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TO THE INVERSION OF GARDING THEOREM

MIROSLAV SOVA, Praha
(Received June 15, 1987)

Summary. The subject under consideration is the inversion of the known Garding theorem
concerning algebraic conditions (sufficient and) necessary for the so called ellipticity of some
linear differential operators with very mild requirements (local integrability) on coefficients.

Keywords: Linear partial differential operators.

AMS Classification: 46E10.

The purpose of this paper is to extend the known inversion of Garding theorem
for partial differential equations, concerning the relation between the corresponding
differential quadratic form and the quadratic form of coefficients, as given e.g.
in Nedéas, Chap. 3, Sect. 4.3, Théoréme 4.7. Instead of the topological continuity
of the coefficients including the boundary, we suppose only their local integrability.
On the other hand, we restrict ourselves to the pure second order equations for the
sake of simplicity, even if the method seems to work also in the general case.

The proof of our result (Theorem 13) is based, as usual, on the use of some form
of Fourier transform. But the form used below is considerably different and essentially
more complicated since we must work with the continuity in the absolute mean almost
everywhere of our locally integrable coefficients (i.c. with their Lebesgue points)
instead of the above mentioned topological continuity including the boundary.
The auxiliary results are collected in a series of lemams.

1. We denote by R the real number field.

2. For arbitrary d € {1, 2, ...}, R? is the d-dimensional coordinate space in which
we use the following abbreviations:

' d
(1, & =Y nt for &, neR’,
r=1
Ky(&) = {n:neR?%, max |y, —&| <h} for h>0 and EeR‘.

re{1,2,...,d}

Further, u is the usual Lebesgue measure in R? and [ga the corresponding Lebesgue
integral.

28




3. CP(R?) is the set of all infinitely differentiable complex functions ¢ on R? with
compact support. The support of ¢ € CP(R?) is denoted supp (¢) and the partial
derivative with respect to the r-th variable d¢/d., or 8/é., ¢ for re {1,2,...,d}.

4. In the sequel,  will be an arbitrary fixed open subset of R,

5. Lemma. Let f be a complex function on Q. If the function f is locally integrable
in Q, then there exists a measurable set N = Q such that

() u(N) =0,
1 .
O IRV CIRTI R

for every e Q\N.
Proof. Saks, Chap. IV, Theorem 6.3.

6. Let us define:

1

— __ aien,(./B)=&> PR
Vews = 1 y (h 5)

for every Y e C3(R?), 0 > 0,7eR% h > 0 and £ e RY.

7. Lemma. y,,,: € CF(R?) for every e CY(R?), ¢ > 0,neR% h > 0and e R’

Moreover,
) 1 T. oy
i 1// =— | ign, + (=
a.r onhg h an ‘panhé‘ a.r onh

for every y € CJ(RY), 0 >0, neR), h>0,éeR?and ref{l,2,...,d}.

8. Lemma. IR“‘ ll//("lh:
EeRY

> = [pa|W|? for every y e CP(R?), ¢ > 0, neR* h > 0 and

9, Lemma.

1 0 0 1
;Laé‘-i Y onhe Y Yomne = 52 Ml LJMZ (¢ = )

= J

for every y e CF(RY), neR, h>0,¢eRand i,je{l,2,...,d}.

Proof. By Lemma 7, we can write

1 0 0
- 5 Yonns P ‘ponhé =
Q Rd Oej (/-j

-

e[+ (2) [ ().,
===\ |ionWome + | —ion Wome + | =
0? 12.{ nd[ o <5-i onhé s 0/ onne

for every y € CP(R?). 0 >0, neR%, h >0, éeR%and i,je{1,2,...,d}.
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The statement follows immediately by making use of Lemmas 7 and 8 and of the
Schwarz inequality.

10. Lemma.
1

: L f .
~ 1 (// g —> ®©
Qz Re [Oef 2 ndl I ( )

Sor every Yy e CJ(R%), neR?, h > 0 and ¢ e R

ll’lmﬂ:{

Proof. Immediate consequence of Lemma 9.

