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Summary. In the paper sufficient conditions are found for the existence of a solution # of the
third order nonlinear differential equation, satisfying u(f) = 0, u’(¢) < 0, u”(f) = 0 for t€ {0, o)
and ¢(u(0), u’(0), u”(0)) = 0, where ¢ is a continuous function.
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1. INTRODUCTION

In this paper we consider the problem
) u” = f(t,u,u’, u"),
(2 ut) 20, w()<0, u(t)=0 for teR,,

(3) ¢(u(0), w(0), u"(0)) = 0.
Sufficient conditions are found for the existence of solutions of this problem.
We shall use the following notation:

R, =<0,®), R.=(-0,0y, D=R, xR_xR,, JcR,

C(J) is the set of all real continuous functions on J,
AC*(J) is the set of all real functions which are absolutely continuous with their
second order derivatives on J,
L(J)  is the set of all real Lebesgue integrable on J functions,
a.e. = almost every,
L,OC(J) is the set of all real functions which are Lebesgue integrable on each segment
contained in J,
Carloc(J x I) is the set of all functions f:J x I - R satisfying the local
Carathéodory conditions on J x I, i.e.
(i) for each (x,,x,,x3)€l, the mapping ¢+ f(t, Xy, X5, x3) is Lebesgue
measurable on J,
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(ii) for a.e. teJ, the mapping (x,, X5, X3) > f(t, X1, X3, X3) is continuous on I,
(iii) for each @ > 0 there exists h, € Lyo(J) such that

3
Y ‘xi| <o= |f(t, X1s X3, x3)| S<hft) on IxJ.
i=1

A function u € AC*(R,) which fulfils (1) for a.e. 1€ R, and satisfies (2), (3) for
each t € R, will be called a solution of the problem (1), (2), (3).
In what follows we shall assume

4 feCar(Ry x D), f(1,0,0,0) =0, f(t,x4,%5,0) <0 on R, x D
(which means for a.e. te R, forevery x;eR,, x,€ R_) ,
©) peC(D), #(0,0,0)<0.
Moreover, ¢ will satisfy exactly one of the following conditions:
(p1) @(x1, X2, %3) >0 for x, >r,
(92) @(x1, %2, x3) > 0 for |x;| > 7,
(¢3) o(xy, %3, x3) >0 for x3>r,
(94) o(xq, x5, x3) >0 for xy + |x2| >r,
(¢5) o(xy, %2, x3) >0 for xy 4+ x3>7r1,
(96)  @(xy, x2,x3) > 0 for |X2| +x3>r,
(@7) o(xy, x3, x3) > 0 for x; + |x2| +x3>r,

where r € (0, ).

Remark. a) Clearly

(#4) = (1), (92) »
(#5) = (¢1), (#3),
(#6) = (92), (¢3) »
(#7) = (#4), (#5), (#6) -
b) In the special case ¢(x, x,, X3) = x; — r the condition (3) reduces to u(0) = r.
In this case ¢ satisfies (¢1). Similarly for ¢(x,, X;, X3) = |x,| — 7 the condition (3)
reduces to u'(0) = —r and ¢ satisfies (¢2), and so on.

c) Similar problems for differential equations of n-th order and differential
systems were solved in [1—10]. Here, for n = 3, stronger results are obtained.

2. THE MAIN RESULTS
From now on we shall assume that
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(6) - ae(0,0), aeR,, ky,keN, hg, hy,h,e Ly ({a, ©)),

0

we C(R,) is a positive function and J. = 400,

* ds
. QAx)=| —,
o e[

() 5(t, *) is nondecreasing for any te<0,a),

0 @)

o 5(*, x) € L(€0, a)) is nonnegative for any xeR, .

