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ON 3-BASIC QUASIGROUPS AND THEIR CONGRUENCES 

ELENA BROZIKOVA, Praha 

(Received July 13, 1987) 

Summary. A subgroup G of the full autotopy group of a given 3-basic quasigroup Q is said 
to be special if its component groups Fx, F2, F3 form a 3-basic quasigroup (Ft, F2, F3; *), 
where a * ft '= y o (a, /?, y) e G for a e rt, P e F2, y e F3. 

In this paper a one-to-one correspondence between special subgroups G and normal con­
gruences Q of a given 3-basic quasigroup Q is proved. 

Keywords: 3-basic quasigroup, autotopy, normal congruence, special autotopy group, (n -f 1)-
basic quasigroup. 

AMS Classification: 20N05. 

V. A. Beglarjan proved in [ l ] that every normal subgroup F of the associated 
group Qx of a given quasigroup (g, •) induces a normal congruence 1vr, and their 
corresponding decompositions fulfil Q\Rr = g/F. Conversely, every normal con­
gruence £ on a quasigroup (Q, •) induces a normal subgroup Fc of the associated 
group Qx of (Q, •) such that the decomposition QJTQ is a refinement of the decompo­
sition Q\Q. Further, every normal congruence Q on a quasigroup (<2, •) admits a re­
finement Q' such that Q\Q' = g/FG £ Q/g. 

If we have a 3-basic quasigroup it is impossible to define an associated group. 
In the present paper we introduce as a certain compensation the connection between 
"special" subgroups of the full autotopy group of a given 3-basic quasigroup on one 
side and normal congruences of this quasigroup on the other side. 

1. PRELIMINARIES 

The quadruple (Si> Q2, Q$\ A), where Qu g 2 , Q3 are non-void sets with the same 
cardinality and A is a map of S i x 62 o n t o 63 i s called a 3-basic quasigroup if in 
the equation A(at, a2) = a3 any two of the elements at e g1 ? a2 e g 2 , a3 e 83 
uniquely determine the remaining one. If S i = S2 = S3 we get a uswaZ quasigroup. 
The triple of maps Tf: Si -» Si ' * = *> 2, 3, is called a homotopy with components 
Tl5 T2, T3 of a 3-basic quasigroup (Si> S2, S 3 ; ^ ) i n t o a 3-basic quasigroup (S i , 62, 
fisM') if r3A(ai,a2) = A!{xlax,i2a2) for all ateQu a2eQ2. If in particular 
Qx = Q2 = Q39 Q[ = S 2 = S3 a n d T- = T 2 ^ T 3 w e o b t a i n a quasigroup hOmO-
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morphism. A homotopy with bijective components is called an isotopy and an isotopy 
of (6i> Q,2> 63; A) onto itself is called an autotopy. The set of all autotopies 
(<Pu <P2> 93) °f a given 3-basic quasigroup forms a group under the composition ©: 

(<Pl, <P2, <Pl) o (q>U <P'2 <P'3) = (<Pl o 9 l , <P2 o 9 2 . 9 3 o <jP3) . 

This group is called a full autotopy group. 
Let (Si> (?2> 6 3 ^ 3 ) be a 3-basic quasigroup. Since any two of the elements 

ai, a2, a3 1n the equation A3(au a2) = a3 uniquely determine the remaining one, 
we can define operations 

A2(a3, at) = a2 , A1(a2, «3) = ai 

which are analogous to the left and right inverse operations of a usual quasigroup. 
Then 

At(Aj(ak, a;), Ak(ah a,)) = a% 

is fulfilled for (i,j, k) = (1, 2, 3), (2, 3,1), (3 ,1 , 2). Moreover, (Q2, Q3, Qu Ay) and 
(Qz> QU Q2I A2) are also 3-basic quasigroups which are called cyclic parastrophes 
of (QuQ2,Qi;A3). 

In the sequel we shall use symbols Q, Q' as the notation for 3-basic quasigroups 
(Qu Q2, Qz\ A), (Qi, G2, Q'3\ A'), respectively. 

