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Summary. A relationship between 1-. and 2-realizability of graphs is established. Zykov
problem of 1-realizability is solved for two classes of graphs. A concept of k-realizability of
graphs is introduced; some necessary and some sufficient conditions of k-realizablity are presented
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1. INTRODUCTION

In this paper a graph will mean a finite non-oriented graph without loops and
multiple edges: the edge set E(G) of a graph G is a subset of 2,(V(G)) — the set of
all 2-element subsets of the vertex set V(G) of G. The usual concepts (but not neces-
sarily the notation) of the graph theory are taken from Harary [2]: degg(v) denotes
the degree of a vertex v in a graph G, dG(v, w) the distance in G between its vertices
v, , eg(v) the eccentricity of v in G, r(G) the radius, d(G) the diameter, Z(G) the
centre and G the complement of G, G(U) the subgraph of G induced by a set
U < V(G), G, x G, the Cartesian product, G; U G, the disjoint union, G, + G,

the j Jom (Zykov sum) and G,[G,] the composition of graphs G;, G,. H G, U G;

and Z G; are natural generalizations of the above operations on graphs, for G, = G,
i=1 n
i=1,...,n, UG,;is shortened to nG. A cycle, a path or a star with k vertices will
i=1

be denoted by Cy, P, or S, respectively.

We define the periphery of G by P(G) = {ve V(G): Vz € Z(G) d¢(z,v) = (G)},
the k-neighbourhood of a vertex v in G by Ny(v, G) = G{{w € V(G): d¢(v, w) = k}>
and the closed k-neighbourhood (or k-neighbourhood) of v in G by N,;(v, G) =

= G{{w e V(G): dg(v, w) < k}>. A graph H is said to be k-realizable, k e U {m m},
if there exists a graph G + K, = (0, 0) (a k-realization of H) such that Nk(v G)
for all v e V(G).
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The problem of 1-realizability posed by Zykov [9] is algorithmically unsolvable
(Bulitko [5]), nevertheless it has been an object of study of many authors — see e.g.
Blass-Harary-Miller [2], Brown-Connelly [3, 4], Hell [7], Sedlaek [9]. Bielak [1]
defined the term k-realizability and showed that a) the problem of 2-realizability
is non-trivial, by founding an infinite number of examples of graphs which are
2-realizable, as well as of those which are not, and b) for any k = 3 and a non-empty
graph H the composition C2k[H] is a k-realization of H.

In the first part of this paper we show that the problem of 2-realizability is more
difficult than the problem of 1-realizability. We present some results concerning 1-
and 2-realizability of graphs. In the second part we deal with k-realizability and give
some necessary and some sufficient conditions for the k-realizability.

2. GRAPHS WITH GIVEN 1- OR 2-NEIGHBOURHOODS

\

2.1. Theorem. A non-empty graph H is 1-realizable if and only if. the graph H
is 2-realizable by a graph with diameter 2.

Proof. a) If G is a 1-realization of H, then no component of G is K ., hence G + G
is a 2-realization of H (see [1]) and d(G + G) = 2.

b) If G is a 2-realization of H with d(G) = 2, then G is a 1-realization of H.
Indeed, for ve V(G) = V(G) we have N,(v, G) = H, V(N,(v, G)) = {we V(G):
{v,w} € E(G)} = {we V(G): {v,w} ¢ E(G)} = {we V(G): dg(v, w) = 2} =
= V(N,(v, G)) and E(N,(v, G)) = {{x, y} € 2,(V(G)): dg(x, y) = dg(v, x) =
= dgf,9) = 1} = {153} € ZoV(G)): delxs3) = dofos ) = dof,3) = 2} =
= E(N,(v. G)).

2.2. Lemma. If G is a 2-realization of a non-empty graph H with d(H) £ 2,
then there exists a 2-realization K of H such that d(K) = min {d(G), 2}.

Proof. For d(G) > 2 define K by V(K) = V(G) and E(K) = {{v, w} € 2,(V(G)):
dg(v, w) = 2}. Then evidently d(K) = 2 and V(N,(x, K)) = V(N,(x, G)),
E(N(x, K)) 2 E(N(x, G)) for each x € V(K). The assumption {v, w} €
€ E(N,(x, K)) — E(N,(x, G)) would lead to 3 < dg(v, w) £ dy,(x.6)(v, W) in contra-
diction with N,(x, G) = H and d(H) < 2; hence, N,(x,K) = N,(x, G) =

2.3. Theorem. A disconnected graph H is 1-realizable if and only if H is
2-realizable.

Proof. a) With respect to Theorem 2.1 a disconnected (obvnously non- empty)
1-realizable graph H the graph H is 2-realizable.
b) Since the disconnectedness of H implies d(H) < 2 and H # K,, any 2-realiza-
tion of H has diameter at least 2 and by Lemma 2.2 there exists a 2-realization G
of H with d(G) = 2, and according to Theorem 2.1 H is 1-realizable. :
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- The following lemma is in fact (in a more special form) proved in [7], but it is
not formulated there as a special statement.