Theorem 1. Let (4), (5), (6), (¢1) be fulfilled, let h € L(<0, a)) be a positive function
and ,

) J: ;—{((% = 4+ where H(t)= J.;h(‘t) dr.
Further, let
(9) _h(t) (1 + x3)2 = f(’, X1s X2, xs) =0

forany (t,x,,x,,x3)€<0,a> x <0,r> x R_ X Ry,
(10) F(t, x4, x3, x3) < [ho(2) +.Z1 ) x|t + ax3] o(x3)

for any (t, x4, x5, x3)€<a, ©) x {0, 7> x R_ x R, .
Then the problem (1), (2), (3) has at least one solution.

Remark. Other existence theorems with the assumption (¢1) can be found in [11].
Theorem 2. Let (4), (5), (6), (7), (¢2) be fulfilled and

(11) lim f t5(t. x)dt > r. .
X=* a0 0

Let there exist a, € (0, ), ag < a and a positive function h € L(0, ay)) such that

(12) ot here (i) = [ h(z)d

—— = 400, wnere t) = t)dt.

.[0 H(1) Jo

Further, let \

13) - f(t, xq, X2, x3) £ =5, xq)
for any (t,xy, X3, x3)€40,a) x Ry x {~r,0> x R, ,

and let on the set {0,a,> x R, x {—r,0) x Ry the inequality (9) and on the
set (a,w) x Ry x {—r,0> x R, the inequality (10) be satisfied. Then the
problem (1), (2), (3) has at least one solution. (The theorem is proved in [12].)
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Theorem 3. Let (4), (5), (6), (7), (¢3) be fulfilled and

(14) lim Jaé(t x)dt > r.

X— 0

Let us suppose that on the set {0,ay x R, x R_ x R, the inequality (13) and on
the set (a, 0) x R,y x R_ X R, the inequality (10) are satisfied.
Then the problem (1), (2), (3) has at least one solution. :

Theorem 4. Let (4), (5), (6), (8), (¢4) be fulfilled. Let us suppose that on the set
{0,ay x {0,y x {(—r,0> x R, the inequality (9) and on the set {a, oo) X
x €0,7) x {—r,0) x Ry the inequality (10) are satisfied.

Then (1), (2), (3) is solvable.

Theorem 5. Let (4), (5), (6), (¢5) be fulfilled. Let
(15) f(t X15 X2 x3) <0 ' )
for any (t,xy, X5, %3)€<0,a) x <0,r> x R_ x R, . '

and let (10) be satisfied for any (t,Xy, x5, x3)€<a, o) x <0,r> x R_ x R+
Then (1), (2), (3) is solvable.

Theorem 6. Let (4), (5), (6), (7), (14), (¢6) be fulfilled. Let us suppose that (13) is
satisfied on the set <0,a) x R, x {(—r,0) x R, and (10) is satisfied on the set
(a, ©) x Ry x {—r,0> x R,.

Then (1), (2), (3) is solvable.

Theorem 7. Let (4), (5), (6), (¢7) be fulfilled, let (15) be satisfied on <0, a) x
x €0, x {—1,0) x Ry and (10) on {a, ) x <0.r) x {—r,0> x R,.
Then (1), (2), (3) is solvable.

Remark. The assumption (13) in Theorems 2,3, 6 is essential dnd cannot be
omitted. For example the problems
=0, u(t)=20, w(@) =0, w() =0, w0)=-
or
u” =0, u(t)z0, w()=<0, ()20, u”(O) =r,
or i
' =0, u(t)z0, w({)=<0, u(t)=0, u(0)+ Iu (O)I =

have no solution although the function f (t, X1, X3, X3) = O satisfies all assumptions
of Theorem 2 or 3 or 6 except (13).
If the function f is nonpositive, i.e. satisfies

(4n) feCar (R, x D), f(£0,0,0) =0, f(t, x4, X2,x3) £0 on Ry x D

instead of (4), we obtain the following corolaries. : i
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Corollary 1. Let (4n), (5), (¢1) be fulfilled. Let there exist a € (0, o0) and a positive
Junction h € L({0, a)) satisfying (8) such that (9) is fulfilled on{0, a) x <0,r) x
X R_ x R,. .
Then (1), (2), (3) is solvable.