A congruence in a 3-basic quasigroup Q is a triple of equivalence relations Qt of Qi9 

i = 1, 2, 3, such that 
(0 *£iy => A(x, z) 03 A(y, z) for all z e Q2, 

(ii) x02y => A(z, x) Q3 A(z, y) for all z e Qu 

A congruence (0l5 g2, Q3) of Q is said to be normal if 
(iii) .A(x, z) 0,3 ^4(y, z) => xQxy for x j e Q i and z e Q2, 
(iv) yl(z, x) Q3 A(z, y) => xQ2y for X J G 2 2 and z e Q^ 
In the definition of normal congruence we can combine conditions (i) and (ii) to 

(I) *i?2iyi> *202y2 => A(xu x2) 03 ,4(3^, y2) for xu yt e Qt and x2, y2 e Q2i 

and conditions (iii) and (iv) to 

(II) if ^ (x l 5 x2) 03 A(yu y2), then x&yx o x2Q2y2 for x l 9 yx e Qt and 

x2> y2 e 62-

The connection between homotopies of a given 3-basic quasigroup and its normal 
congruences is well-known ([3]). Let (T19 T2, T3) be a homotopy of a 3-basic quasi­
group Q onto a 3-basic quasigroup Q'. Then we can define equivalence relations 

RTi = Qi x Qt by xRTiy o T(X = Tty , i = 1, 2, 3 . 

We shall show that (.RT1, RX2, _RT3) is a normal congruence on Q. 
(i) For x, y e Qt let xRXly o TXX = T±y, then T3y4(x, z) = A'^^x, T2Z) = 

= - ^ ( T ^ , T2Z) = T3A(y, z) => A(x, z) -RT3-4(;y, z) for all z e <22. 
(ii) For x, ye Q2 let xRT2y o T2X = T2y, then T3.A(z, x) = Ar(Ttz, T2X) = 

= A'(TIZ, T2y) = T3A(Z, y) => A(z, x) RX3 A(z, y) for all z e Q^ 
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(iii) Let AL(x, z) jRt3 A(y, z) <=> T3A(x, z) = T3A(>>, z), then A'(xxx, x2z) = 
= -4'(tiy, T2Z) => Ttx = t1y => xRXiy for all z e Q2 and x, y e Qt. 

(iv) Let 4(z, x) RX3A(z, y) o x3A(z, x) = T3A(z, y), then A'(x1z9 T2X) = 
= £(%&, x2y) => T2X = T 2 J => xRX2y for all z e g ! and x, y e Q2. 

Conversely, every normal congruence (Q19 Q2, Q3) on a 3-basic quasigroup Q 
determines a homotopy of Q onto a convenient 3-basic quasigroup Q'. Let Q = 
= (Qu QI, QS) be a congruence on Q = (Qx, Q2, Q3; •) and let 

CQi = {xeg^ ; x^a} 

be an element of the decomposition QtJQt for ae Qh i = 1, 2, 3. Clearly b e CQ
a => 

=> CJ1 = C£< and & £ C*1 => CJ' n C£* = 0. Define a map ©: (Qi/Ci) x (QI\QI) -* 

- (Ga/ffa) by 

(1) C'1 O Cf = CQ
x
3
y for all x e ^ j / e f e . 

This map is independent of the choice of x, y because if Cx
l = CQ

X\ and CQ2 = CQ2, 
then C£% = CQ

x
3.%r for all x, x' e Q1 and >>, y' e Q2. If (g l5 Q2, Q3) is a normal con­

gruence, then (Q^Qu QI\QI^ Q3IQ3I O) 1s a 3-basic quasigroup. We need to verify 
that every equation 

(2) CQ
a
l © CQ2 = Cf , a e Qu y e Q2, c e Q3 

and every equation 

(2') CQ}QCQ
h

2 = CQ
c
3, xeQx,beQ2,ceQ3 

are uniquely solvable by CQ2 e Q2\Q2 and CQ
X e Q±\QX, respectively. 

We have CJ1 © CQ2 = CQ3
y = CQ3 and consequently (a . y) Q3C. Let y = b be the 

unique solution of the equation a . y = c and let 3; = V be a solution of the relation 
(a . y) Q3C Then (a . b) Q3C, (a . b') Q3C and consequently (a . b) Q3(a . b') => bQ2b' => 
=> Cg2 = Cg2. (Here we have used the fact that (Q19 Q2, Q3) is a normal congruence.) 