* 2.4. Lemma. (i) If H is a 1-realizable graph, then for every positive integer n
the graph H U nK, is 1-realizable, too.

\-.(ii) If H is a graph and there exists a positive integer n such that the graph
H vy nK, is 1-realizable, then the graph H is 1-realizable, too.

. Proof. (i) According to [7] the disjoint union of a ﬁni.te number of 1-realizable
graphs is 1-realizable, too, and the desired result follows since K, is a 1-realization
of K;.

(ii) Let G be a 1-realization of H U nK, and let H, be the graph obtained from H
by deleting all of its isolated vertices. Then the deletion of all edges of G belonging
to no triangle yields a 1-realization of H;. As H = H; v mK, for a suitable non-
negative integer m, the graph H is 1-realizable by (i).

2.5. Theorem. (i) If H is a non-empty 1-realizable graph, then for every positive
integer n the graph H + K, is 2-realizable.

(ii) If H is a graph and there exists a positive integer n such that the graph
H + K, is 2-realizable, then H is 1-realizable.

~ Proof. Use Theorems 2.1 and 2.3, Lemma 2.4, the isomorphism of H u nK,
and H + K,, the disconnectedness of Hu nK, (for H + K, or n = 2) and the
1-realizability of K, (for H = Ky and n = 1).

2.6. Remark. Theorem 2.5 shows that the problem of 2-realizability is more
complicated than the original Zykov problem — to solve the latter one it is sufficient
to know which graphs of radius 1 are 2-realizable.

2.7. Theorem. If k, I, my, ..., m; dre positive integers and n is an integer, 3 <
n < 6, then the graphs Py, K,, . . and C, are 2-realizable by a graph with
diameter 2.

Proof. a) The graph Ci+3 + Ciyais a suitable 2-reahzat10n of P,.
b) The graph H K,,+1 is a l-realization of the graph U K., (see [7]), hence by

Theorem 2.1 the complete I-partite graph

-
Kmx seeesmy = ilem‘

is 2-realizable by a graph with diameter 2.

¢) For C; = K; and C, = K, , recall b). Since Cs is 1-realizable according to [3],
it is sufficient to use Theorem 2.1 and the isomorphism of Cs and Cs. Fig. 1 depicts
a 2-realization of C¢ with diameter 2.
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Fig. 1

Zelinka [10] proved that complements of paths are 1-realizable and that C, is
1-realizable if and only if k £ 6. The following assertion is a generalization of this
result.

2.8. Theorem. If {ck}k 3 {Pdi=1 and {8}, are sequences of non-negatwe
mtegers such that Z(c,‘ + P + 8p) is ﬁmte then the graph U G U U ka,‘u
k= =3
v U skS,‘ is 1- reahzable if and only if Z ¢, = 0.
Proof. a) For a positive integer k the graph S, = K, _; U K, is 1-realizable, and

the same holds — in virtue of Theorems 2.1 and 2.7 — for the graph P,. For a positive
integer k, 3 £ k < 6, the graph C, is 1-realizable again by Theorems 2.1 and 2.7.

Hence Z ¢, = 0 implies the desired 1-realizability.
b) Suppose that I is an integer, ] = 7, and that the graph U ¢.C,u U kak
v U 59y = U H,, with H; = C, and each H,,, me {2 n} bemg a cycle a path
k=1

m=1

or a star, is 1-realizable. Then by Theorem 2.1 the graph

H=UH,=~Y H,
m=1 m=1

is 2-realizable by a graph G with d(G) = 2. For any v € V(G) there exists a decomposi-
tion {Vu(v): m = 1,...,n} of V(N,(v, G)) such that N(v, G) {V(v)) = H,, m =
=1,...,n, and {x, y} € E(N,(v, G)) whenever x € V|(v), y € V)(v), i # j. Denote the
vertices of V;(v) by vy, ..., v, in such a way that {v;,v;4,} € E(N,(v,G)), i = 1, ...