11. Sublemma, For every y € C3(R?), there exists a gy > O such that

()it

‘r

d /2 d a¢ 2\1/2
sttt [+ BT () (SR
Rd r=1 Jpa i) r=1 JRa a
for every o = g,.
Proof. The case y = 0 is evident.
Suppose now Y % 0.
Then we get immediately that
d 2 1/2
[ w5 [ Y - (fior) " (5 [
e (e = ).

: oy
[Q max|y| + ) max >
r=1

‘r

] 7 [max [’

This implies that the left hand side of the preceding relation is

1 fu U
2 [max |y

v

for sufficiently large ¢ > 0.
The just proved inequality immediately gives the desired result.

12. Lemma. For every Y € C3(R?), there exists a ¢y > 0 such that

(] ) [T

<mmuw]zj ml

0.,

r

for every ¢ > 0o, n€RY, an =1,h > 0and £eR%
r=1
Proof. Itis clear that
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1
(1) max | opme| = 7 max [y

for every y e CP(RY), ¢ > 0, neR% h > 0 and £ e R
By Lemma 8, we have

(2) IR” |'//(n1h§l2 = IR” I‘I/‘z
for every y e CP(R%), ¢ > 0,neR% h > 0 and EeRY,
61#) 2 [ oy|?
3 s = b
( ) J‘Rd (a'r onh& + R4 a'r

for every y e CJ(RY), 0 > 0,neR, h > 0,¢(eR%and re{l,2,...,d}.
On the other hand, we have by Lemma 7 that ‘

) 1T, oy
4 — = —| ign, +|—
( ) 6., 'ﬁenh§ h [ on l//Lnlhé (a'r>9uh§]

for every Y € CP(R%), 0 > 0,7eR%, h > 0,¢(eR%and re{l,2,....d}.
It follows from (1) and (4) that
o
o..

for every lpeC(‘f(R‘), 0>0,neR, h>0,¢éeR%and re{l,2,-..,d}.
Now by (5), we obtain

© 3 max

(5) max 1//9,,,,g

1
e el max 1]+

pS

p ‘Panhé

‘r

oY

0
0wy

S ST hd/2+1 [Q Y |ne| max |y| + Z max

1/2

hfli/2+1 [Q (Z Irl l 12 max llﬁl + Y max

for every Y € CJ(R?), 0 > 0, 7€ R%, h > 0 and £ e R%
As an immediate consequence of (6) we have

d a 2 d d
(7) [Z max |— |/ ] < [g max || + ) max
r=1 lij r hd+2 r=1

oy
a]

a_lpz
)

r

enhé

By (7), we can write

Y

ol

°r

d
for every Y e CP(R?Y), 0 > 0,neR?, Y n? =1, h > 0and Ee R
r=1
wenh{

o ()] ()i

for every Y e CJ(R?), ¢ > 0, ne R%, an =1,h>0and eR’.
r=1
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wanhﬁ

2

v

]

oy

2)1/2
r

c.

On the other hand, we obtain from (2), (3) and (4) under use of the Schwarz
inequality that
| 1 9 2
(9) -[ = —ZJ‘ lgnrwonhé + ( ll/) t g
R4 h R4 0. enhg
1 . oy 2
= — 1 — | —= =
=2 (‘ Qﬂr%qh{l ( 2 )m:)
0
,[e n; 'f |V onnel> + (—'/') - Zlelj. 2 ( )
T h Oer) gnhe r) onhe
2
[Q "'J W’anhilz j' ( )
°r/ enhg
]2 aw 2\ 1/2
et (DD
R4 °r/ enhg
1/2 a2\ 12
3o Ll (L)
R4 a R4 a.'
for every y e CJ(R%), ¢ > 0,neR, h >0, éeRand re{l,2,...,d}.
Let us recall that clearly
d oY\ a . 2 d
(10) si([ B) = (5]
r=1 Rd au' r=1 r=1JRa
for every Y € C3'(R?) and n e R%.
1t follows from (9) and (10) that
d a 2
(11) % —‘/’onht‘ =
r=1 JRpd a-’
1 d d a 2 d 1/2 6([/ 2\1/2
2l s e+ B2 - 2T ml(] W (RSINE
h r=1 = 6., r=1 R4 R4 a'r
1 d 5 ) 2 d 112 5 1/2 d awZ 1/2
=—2[QZZ’1,J.|¢I2 —=| - 2e( X 1) q |l//l> (ZJ —> ]
h r=1 R4 r=1 R4 r=1 R4