Corollary 2. Let (4n), (5), (7), (11), (12), (¢2) be fulfilled. Let (13) be satisfied
on 0,a) x Ry x {—r,0) x Ry and (9) on <0,a,> X Ry x {—r,0> x R,
where aq € (0, a).

Then (1), (2), (3) is solvable.

Corollary 3. Let (4n), (5), (7), (14), (¢3) be fulfilled and let on the set 0, a) x
x R, x R_ x {0,r) the inequality (13) be satisfied.
Then (1), (2), (3) is solvable.

Corollary 4. Let (4n), (5), (8), (¢4) be fulfilled and on the set {0, a) x <0,r) x
x {—r,0> x R, let the inequality (9) be satisfied.
Then (1), (2), (3) is solvable.

Corollary 5. Let (4n), (5), (¢5) be fulfilled. Then (1), (2), (3) is solvable.

Corollary 6. Let (4n), (5), (7), (14), (¢6) be fulfilled and let (13) be satisfied on the
set €0,a) x R, x {(—r,0) x {0, r). Then (1), (2), (3) is solvable.

Corollary 7. Let (4n), (5), (¢7) be fulfilled. Then (1), (2), (3) is solvable.

3. PROOFS

To prove the above theorems we need some lemmas.

Lemma 1. Let (4), (5) and (¢i) béfulﬁlled, where i€{1,2,3,4,5,6,7}. Suppose
that

|f(t, X1, X3, x3)| < (1)

holds on the set R, x D, where f* € L;,(R ).
Then for any c € (0, ) the boundary value problem

u” =f(t,u,u';u"),

@(u(0), u'(0),u"(0)) =0, u(c) =u'(c) =0
has at least one solution u € AC*({0, c)) satisfying

u(t) 20, vw({)<0, uw(t)=0 on <0,c).

Proof. Lemma 1 can be proved analogously to Lemma 3 in [12].
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Lemma 2. Let ¢ > 0 and let v e C*(0, c)) be such that
()20, v()=0, v()=0 for 0<St=<c.
Then the inequality
[v'(8)] £ W0)c + VRu()) w(t)) for 0<t=<c
where w(t) = max {Iv"(s)l 1t < s <c} holds.
Proof. See Lemma 3 in [11].

Proof of Theorem 1. Without loss of generality we may assume that h;
(j = 0, 1, 2) are nonnegative functions.
First, suppose that there exists f* € Li,(R+) such that

(16) |7t X1, X, X3)| S f*(t) on Ry x D.

Then for any p € N the boundary value problem (1), (3)

(17). ua+p)=u(a+p =0

has at least one solution u € AC*(0, a + p)) satisfying

(18) W) 20, w()<0, ()20 for 0St<a+p.

(See Lemma 1.)
From (3), (¢1) and (18) it follows that

(19) O<u(f)sr for 0ZtLa+p
and
u(0) = u(a) + alu'(a)| + f§tu"(r)dt,
which implies
(20) fotu(dt=<r.
By (9) we have
(21) (L +u(r)y 2 —h()) (1 + u'())* for 0<t=<a.
Integrating the differential equation
(22) Z'(t) = —h(t) 2*(t), 0=t=<a,
we get z(t) = (1/z(0) + H(f))™* and by virtue of (8) there exist ee (0, 1) and a, €
€ (0, a) such that |3 #(z(f) — 1) dt > r, where z(0) = 1/e. Let us suppose that 1 +

+ u"(t) = z(t) for ap < t £ a. Then [ tu”(t) dt > r which contradicts (20). Thus
it is necessary that there exist t, € (g, @) such that

(23) 1+ u”(to) < z(to) -
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Now, from (21), (22), (23) by Chaplygin Lemma on differential inequalities (see [5])
we get 1 + u”(t) < 1/efor 0 < t < t,, and by (9)

(24 w(t)<r, for 0<t<a, where r, =1fe—1.

