @3, ¢3) € #(Q), ¢4 € 'y, ¢, € I'y, then there
exist o7 eIy, 953 eI, (as I'y, ', are groups) and ¢ € I's with (o7, 07, ¢3) €
€ #(Q). Thus ¢7'(esx). 07 (¢29) = @3(@s(x . ¥)) = x. y = ¢3(es(x. y) =
=>@iopz =€ =05 =0;'. W

Lemma 2. (obvious). All autotopies (¢4, @5, ¢3) (just obtained by (4) and said
to be admissible) of Q form a subgroup Gy ,(I'y, T';) of #(Q) under the compo-
nentwise composition.

Lemma 3. Let (¢4, 95, ¢3) € #(Q) be admissible. Then arbitrary two of the
components @4, ¢,, ¢ determine uniquely the remaining one.

Proof. Let us choose ¢y, ¢; and suppose that there exist ¢, and @5 such that
@1% . 02y = @3(x.y) and @;x. @3y = @3(x.y). Then @yx. @,y = ¢1x . @3y and
@,y = @yyforall ye @y, xe @y = ¢, = ¢).

Similarly , if we choose ¢,, @3, then we get a unique ¢,. W

Thus we can choose I'y, I', arbitrary and obtain the unique corresponding I';.

Using the permutations (1 2 Ii) where (i, j, k) = (1,2,3), (3,1,2), (2,3,1), and
L]

the corresponding cyclic parastrophes (Qi, Q;, Oi; 4), we can start from groups
T';, I'; and introduce I'y by
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(5) r,= {‘Pk ell; Ak((pix’ (Pj)’) = (PkAk(xa .V) forall xe@Q;, ye Q;,
o, el;, @;el;}.

-

This permits us to choose any two groups of I'y, I',, I' arbitrarily, the remaining
one being then uniquely determined by (5). Thus we obtain a subgroup G; (I';, ')
of #(Q).

Remark. Passing from I'y, I'; to I'y by (4) and similarly from I') = I',, 'y = T'5
to I'y by (5), we get in general I'y = I'y, thus Gy ,(T'y, I';) % G, 3(I'y, I'3).
Now we present several examples.

Example 1. Let I'; = {ey, «}, I', = {e,, B}, where o> = e;, B> = e,. Then by
(4), T'5 = {es,71, 72, y2} with the multiplication table

I)’l Y2 73

71 €3 Y3 72
Y2 Y3 € V)
V3 Y2 Y1 €3

The admissible autotopies are (e, e,, €3), (2, €5,7,), (e, B, y2) and (a, B, y3). If
Y3 = es, then y; = y, and we obtain

Example 2. Ty = {el’“}’ r,= {ez,ﬁ}, r,= {93, ')’} with o = e, f* = e,,
y? = e; and with the admissible autotopies (ey, e, e3), (2, €2, 7), (1, B, ¥), (2, B, e3).

Example 3. Let I'y = {e,, a} and I', = {e,, By, B}, where «* = ¢ and

| By B
By Ba e,
B2 e; B

Then, by (4), I'; consists of 6 elements es, 71, P25 V3, Y4, Y5 With the multiplication
table.

Y1 Y2 Y3 Y4 Vs

s Y2 €3 Y4 V5 V3
Y2 €3 Y1 Vs V3 Va
V3 Y4 Vs €3 Y1 V2
Ya Vs Y3 Y1 Y2 €3
Vs Y3 Y4 V2 €3 Vi

The admissible autotopies are (ex, €, ea), (ex, B1, 71), (91, B2, 'Yz), (“, €y, 73), (05, B, 74),
(“’ B2» 75)-
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We can observe that in Examples 1 and 3 Gy ,(I'y, I';) % G, 5(I';, I';), whereas
in Example 2

(6) Gx,z(rn rz) = Gz.a(rz’rs) = G3_1(1"3, rx)
holds.
Now we restrict ourselves to the case when (6) is satisfied.

Lemma 4. Let G be a subgroup of o/(Q) such that
(7) G = GI’Z(FI, FZ) = 62’3(112, F3) = G3,1(F3, Fl) .
Define a map =: I'y x I', — I'3 by
(3) axfp=y<(t,B,7)€G forall aely, peT,.