The equation (2') can be discussed similarly. 

The quasigroup Q\Q = (Q1/o.1, QI\Q2> QZ\QZ\ O) 1s called the factor-quasigroup 
of Q under Q. The maps T(: Q{ -» Qj/g.? defined by rta = CJ-', i = 1, 2, 3, satisfy 

T3(X . y) = C£y = C? O Cf = (T,X) G ( t 2 y ) . 

Consequently, (T1? T2, T3) is a homotopy of Q onto Q\Q. • 
We shall still prove that 

(3) x . q 2 = Cl}.y = C% for all xeQt,yeQ2. 

Let us take an arbitrary element ze x . CQ2 and let be Q2 be another element 
satisfying the equation z = x . b. Then 

T3Z = T3(X . b) = (TXX) © ( T 2 5 ) = (Ttx) G (i2y) = ^ ( x . y) => 

ZQ3(X . y) and thus z e CJ*r Similarly, choose z e C£3
r then ZQ3(X . y) and T3Z = 
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T3v* • y) = (Tix) O (T
2y) = (Ti*) O (T

2fc) = T3(X . b) and ZQ3(X . b) for all b e CQ
y
2, 

us z e x . Ce
y
2 and x . Ce

y
2 = CQ

x\y. 
It can be verified analogously that Cx

l . y = CQ
x\y for all x e Ql9 y e Q2. 

2. AUTOTOPIES 

Let Q = (Ql9 Ql9 Q3; •) be a 3-basic quasigroup, IJf the full permutation group 
of Qh i = 1, 2, 3, and J^ (Q) the full autotopy group of Q. Starting from subgroups 
F! of II1 and F2 of U2 we introduce F3 by 

(4) F3 = {(p3 e TI3; (pxx . (p2y = (p3(x . y) for all xeQu y e Q2 , 

<PieF1? <p2eF2} . 

Clearly (<?!, <p29 <p3) e J / ( Q ) . 

Lemma 1. F3 defined by (4) together with the map composition o is a subgroup 

0fn3. 
Proof. Clearly et = idQi e Tl9 e2 = idQl e F and by (4), e3 = idQs e F3. Now let 

(<Pu <P2, <P3), (<Pi, <P2, <P3)e ^ ( Q ) ; <Pn <Pi e A ; <p2, <p2 e F2, then (^((pi*) . <p2(<p2y) = 
= <P3(<Pix • <P2y) = <P3(93^ • y)) f o r a11 * e Qu y e 0,2- Since <p1Q <p\ e Fl5 <p2o<p2e 
e r2 we have also <p3 o <p'3 e F3. If ((pl9 (p2, (p3) e cs/(Q), (pt e F1? (p2 e F2, then there 
exist (p^1 e Tl9 (p^1 e F2 (as Fl5 F2 are groups) and <p3 e F3 with (^TS <̂ 2 S ^3) 6 

e j3f(Q). Thus <pT\<Pix) • ^J 1 (^ 2 y ) = P s W * .y))=>x.y = <p3(<p3(x . y)) => 
=> (p'3 0 (p3 = e3 => <p3 = 9a"1. • 

Lemma 2. (obvious). .417 autotopies (<pl9 <p2, <p3) (just obtained by (4) and said 
to be admissible) of Q form a subgroup G l j 2(F l 9F2) of s/(Q) under the compo­
nentwise composition. 

Lemma 3. Let (<Pi, <p2, ̂ 3) e ^ (Q) be admissible. Then arbitrary two of the 
components q>l9 (p2, q>3 determine uniquely the remaining one. 

Proof. Let us choose (pl9 (p3 and suppose that there exist (p2 and (p'2 such that 
(ptx . (p2y = (p3(x . y) and (ptx . (p2y = (p3(x . y). Then (ptx . q>2y = (ptx . (p2y and 
<P2y = <P2y for all y e Ql9 x e Q1 => q>2 = (p2. 

Similarly , if we choose (p2, (p3, then we get a unique <p±. • 
Thus we can choose rl9 F2 arbitrary and obtain the unique corresponding F3. 