Using Lemma 2 and taking into account (18), (19), (24) we obtain

(25) lu’(t)] Sr, for 02t=<a+p, where r,=rfla+ (2rry).
By (10) we have

2
(@ (@) = [ho(t) + X hi(t) D) + @ u(t)] w(w(r))
and integrating from a to  and using (19), (24), (25) we get
(26) u'(t)<eo(t) for a<t<a+p,

2
where o(t) = Q71(Q(ry) + ar, + (F** + 2 + 1) {4 3 h(7) dr). Now, if f does not
satisfy (16), we put i=0

o(t) = r+r,+r, for 0Zt=<a
r+r,+o(t) for a<t=<a+p,

1 for 0<s < o(t)
x(t, s) =142 — slo(t) for ot) < s < 20(t)
0 for 20(f) <5,

3
J(t, x15 %2, x3) = x(t,.gllxil)f(t, X1, Xz, X3) -

Since f satisfies (16) and all assumptions of Theorem 1, the boundary value problem
u” = f(t,u,u',u"), (3),(17)

has at least one solution u,, satisfying (18), (19), (24), (25), (26) and so
3 .

@) Tl <o) for 0St<a+p.
i=1

Thus u, is also a solution of the problem (1), (3), (17) on <0, a + p)>. Now, denote

_ f(t1x1>x23x3) for 0§t§a+p
Folts %15 %, %3) = {0 for t>a+p.

Then {f,,(t, X1, X25 x3)l < If(t, X1, X2, x3)| for any pe N and lim f(t, x, x5, X3) =
= f(t, x,, X5, x3) o R, x.D. Since P oo

3
sup { X [ul""()| : pe N} < o(t) for teR,,
i=1

we can prove by the Arzeld-Ascoli theorem that the sequence {u,};-; contains
a subsequence {u, ,}}11 which is locally uniformly converging together with {u; !}}"; 1
and {u,} % on Ry, and u(t) = lim u, (#) is a solution of (1), (2), (3) on R,.

j®

24



Proof of Theorem 3. The first part of this proof is similar to that of Theorem 1
and u denotes again a solution of (1), (3), (17) satisfying (18).

Now, let us choose ¢, € (r, ) and a function J, satisfying (7) and (14) such that
5(t, x) = o(t, x) on <0,a) x R, and 6&(t. x) = 8(t, c) on <0,a) x {co, ©).
From (¢3), (13) and (18) it follows that

(28) u” < —6(t,u) £ —0do(t,u),

(29) 0su(t)sr for 0<t=a.

According to (14) there exist r, € {r, 00) and a, € (0, a) such that [§° do(t, 7o) dt > r.
Integrating (28) we obtain by (29) [& 64(t, u(a,)) dt £ r. Therefore u(ay) < ro and
by (18) we get

(30) 0Zu(t)sry, for ag<t=<a+p, peN.

The equality u(ao) = u(a) + |u'(a)| (a — ao) + [, (t — ao) u"(t) dt yields

(31) |w'(a)| < rof(a — ao).

From the equality u(0) = u(a) + |u'(a)| @ + [§tu"(z) dt we get by (29), (30) and
(31) u(0) < ry, where 7y = ro + arof(a — ao) + a’r, thus

(32) O0gutysr, for 0St=<a+p.

Now, using Lemma 2, we obtain by (18)

(33) lw(t)| v, for 0<t<a+p, where r,=rfa+ (2r7).
Similarly as in the proof of Theorem 1 we obtain from (10)

(34) u'(t)y<o(t) for a<t<a+p,

where

2
oty = Q7NQr) + ar, + (P + 72 + 1) [ ¥ hfr)dr).
i=0
Now, if f does not satisfy (16), we put

a(t)—— ry+r,+r for 0Zt=<a
T lrytratot) for a<t=Za+p,

¢y = max {co, 1y} .

i

s for 0Zs=Z¢, (s) = s for —-r,£s=0
¢, for s>c¢y, 72T\ Lp, for s < -1y,
for 0=s=<o(r)
1) for ot) <s,
1 for 0<s < a(t)
x(t,s) = <2 — s[o(t) for ot) <s < 20(t),
0 for 20(t) <s
f(t, ;’1("1)’ 05(x,), a5(t, x3)) for 0 <t