., 1 —1; then necessarily {v;,,v,} € E(N,(v, G)). As {v;,0,} ¢E(G), i =4,...,1,
{vz, v} ¢ E(G) and d(G) = 2, we have {v, vy, ..., v;} S V(N3(v;, G)), and if v € V(v,),
je{1,...,n}, then evidently {v4s ..., 0} € V(vz) otherwise {v, v,} € E(G) for
some me{4 ., I} in contradiction with v, € V(Ny(v, G)). The connected graph
G; = Nj(v2, G) (V(vz)) is clearly not a star (it has at least I — 5 = 2 vertices of
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degree 22), hence for g = min{dg(v,v,): p =4,...,I} we have ¢ 22 and
dg(v,v,) > q, p=5,...,1 — 1 (i not, degg (v,) = 3). Suppose therefore without
loss of generality dg (v, v;) = ¢ and denote by v, = w, ..., w, = v the vertices of
a shortest path in G; between v and v,. Since degg,(w;) =2 and {wy,...,w} N
A {vgy .. v} = 0, {wy,v,} is not an edge of G and dg(wy, vs) = 2, wy € Vy(vy)
for a suitable se {1,...,n}. Take t;€ {1, ..., n} so that v;e V, (vs), i = 1,2,6,...,];
then for i # j with {v;, v;} ¢ E(G) necessarily t; = t; and consequently t, = t, =
=ts=...=t. We can also assert s = t,_, — in the opposite case {wy, v;_;} €
€ E(G;) results in degg (v;,-1) Z 3. Now Ny(v4, G) {Vi(vs)) has at least three vertice)
of degree =2 and at least one vertex of degree =3 (v, is adjacent to vy, v;_; and w,s
and it is neither a star nor a path nor a cycle.

2.9. Theorem. If T is a tree, then T is 1-realizable if and only if T is a path or
a star. .

Proof. a) If T'is a non-empty path or star, Tis 1-realizable according to Theorem
2.8. For any positive integer n the graph nK; is a 1-realization of the empty graph
P, = 5,. -

b) Suppose that a tree Tis neither a path nor a star and that T'is 1-realizable. Let G
be a 2-realization of T with d(G) = 2 (existing by Theorem 2.1). If v € V(G), then
N,(v, G) = T and in V(N,(v, G)) we can find vertices x, y such that degy,, ¢)(x) =
=m 2 3, degn,,6(») = 1 and {x, y} ¢ E(N,(v, G)). Since d(G) = 2, V(Ny(x, G))
consists of v, the vertices of N z(v, G) non-adjacent to x, and of m remaining vertices
Wi, s Wn € V(G) — {v} — V(N,(v, G)) necessarily adjacent to v in G. As y is
adjacent to exactly one vertex u of N,(v, G), V(N,(y, G)) 2 {v} U V(Ny(v, G)) —
— {u, y}, hence V(N,(y, G)) contains at most one of the vertices w;, ..., w,. Thus
[V(Ny(», G)) N {wy, ..., wn}| Zm — 1 22 and if, without loss of generality,
wy, w, € V(N(y, G)), then N,(x, G) contains as a subgraph the cycle of length 4
passing through the vertices v, wy, y, w,, and we have obtained a contradiction with
the structure of T = N,(x, G).

3. .-REALIZABILITY OF GRAPHS

In this part we deal with. k-realizability of graphs. In view of the following two
obvious facts we can restrict our analysis to connected k-realizations of non-empty
graphs.

3.1. Proposition. If k is a positive integer, then
(i) the graph K, is k-realizable and is not k-realizable;
(i) the graph G, U G, is a k-realization of a graph G if and only if G,, G, are
K-realizations of G.
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The question of T-realizability has rested practically untouched; this is probably
due to the following simple results.

3.2. Lemma. 4 gfaph H # K, is 1-realizable if and only if the graph H + K,
is T-realizable.

3.3. Lemma. If k is a positive integer and H * K, is a graph with d(H) < k,
then H is k-realizable and a graph G is a connected k-realization of H if and only
if G~ H.

Proof. H is clearly a connected k-realization of H. If G is another one, non-
isomorphic to H, it must be (up to an isomorphism) equal to a supergraph of H
with ¥(G) — V(H) # 0. The connectednes of G yields the existence of vertices v € V(H)
and we V(G) — V(H) such that {v, w} € E(G), and then V(Ng(v, G)) 2 V(H) L {w}
in contradiction with N¢(v, G) = H.

The main result of this part is

3.4. Theorem. If k is a positive integer and H is a k-realizable graph with
d(H) > k, then

(i) (H) =&,

(i) P(H) + 0,

(iti) ¢ = |V(H)| # |Z(H)| is an integer and there exists a decomposition ¥~ =
= {Vy,..., V} of V(H) such that Z(H)e ¥ and H(V;) = H(Z(H)), i = 1,..., 4.

Proof. Let G be a connected supergraph of H representing a k-realization of H.