(1 2 3 \ 
) where (ij, k) = (1, 2, 3), (3 ,1, 2), (2, 3,1), and 

1 j k) 
the corresponding cyclic parastrophes (Qi9 Qj9 Qk9 Ak)9 we can start from groups 
Fi, Ti and introduce Ffc by 
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(5) rk = {cpk e nk9 Ak((ptx9 <pjy) = <pkAk(x9 y) for all x e Qi9 y e Qj , 

(pteri9 (PjeTj}. 

This permits us to choose any two groups of Fl9 F2, F3 arbitrarily, the remaining 
one being then uniquely determined by (5). Thus we obtain a subgroup Gtj(ri9 rj) 
of sf(Q). 

Remark. Passing from ri9 F2 to F3 by (4) and similarly from F2 = F2, F'3 = F3 

to r\ by (5), we get in general Ft * r\9 thus Gia(ri9 F2) + G2,3(F2, F3). 
Now we present several examples. 

Example 1. Let Ft = {ei9cc}9 F2 = {el9 /?}, where a2 = ei9 p2 = e2. Then by 
(4), F3 = {e3, yi9 y29 y3} with the multiplication table 

" 
ľ2 ľз 

ľl tз ľз І2 

І2 ľз e3 ľl 

ľз ľ2 ľl eз 

The admissible autotopies are (ei9 e2, e3)9 (a, el9 yt), (ei9 ft, y2) and (a, J?, y3). If 
y3 = e3, then yi = y2 and we obtain 

Example 2. Fa = {ei9a}, F2 = {e2,P}, F3 = {e3,y} with a2 = eu fi2 = e2, 
y2 = e3 and with the admissible autotopies (ei9 el9 e3)9 (a, e29 y), (ei9 P, y), (a, jS, e3). 

Example 3. Let Ft = {ei9 a} and F2 = {el9 pi9 P2}9 where a2 = eY and 

ßl ß2 

ß2 

ßг e2 

e2 ßl 

Then, by (4), F3 consists of 6 elements e39 yi9 y2, y3, y4, y5 with the multiplication 
table. 

ľl ľ2 ľз ľ4 ľs 

ľl ľ2 Єз ľ4 ľ5 ľз 
ľ2 e3 ľl ľ5 ľз ľ4 
ľз ľ4 ľs Єз ľl ľ2 

ľ4 ľ5 ľз ľl ľ2 Єз 

ľs ľз ľ4 ľ2 Єз ľl 

The admissible autotopies are (eu e2, e3), (eu 0U yt), (eu 02, y2), (a, e2, y3), (a, pu y4), 
(a.^.Vs)-
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We can observe that in Examples 1 and 3 Glt2(Tl9 r2) =1= G2>3(r2, r 3) , whereas 
in Example 2 
(6) GU2(rl9 r2) = G2^(r29 r3) = G3tl(r29 rt) 
holds. 

Now we restrict ourselves to the case when (6) is satisfied. 

Lemma 4. Let G be a subgroup of stf(Q) such that 

(7) G = G, >2(r., r2) = G2>3(r2, r3) = G3tl(r3, r,). 

Define a map *: Tj x T2 -> r 3 by 

(8) a*£ = yo(a9fi9 y)eC for all aeFl9 peT2. 

Then (rl9 Tl9 r 3 ; *) is a 3-basic quasigroup. 

Proof. If we choose any two elements of a e rl9 j8 e Tl9 y e r 3 , then by (5) and 
(7) there exists a third element such that (a, /?, y) e G, and by Lemma 3 this element 
is unique. • 

We say that the subgroup G of s/(Q) is special if its component groups rl9 r 2 , r 3 

with the binary operation *: fx x T2 -> T3 defined by (8) form a 3-basic quasigroup 
( r l f r 2 f r 3 ;* ) . 

3. CONGRUENCES 

Let Q = (Q1? g2, Q3; •) be a 3-basic quasigroup, G a subgroup of *s/(Q) and 
rl9 r2 , r 3 component groups of G. 

Lemma 5. {r,(x); x e (),•} is a decomposition of Qi9 i = 1, 2, 3. 