Tt i) =00 3 xSt xoxaxa) o a <
i=1

IIA

a

IIA

a+p.
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Clearly f satisfies (4), (10) and (16). Further,

3
(35) J(t, %y, %3, x3) = f(t, x(, x5, %3) for t>a, Y Ix,-l < (1),
i=1

and for
(1, x4, x2, x3) €0, @) x €0, ¢;) x {—ry, 0> x <0, o(f))>
we have
(36) J(t, x4, X2, x3) £ =5(t, 04(x,)) £ =8o(t, x;) on <0,a) x D.
Therefore the boundary value problem
u” = f(t,u,u',u"), (3), (17)

has at least one solution u, € AC*(0, a + p)) satisfying (18), (28)—(34) and so u,
is also a solution of (1), (3) (17) on <0, a + p). The last part of this proof is the
same as in the proof of Theorem 1.

Proof of Theorem 4. The difference between the assumptions of Theorems 1
and 4 is only in the boundedness of x,. So we can prove Theorem 4 in the same way
as Theorem 1 because the boundedness of u’, where u is a solution of (1), (3), (17),
follows from (@4).

Proof of Theorem 5. Similarly as in the proof of Theorem 1 we can obtain
a solution u of (1), (3), (17) satisfying (18). From (¢5), (15) and (18) it follows that

(37) O0su(®)sr for 0Zt=<a+p, 0Zu({t)sr for 0Zt=Za.

Using Lemma 2 and taking into account (18), (37) |u'(t)] S r, for 0 < t < a + p,
where r; = r[a + 2r. Now we can proceed as in the proof of Theorem 1.

Proof of Theorem 6. Similarly as in the proof of Theorem 1 we can obtain
a solution u of (1), (3), (17) satisfying (18). From (¢6), (13) and (18) it follows that

02u(t)= —r for 0St<a+p OSu(t)sr for 0St=<a.

Analogously as in the proof of Theorem 3 we choose ¢, € (r, 00) and a function ,
and get the estimate (32). Now we can proceed as in the proof of Theorem 1.

Proofof Theorem 7. Similarly as inthe proof of Theorem 1 we obtain a solution
u of (1), (3), (17) satisfying (18). From (¢7), (15) and (18) it follows that

0su(t)sr, —r=uw({)<0 for 0<t<a+p,
Osu()sr for 05t=<a.

As in the proof of Theorem 1 we obtain from (10) the estimate 0 < u"() < ¢f?) for
a<t=Za-+ p, where

2
o) =@ Q(r) + ar + (M + ™ + 1) [i ¥ hyr)dr).
i=0
The rest of the proof is analogous to that of Theorem 1.
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Souhrn

KNESEROVA ULOHA PRO DIFERENCIALN{ ROVNICE 3. RADU

IRENA RACHUNKOVA

V préaci jsou nalezeny postaujici podminky pro existenci ¥eSeni u nelinearni diferencialni
rovnice 3. Fadu, spliiujiciho podminky u()= 0, u’(t) = 0, u"(t) = 0 pro t€ {0, ©) a pu(0),
u’(0), u”(0)) = 0, kde ¢ je spojita funkce.

Pe3iome

3AJAYA KHE3EPA JIsI AU®PEPEHIIMAJIBHOI'O YPABHEHUS 3-I'O ITOPSOKA

IRENA RACHUNKOVA

B pabote mpuBeAeHBI OOCTATOYHBIE YCIOBHA Ui CYIMECTBOBAHMS PEINCHHMS ¥ HEJMHEHHOTO
IvbdepeHIMATEHOTO YPAaBHEHHS TPETBETO IIOPSAZKA, YAOBJICTBOPSIOMEro yciosuaMm u(t) = 0,
()< 0,u"(t)= 0 mus te 0, ) u ¢(u(0), u’(0), u”(0)) = 0, rae ¢ — HempepLIBHAA BYHKLMA.
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