Then (I'y, I'y, I's; %) is a 3-basic quasigroup.

Proof. If we choose any two elements of a € I'y, f€I'5, y € I'3, then by (5) and
(7) there exists a third element such that (oz, B, y) € G, and by Lemma 3 this element
is unique. M

We say that the subgroup G of M(Q) is special if its component groups I'y, I'5, I'5

with the binary operation *: I'y x I', — I'; defined by (8) form a 3-basic quasigroup
(I'y, T, Ty; %)

3. CONGRUENCES

Let Q = (Qy, @;, Q3; *) be a 3-basic quasigroup, G a subgroup of «/(Q) and
r,,r,, Iy component groups of G.

Lemma 5. {T'(x); x € Q;} is a decomposition of Q;, i = 1,2, 3.

Proof. For all x € Q; we trivially have x € I'(x), because e; = idg, € I';, e;x = X.
We need to prove that I'y(x) n I'(y) + 0 implies I'(x) = I'(y), x,ye Q,. If z€
€ I'(x) n I'(y), then there exist a, B€I'; such that z = ax, z = By and therefore
I'(z) = T'(x), I'(z) = I'(y); at the same time there exist «™!, B~ € I'; such that
x =a"'z,y = B~z thus I'(x) < I'(z), T'(y) < I'|(2). This yields I'(x) = I'(z) =
=TI(y). =

Now we can define for every i = 1,2, 3 an equivalence relation R™* on Q; by

9) xRliy <« T'(x) =T(y) for x,yeQ;.

Theorem 1. (R™*, R™, R") defined by (9) is a congruence on Qif G = G, ,(I'y, I';).
Proof. We must prove

X1Rr’y1’ szrz,Vz = (x1 . xz) Rr’()’l . .Vz) .

43



When x;R'y;, then I'(x;) = I'(y;) and there exists ¢, I'; such that y; = @;x;
(i=1,2)and

. (4)
V1-Y2 = @1Xy . Q0% = (Ps(xl . x2)=> Vi YZera(xx . xz) .

By Lemma 5 we get I'5(x; . X;) = I'3(yy . y2) = (%1 . X2) R™(y, . y2). W

Theorem 2. Every special autotopy group G of a 3-basic quasigroup Q uniquely
determines a normal congruence on Q.

Proof. By the definition of a special autotopy group G = G, (I'y,T,) =
= G ,4(I's, I'y) = G, 5(I'y, I's) and by Theorem 1, the triple (R"*, R"2, R™) defined
by (9) is a congruence. It remains to prove that this congruence is normal.

a) If (x :z) R"™(y . z) for x,ye @y, z€ Q,, then I's(x.z) = I's(y . z) and there
exists @3 € I'; such that x.z = @4(y . z). When we choose ¢, = idy,, then there
exists a unique ¢, € I'; (G is special) such that x.z = @4(y.z) = @,y .z. Thus
X = ¢,y and xR"™y.

b) If (z.x) R"™(z . y) for ze Qy, x, y€ Q,,then ['3(z . x) = I'5(z. y)and z . x =
= @3(z . y) for @5 € I';. If we choose @, = idy,, then there exists a unique @, € I',
such that z. x = @4(z.y) = z. ¢,y. Thus x = @,y and xR™?y. =

Now we shall prove the converse theorem.

Theorem 3. Let ¢ = (Ql, 02, 93) be a congruence on a 3-basic quasigroup Q =
= (Qy, Q,, Q3). Then for every i = 1,2, 3,
(10) ri={pell; C& = C% forall xe Q)

forms a subgroup of II; and I'y,I',, ' are components of an autotopy group
G = G, ,(I'y, IT'y). If @ = (04,02, 0;) is a normal congruence on Q, then G =
= G, 5(I'y, I'y) is a special autotopy group on Q.