Proof. For all x e Q( we trivially have x e r£(x), because e{ = idQt e ri9 etx = x. 
We need to prove that rt(x) n r^y) # 0 implies rf(x) = r^y), x j e Qf. If z e 
e rf(x) n r ,(>>), then there exist cc9 Pe Tt such that z = ccx9 z = py and therefore 
^•(z) c rf(x), rf(z) c rf(j;); at the same time there exist a"1, jS"1 e f j such that 
x = a - 1z, y = jS_1z, thus r<(x) £ ^(z), r^y) c r*(z). This yields r / x ) = ^(z) = 
= ny). m 

Now we can define for every / = 1, 2, 3 an equivalence relation Rr' on Qt by 

(9) xRr'yor£x) = rfo) for x . ^ e f t . 

Theorem 1. (Rr>, Rr2, Rr*) defined by (9) is a congruence onQifG = G1 a(ru r2). 

Proof. We must prove 

xtR
r,yn x2R

r*y2 => (x, . x2) R
r3(vt . y2) . 
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When XiRFtyi9 then r^Xf) = r ^ ) and there exists (PteTi such that yt = ^x,-
(i = 1,2) and 

yi • y/= <Pi*i • ^2^2 = <P3^i . ^2) -> yi • y2 e r 3 ( x x . X2) . 

By Lemma 5 we get r 3 ( x x . x2) = r3(yt . j>2) => (xt . x2) Rr3(yt . y2). • 

Theorem 2. Every special autotopy group G of a 3-basic quasigroup Q uniquely 
determines a normal congruence on Q. 

Proof. By the definition of a special autotopy group G = G12(rl9r2) = 
= G3 , i(r3 , rx) = G2t3(r29 r 3 ) and by Theorem 1, the triple (Kr i, Rr\ Rr*) defined 
by (9) is a congruence. It remains to prove that this congruence is normal. 

a) If (x ; z) K r 3(j; . z) for x9 y e Ql9 ze Ql9 then T3(x . z) = T3(y . z) and there 
exists cp3 e r 3 such that x . z = cp3(y . z). When we choose cp2 = idQl9 then there 
exists a unique q>x e T1 (G is special) such that x . z = cp3(y . z) = cpxy . z. Thus 
x = (pxy and x i ^ j 7 . 

b) If (z . x) Rr3(z . y) for z e g ^ x j e g 2 , then T3(z . x) = r 3 (z . y) and z . x = 
= cp3(z . y) for <p3 G r 3 . If we choose <p! = idQl9 then there exists a unique cp7 e T2 

such that z . x = <p3(z . j ) = z . <p2y. Thus x = cp2y and xRf2y. • 
Now we shall prove the converse theorem. 

Theorem 3. Let Q = (Q19 Q29 Q3) be a congruence on a 3-basic quasigroup Q = 

= (Qu Q2, 63). Then for every i = 1, 2, 3, 

(10) r f = {<? e 77f; CJi = CJ' for all x e Q,} 

forms a subgroup of 171 and Tl9 r 2 , T3 are components of an autotopy group 
^ = Glt2(rl9r2). If Q — (Q^QI.QS) is a normal congruence on Q, then G = 
= Glt2(rl9 r2) is a special autotopy group on Q. 

Proof, a) It follows from (10) that r f(x) = Cx\ Consequently, r f is transitive 
on Cx*. It is clear that idQ, e r f . If cp9 cp' e Ti9 then C%x = Cx

f = C%.x and q/,((px) = 
= CJX = Cx< => <p' o <p e r , . If (p e Ti9 then Cx' = C%x for x e Qt and there exists 
j e Qf such that yo^x and cpx = y. Since cp is a permutation there is <p_1 e 77,. such 
that x = cp~xy and CQ

X
{ = CJ'-ly, CJ1 = Cx< = C^-iy => cp"1 e r t . Thus we have 

proved that each r f forms a subgroup of 77f, i = 1, 2, 3. 
b) Now we shall prove that rl9r29T3 are components of an autotopy group 

^ = Gr1>2(r1 ,r2). We need to prove that every two elements cp1eTl9 (p2eT2 

uniquely determine cp3 e T3 such that (ptx . (p2y = <p3(x . y) for all x e Ql9 y e Q2. 
Let (pt e Tv cp2 e r 2 , then for any x e Qt and y e Q2 we have Cx