a.,

for every Y € CF(R?), 0 > 0, 7€ R%, h > O and e R%,
As a special case of (11) we have

(12) l ‘2 'l’enh§

1 d T al? \2 d
sl LB L[ () (2 )

for every Y € C3(R?), ¢ > 0, neRd Zn,—] h > 0and e R’

2

o
a.,

)]

°r
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Using Sublemma 11, we get from (8) and (12) that for every y e C3(R?), there
exists a g > 0 such that
2
| =

[ ] e
([ e
s Mmoo [ w3 [ B —2a(j Y (5[5
] |

d

< 2d[max |¢|]2l:
=1 Rd

for every @ > 0o, 1 € R?, Z n? =1, h > 0and ¢ e RY and this is in fact the desired

r=1

a
'/’rmh{

4

D‘

s

result.

13. Theorem. Let a;;, i,j € {1, 2, 0ens d}, be complex functions on Q, and é a real

function on the system of open bounded sets G = Q such that G = Q. If
(o) the functions a;;, i,j € {1,2,...,d}, are locally integrable in Q,
(B) for every open bounded set G = Q such that G < Q, there exists a constant
A€ R so that
d — 2
Re Y | a; a—qo@+AJ.|¢|2>5(G)‘ﬂJ %
1o, 0 ald

i,ji=1J)gn oj Oj o

for every ¢ € C3(RY) such that supp (¢) S G, then for every open bounded
set G = Q such that G < Q, we have

Y Re a;(&) nin; z 9(G) Z n
i,j=1
for almost every & e G and every ny, 13, ..., g€ R.

Proof. Let us first recall that we can apply Lemma 5 as seen from the assumption
(«), and thus we can fix a measurable set N =  such that

(1) #(N) =0, _
2 - Y L (;)|“U —ayg)] >0 (h—0,)

for every £€ Q\N and i,je{l,2,...,d}.
Let us fix a function x € R? - R such that

(3) xe CF(RY),
(4) 2 *0,
(5) supp (x) = {o: 0 € R?, max |o,| <1}

re{1,2,.
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It is easy to see from (5) that
(6) supp (Xonne) < }(h(é) forevery 0 > 0, neR? h > 0 and ¢ e R
Moreover, let us fix a constant a constant ho(é), ¢ € Q, such that
(7) ho(¢) > O for every &€ Q,
(8) Ku(&) = Q forevery e and 0 < h < hy(¥).
It follows from (6), (7) and (8) that
(9) supp (Xomme) S Q2 forevery @ > 0, 7€ R% 0 < h < ho(€) and Ee Q.
Now we get from (at), (6) and (9) that

. J _
(10) Re Zl (“tl u(é)) Xa'lhé a. Xonne =
1= o
0
= Re_ Z (ai; - u(é)) Xenhc — Xome =
Li=1 ) ka@) 0.
4 d
=2 |ai; — ai(2)| l- Xanh:‘ = Xenh:‘ =
i, j=1 Kn(&) a'i 6.1
d 9
= Z J‘ | ij — U(é)l JHax (3 7 Xonhg| MAX 17— Xonhg =
i=1J)Kn(®) °j
§[ max J. Ial'.i - aii(é)l:l[ Z max Xeﬂhé max (== Xonn
i,7e(1,2,08) ) k(8 j 0.; .