Proof. a) It follows from (10) that I'(x) = C%. Consequently, I'; is transitive
on C¥. It is clear that idy, € I';. If @, ¢’ € I';, then CJ} = C3' = C¥, and Cf(,.) =
=Cll=Cl=¢ opel,. If pel;, then C¥ = CZ for x € Q; and there exists
y € Q; such that yo,x and ¢x = y. Since ¢ is a permutation there is ¢~ € IT; such
that x = ¢~y and C%¥ = C%.,,, C% = C% = C%..,= ¢ ' eI Thus we have
proved that each I'; forms a subgroup of IT;, i = 1, 2, 3.

b) Now we shall prove that I'y, I',, I'; are components of an autotopy group
G = G, ,(I'y,T';). We need to prove that every two elements ¢, €Iy, ¢, €T,
uniquely determine ¢4 € I'; such that ¢,x . @,y = (03(x .y) for all xe Q;, y€ Q,.
Let ¢, eI'y. ¢, €T, then for any x € Q; and y € Q, we have C¥, = C{ © CP* =
=C2,. 0 C% = C%, ,,yand(x.y)es(¢:x . ¢,y). We know that every congruence
relation is always reflexive and therefore for some ze Q; we get @ x. @,y =z
and C* = CZ,. The transitivity of I'y on C%}, implies that there exists ¢ € I'; with

z = @3(x.y) = @;1x. 0,9 = @3s(x . y) = (@1, @2, @) is an autotopy on Q.
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c) Let (g 1502, Q3) be a normal congruence on Q. We must prove that every two
elements of ¢; €'y, ¢, €', @5 €I'; uniquely determine the remaining one such
that ¢,x . @,y = @3(x . y)forallx e Ql, y € Q,.If (p, eI'y, p; € 'y, then for x € Q,,
y€Q, we have C¥ = C2',, C¥, =Cl;,, CO,=CLOCEr=CL.O0CE =
=C%,,=C% ., and (¢;x.y) Q3(p2(x ). The reflexivity of ¢; implies that there
exists an element y' € Q, such that that ¢.x.y" = <p3(x y)and C% ., = = C¢\x O
© C%. Since simultaneously C%(, , = C% . O C%, we obtain C3? = C3%. Here we
have used the fact that (g,, 0,, 03) is a normal congruence. Now the transitivity of I',
on C2 yields the existence of ¢, € I', with y' = @,y. Thus @;(x.y) = ¢;x. @,y.

Similarly, if ¢,eI',, ¢;el;, then for xe Q;, ye Q, we have C}* = C%,,
Gy = Coiayy and €3, = G O CF = G O (G, = €y = Czsa(x-}') so that
(x. ¢29) g3(p3(x ). The reflexivity of 03 yields the existence of an element x’' € Q,
such that x'.@,y = @3(x.y) and C% = = C%0O C,m so that C2 = C%.
Using the transitivity of I'; on C%' we get ¢, € I'y such that x’ = @yx and @3(x . y) =

= @iX.0y. W

Theorems 2 and 3 yield a 1-1-correspondence between the special autotopy groups
and the normal congruences of a given 3-basic quasigroup Q. On the other hand,
we know that there exists a 1-1-correspondence between the normal congruences
of Q and the homotopies of Q onto Q’. So we have also a 1-1-correspondence
between the special autotopy groups G and the homotopies (1:.1, 75, 73) of Q. This
correspondence G <> (14, 7,, 73) is given directly by

ry={pell; 1-'i(‘l’x) = Ti(x), xe Q)
and 1(x) = 1(y) <> y € I'(x), where x,ye Q;, i = 1,2,3.

Now let G and G’ be special autotopy groups. If I'; is a subgroup of I'; for every
i = 1,2, 3, then G’ is a subgroup of G and R"*' is a refinement of R™ fori = 1, 2, 3.

If I'; = II; for every i = 1,2,3, then we get the maximal normal congruence
(R™, R, R™), i.e., xR™My for all x, y € Q; and C¥™* = Q, = I'(x) for every x € Q,.

IfI'; = {e;}, i = 1,2, 3, then we get the minimal normal congruence (R*!, R, R%)
so that xRy <> x = y and C§* = I'(x) = {x} for every x € Q; and ¢; = id,,.

Now we pass to a usual quasigroup (Q, 0, Q; *) and take a special autotopy group
G with components I'y, I',, I's. Using Theorem 2 with Q;, = 0, = Q; = Q we
get a normal congruence (R™, R™, R™) with decomposition classes CX * = I'(x),
x€ Q. So we have three (in general, mutually distinct) decompositions forming
a 3-basic quasigroup (Q/R™, Q/R™, Q/R™; ®)"with CX™* © C}"2 = CX?, where
x,ye Q.