3
y = C*1 © CJ2 = 

= C%\x © Q2
2y = CJ%.W

 a n d (* • y) Q?{<P\X • <?2y)- We know that every congruence 
relation is always reflexive and therefore for some ze Q3 we get <ptx . cp2y = z 
and Cf3 = Cx

3
r The transitivity of r 3 on Cx

3
y implies that there exists cp3eT3 with 

z = <jp3(x . y) => ^ x . <p2y = <p3(x . y) => (cpl9 (p29 cp3) is an autotopy on Q. 
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c) Let (QU Q2, Q3) be a normal congruence on Q. We must prove that every two 
elements of (p1eTu (p2eT2, cp3eT3 uniquely determine the remaining one such 
that cpxX . <p2y = cp3(x . y) for all x e Qu y e Q2. If q>x e Vu <p3 e F3, then for x e Qu 

yeQ2 we have CJ' = C%\x, C% = C%\{x,y), C% = C,1 0 CQ2 = C%\x Q CQ2 = 
= ^Vix.y = ^3(x.y) anc^ C^i* • y) Qz<Pi(x • y)- The reflexivity of Q3 implies that there 
exists an element y' e Q2 such that that (ptx . yf = <p3(x . y) and C%\iXty) = C%\x Q 
Q CQ2. Since simultaneously C£ (x .y) = C%\x Q CQ2, we obtain CQ2 = CQ

y
2. Here we 

have used the fact that (QU Q2, Q3) is a normal congruence. Now the transitivity of F2 

on CQ2 yields the existence of cp2 e F2 with yf = cp2y. Thus q>3(x . y) = (pxx . <p2y. 
Similarly, if (p2 e F2, <p3 e F3, then for xe Qu y e Q2 we have CQ2 = C£2

23>, 
CZ = < % „ , and Cx

3
y = C*1 O Cf = C*1 O C'2 , = Cx

3„2y = C"(x.y)" so that 
(x . (p2y) Q3cp3(x . y). The reflexivity of Q3 yields the existence of an element x' e Qt 

such that x ' . cp2y = (p3(x . y) and q,33(x y) = CQ
X\ Q C%\y so that C,1 = C$i. 

Using the transitivity of Ft on CQ
X we get cpx e Fx such that xf -= (̂ tX and q?3(x . y) = 

= (p^ . cp2y. m 

Theorems 2 and 3 yield a 1-1-correspondence between the special autotopy groups 
and the normal congruences of a given 3-basic quasigroup Q. On the other hand, 
we know that there exists a 1-1-correspondence between the normal congruences 
of Q and the homotopies of Q onto Q'. So we have also a 1-1-correspondence 
between the special autotopy groups G and the homotopies (xu T2, T3) of Q. This 
correspondence G o (TU T2, T3) is given directly by 

rt = {<P e nf; Tt(cpx) = Ti(x), x e Qt} 

and Tt(x) = Tt(y) o y e rt(x), where x, y e Qt, i = 1, 2, 3. 
Now let G and G' be special autotopy groups. If F'f is a subgroup of F,« for every 

i = 1, 2, 3, then G' is a subgroup of G and i^*' is a refinement of RFi for i = 1, 2, 3. 
If F, = nt for every i = 1, 2, 3, then we get the maximal normal congruence 

(Rn\ R?2, Rni), i.e., xRniy for all x, y e Q{ and C f 1 = Qt = Tf(x) for every x e Qt. 
If Ff = {et}, i = 1, 2, 3, then we get the minimal normal congruence (Re\ R62, Re3) 

so that xReiy ox = y and Cx
e< = r t(x) = {x} for every xe Qt and ef = idQ.. 

Now we pass to a usual quasigroup (Q, Q, Q; •) and take a special autotopy group 
G with components Fl5 F2, F3. Using Theorem 2 with Qt = Q2 = Q3 = Q we 
get a normal congruence (.Rri, RFl, Rf3) with decomposition classes C*r* = F^(x), 
x e Q. So we have three (in general, mutually distinct) decompositions forming 
a 3-basic quasigroup (QJRri, g/K r2, Q\Rr*\ ©)pwith Cf1 Q C^2 = C ^ 3 , where 
x, y e Q. 