]=

Xonh:

= l: max J‘ | ij = '}(é)l][z max
i,je{1,2,...,d} J K, (&)

]2
forevery o > 0,7e€R%, 0 < h < hy(¢)and £ e Q.
By Lemma 12, we see from (3) and (4) that we can fix a ¢, > 0 such that

(11) [Z max : ]z <

2d
(L“aill_ J 2 o]
Ind IXI r¢ [0
for every ¢ = g0, 1€ R, Zq, =1,h>0and £eR%
It follows from (10) and (11) that

Xonhe

0 0 _
(12) Re Z j (ay—a u(c))— Yeonhe 5~ Xomz =
Li=1Jg ; 0.;
2d (max |x[)? K 2
s HEBBT max [y = a@l][ 5] |2t |
h? fga IXl L,J€(1,2,00.8) ) K2y ra|0e,
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for every
d
020, neR', Yni=1, 0<h=<hyl) and (eQ.
r=1

Let us now consider a fixed but arbitrary set G such that
(13) G = @,
(14) G @,
(15) the set G is open.

It follows from (2), (4), (7) and (15) that we can fix a constant h(¢, &), £ € G\ N,
e > 0, such that

(16) 0 < h(¢&, &) < ho(&) forevery £e G\N and ¢ > 0,
(17) Kye,ey S G forevery £€ GN\N and ¢ > 0,
2
(18) max [ 1 |a“ - a”(é)‘] é SM__E
Ljet1,2,....4) | (&, €)? Kh(E.c) 2d(max lxl)

for every Ee GNN and ¢ > 0.
As an immediate consequence of (6) and (17) we have

(19)  supp (Xemz,pe) S G forevery ¢ >0, neR?, £eG\N and &> 0.

Now, in view of (13), (14) and (19) we see from (B) that we can fix a 4 € R such
that

d 0 0 _
(20) Re ). J Aij = Yomnz.t = Konn(t.epe + AJ. |Xemnz.el” =
ihji=1Ja 6°i 6._,- Q
d 6 2
= (G) Y, j = Xonh(z.e)8
r=1 Rd a-,.

for every ¢ > 0, neR?, £€ G\ N and ¢ > 0.
On the other hand, we get from (4), (12) (16) and (18) that
d

a
(21) Re Z J‘ (afi - u(é)) chh(t )% xanh(é‘ e)«f =
Q

i,j=1 (7.1

2

d
6— Konh(£,e)¢

r=

’

d 6 J
(22) Re Z a;{€) ‘. = Xemn(e.0¢ — Xenmieorg + 4 Ixenh(é z);" =
i,j=1 J R4 a-i 6 .j
a 9 90 ,
=Re Y | Qi — Xemcz.ort — Tenneore + 4 | Xennceoel® —
i,j=1 Q a.i a." 0
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d
0
—Re 3, J‘ (ai; — ai(§) ) 5. Yem@a o~ Xonh(z,008 =

ihji=1J o .
2

2 (8(G) - 6) Z

6 xonh(C )&

for every ¢ > g, n€ R, Zn, =1,(eG\Nand ¢ > 0.

inequality by ¢? and letting ¢ — oo,
2 > — 2
e ) 2 60 = 0 s
d

In view of (3) we can apply Lemmas 9 and 10 and we get from (22), dividing this
d
(23) Re Z ai (&) nin;
forevex.'yrp:—:R’J Zn, =1,eG\Nand ¢ > 0.
Since [ga |x|? > O by (4) and h(¢, &) > 0 by (16), (23) implies
(24) Re . u(é) nMj = 5(G) — &
=1

for every neRY, an =1, e G\N and ¢ > 0.

r=1
It is clear that (24) is equivalent with

(25) Re. _Zd: aij(f) nin; = 5(6)

1,J=
: 4
forevery neR?, Y n? =1 and £ G\N.
r=1

Let us ﬁnally write (25) in the form

(26) Re 3. aif)nim; 2 3(6) Z e

,] =
for every neR? and £e G\N.
Now the desired statement follows from (1) and (26).
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Souhrn

K OBRACEN{ GARDINGOVY VETY

MIROSLAV SOVA

Obraceni Gérdingovy véty je dokazano pro koeficienty pouze lokaln® integrovatelné.
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