All these results can be trivially generalized to (n + 1)-basic quasigroups. We shall
mention some primary notions. Q = (Q;, @, ..., Qy+,; A) is said to be an (n + 1)-
basic quasigroup if Q,, Q,, ..., Q,,, are sets with the same cardinality, 4 is an
n-ary operation with

(11) Alay,...,a,) =a,4, for a;eQ;, i=1,..,n+1,
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and in (11) any n elements of a;€ Q;, i = 1,...,n + 1, uniquely determine the
remaining one. Under a homotopy of Q onto Q' we mean an ordered (n + 1)-tuple
(Tys +ees Tary) of maps 732 Q; > Qf, 7(Q;) = Qi i=1,...,n+ 1, such that
Tae14(ay, ..., a,) = A'(t4ay, ..., T,a,) for all a;€ Q;, i =1,...,n. By analogy we
can define an isotopy and an autotopy. The (n + 1)-tuple(gy, ..., €4+ 1) of equivalence
relations g; of Q;, i =1,...,n + 1, is called a normal congruence on Q if ag;b,
a,be Q<> A(Xy, .o, Xi—1, @y Xis 15 s Xn) Qi 1A(X1, ooy Xim g, b, X4y, 200y X,,) for all
i=1,..,n and all x;€Q;, j=1,...,i—1,i+1,...,n. A subgroup G =
= (T'y, ..., I'y+1) of the full autotopy group of is said to be special if ('y, ..., [y y; P)
is an (n + 1)-basic quasigroup, where

D(P1yeees Pn) = Prt1 <> (@P1y 000y 0y 0,41)€G, @ely, i=1,..,n+1.
Similarly as in the case n = 2, we can prove that there exists a 1-1-correspondence
between the normal congruences on Q and the special autotopy groups G on Q.

If an (n + 1)-basic quasigroup (Qy, ..., Qu+1; A) satisfies Q; = ... = Q,,, then
we get the n-quasigroup (Q; 4) = (Q,..., @; 4). R.F. Kramareva ([2]) proved
that every homotopy of an n-quasigroup (Q; A) onto an n-quasigroup (Q’; A’)
determines a normal congruence (gy, ..., @,+1), and that (Qfey, ..., Qfg,+1; 4) with

A(ce, ..., Co) = CYLt oy ClEeQloy, i=1,..,n+1

forms a partial n-quasigroup. This is exactly our (n + 1)-basic quasigroup.
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Souhrn

0O 3-BAZOVYCH KVAZIGRUPACH A JEJICH KONGRUENCICH
ELENA BroZikovA
Podgrupa G uplné grupy autotopii dané 3-bazové kvazigrupy Q se nazyva specialni, jestliZe
jeii grupy komponent I'y, I', I'; tvoti 3-bazovou kvazigrupu (I'y, I, I'3; *), kde
axf=y<>(a,B,79€G pro aely, fel,, yerly.

V této praci je dok4zana vzdjemn€ jednoznatna korespondence mezi specialnimi podgrupami G
a normalnimi kongruencemi @ dané 3-bazové kvazigrupy Q.
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Pesome

O 3-FA30BBIX KBABUI'PVIIITAX U X KOHI'PYDHUUIAX
ELENA BroZikovA
IToarpynna G nonHo¥ rpymnel aBToTOnMi HaHHOK 3-6a30BOif KBasurpymib! Q HasbiBaeTcs
crenuanbHOH, €CNu ee rpynusl komMnonent Iy, I'y, I'y 06pa3syiot 3-6a3oByro keasurpynny (I'y, I,
I35 %), roe
axf=y<>(a,p,eCGuua ael,pel,, yeTlsj.

B paGoTe noka3zaHO, YTO CyLECTBYeT B3aMMHO OTHO3HAYHOE COOTBETCTBHE MEXAY CIELHATILHBI-
MA nonarpymamu G ¥ HOPMalbHBIMM KOHIPYSHUMAMM @ NaHHOK 3-6a30BOi KBasurpymsl Q.

Author’s address: Strojni fakulta CVUT, K201, Karlovo nam. 13, 121 35 Praha 2.
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