All these results can be trivially generalized to (n + l)-basic quasigroups. We shall 
mention some primary notions. Q = (Qu Q2,..., Qn+U A) is said to be an (n + 1)-
basic quasigroup if Qu Q2,..., Q„+1 are sets with the same cardinality, A is an 
n-ary operation with 

(11) A(au...,an) = an + i for ateQi, i = 1, . . . , n + 1 , 

45 



and in (11) any n elements of ate Qh i -= l, . . . ,n + 1, uniquely determine the 
remaining one. Under a homotopy of Q onto Q' we mean an ordered (n + l)-tuple 
(*i, •-.>Tn+i) of maps v . Qi -> Qh Tt(Qt) = Qh i = 1, ..., n + 1, such that 
*n+iA(al9...,aH) = y4'(r!a!,..., rnan) for all ax^Qi9 i = l , . . . ,n. By analogy we 
can define an isotopy and an autotopy. The (n + l)-tuple (g l9..., £n+1) of equivalence 
relations gf of Qh i = 1,..., n + 1, is called a normal congruence on Q if a^b, 
a,beQi<> A(xl9..., x ^ , a, x i + 1 , . . . , xn) Qn+1A(xl9..., x^ 1 ? b, x i + 1 , . . . , xn) for all 
i = l,... , n and all XjeQJ9 j = 1,..., i — 1, i + 1,..., n. A subgroup G = 
= ( r l ? . . . , Fn+1)ofthe full autotopy group ofis said to be special if (Fl9..., F„+i; <P) 
is an (n + l)-basic quasigroup, where 

&(<Pi>—><Pn) = ? B + i ° ( 9 i ^ » f t + i ) e G , <Pi^Ti, i = 1,..., n + 1 . 
Similarly as in the case n -= 2, we can prove that there exists a 1-1-correspondence 
between the normal congruences on Q and the special autotopy groups G on Q. 

If an (n + l)-basic quasigroup (Ql9..., Qn+1; -4) satisfies Qv = ... = Qn+1 then 
we get the n-quasigroup (Q; ̂ 4) = (Q,..., Q; .4). R. F. Kramareva ([2]) proved 
that every homotopy of an n-quasigroup (Q; A) onto an n-quasigroup (Q'; A') 
determines a normal congruence (g t , . . . , Qn+1), and that (QJQl9..., Q\Qn + i\ %) with 

1(CS;,..., Q ) = C^,1
 fln) C°a\ e e/c, , i = 1,...,» + 1 

forms a partial n-quasigroup. This is exactly our (n + l)-basic quasigroup. 
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Souhrn 

O 3-BÁZOVÝCH KVAZIGRUPÁCH A JEJICH KONGRUENCÍCH 

ELENA BROŽÍKOVA 

Podgrupa G úplné grupy autotopií dané 3-bázové kvazigrupy Q se nazývá speciální, jestliže 
její grupy komponent rl9 F2» ^3 t v o r í 3-bázovou kvazigrupu (/"i, F2, T3; *), kde 

OL*P= yo(oc,f},y)eG pro a e I\, í e f 2 , y e T3 . 

V této práci je dokázána vzájemně jednoznačná korespondence mezi speciálními podgrupami G 
a normálními kongruencemi Q dané 3-bázové kvazigrupy Q. 
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Резюме 

О 3-БАЗОВЫХ КВАЗИГРУППАХ И ИХ КОНГРУЭНЦИЯХ 

Е Ь ^ А ВК021К0УА 

Подгруппа С полной группы автотопий данной 3-базовой квазигруппы ^ называется 
специальной, если ее группы компонент Г19 Г2> Г2 образуют 3-базовую квазигруппу (Г19 Г2> 

_Г3; *), где 

а * 0 = у о (а, р, у) е С для а е Ги $ е Г2, уе Г3. 

В работе показано, что существует взаимно однозначное соответствие между специальны­
ми подгруппами С и нормальными конгруэнциями # данной 3-базовой квазигруппы ^ . 

АиХког'з аМгезз: Ь\хоуп\ ГакиИа СУОТ, К201, Каг!оуо пат. 13, 121 35 РгаЬа 2. 
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