(i) For any vertex v of G we have r(H) = r(Ng(v, G)) < k. Since V(Ni(v, G)) +
+ V(H) for each ve V(H) with ey(v) > k and d(H) > k, V(H) is a proper subset
of ¥(G) and we can choose w € V(G) — V(H). Taking z e Z(H) we get Ni(z, G) = H,
hence d = dg(z,w) > k: if z = wy, wy,...,wy =w are the vertices forming a
shortest path in G between z and w, then w; € V(Ni(z, G)) and r(H) = k.

(ii) Using w,e V(H) and r(H) = k we can state that du(v, w,) < k for every
ve Z(H). On the other hand, du(v, w,) 2 k, for if this were not the case, Wi4q €
€ V(Ng(v, G)) in contradiction with Ni(v, G) = H = Ni(z, G) and dy(2, Wi+1) =
= k + 1. Thus dy(v, w,) = k and w, € P(H).

(iii) As r(H) = k, any v e V(G) belongs to Z(Ngv, G)) and it is easy to see that
Ny, G) = Ni(v, G) for all u e Z(Ngv, G)). If we V(Ny(v, G)) — Z(Ni(v, G)) = W,
then by (i) dg(w, x) > k for a suitable x € W, while for w e V(G) — V(Ng(v; G)) we
have dg(v, w) > k; hence w e V(G) — Z(Ni(v, G)) implies Ng(w, G) + N¢(v, G) and
consequently Z(Ng(w, G)) n Z(Ng(v, G)) = 9. This proves that r = |V(G)| 7 |Z(H)|
is an integer and there exists a decomposition % = {Uy, ..., U,} of V(G) such that
Z(H)e% and G(U;) = H(Z(H))», i =1,...,r. Furthermore, since Z(H) <
< V(Nx(v, G)) for ve V(H) and V(Ni(w, G)) n Z(H) = 9 for we V(G) — V(H), we
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have U; < V(H) or U;n V(H) = @ foreach i = 1,...,7, and ¢ members of % form
a decomposition.of V(H).

3.5. Corollary. If H is a 1-realizable graph with r(H) = 1, then |V(H)| +1is
divisible by |Z(H)| + 1.

Proof. By Lemma 3.2 the graph H + K, = H, is 1-realizable; r(H) = 1 leads to
|z(H,)| = |z(H)| + 1. As |V(H,)| = |V(H)| + 1, for d(H) > 1 (which implies
d(H,) > 1) apply Theorem 3.4 (iii), while for d(H) = 1,i.e. H = K;, 1 = 2, make use
of the equality of Z(H) and V(H).

3.6. Remark. Corollary 3.5 is also a consequence of Theorem 1 in [7].

3.7. Theorem. If k is a positive integer, H is a k-realizable graph with d(H) > k
and G is a k-realization of H, then {deg¢(v): v e V(G)} = {degu(w): w € Z(H)}.

Proof. Since all vertices adjacent to v € V(G) belong to Ng(v, G), we get degg(v) =
= degng(v,6)(v)- By Theorem 3.4 (i) we have v e Z(Ny(v, G)), hence the isomorphism
of Ni(v, G) and H implies the existence of w e Z(H) such that degg(v) = deggu(w).
The converse inclusion is obvious.

In what follows we deal with k-realizability of trees.

3.8. Lemma. If T'is a tree with P(T) + 0, then

(@) |2(T)] = 1,

(ii) T~ Ky or degy(v) = 1 for every ve P(T).

Proof. (i) The assumption |Z(T)| > 1 leads to Z(T) = {z,, z,} € E(T) (see [6]).
If ve V(T) and vy = v, vy, ...,v,, = z; are vertices of the (unique) path joining v
and z; in T, then z, = v,y With dy(v, z;) = d¢(v,z,) — 1 or z, ¢ {vg, ..., 0,
with d(v, z,) = dy(v, z,) + 1, both cases resulting in v ¢ P(T). Thus P(T) %0
implies Z(T) = {z}.

(ii) If ve V(T) and degy(v) = 2, take a vertex we V(T) adjacent to v and not
belonging to the path joining v and z. Since dg{(w, z) = d;(v, z) + 1, v is not a peri-
pheral vertex. ‘

For positive integers k, I, let T, ; be a tree with radius k and one-vertex centre
whose all vertices except the peripheral ones are of degree 1.

3.9. Theorem. If k is a positive integer, then a tree T + K, is k-realizable if and
only if d(T) £ k or T = T, for a suitable integer | = 2.

Proof. In view of Lemma 3.3 it is sufficient to analyze the case d(T) > k.

(a) If T is a k-realizable tree with d(T) > k, then r(T) = k and P(T) % @ by
Theorem 3.4. Hence using Lemma 3.8 we get |Z(T)| = 1. If Z(T) = {z} and
degy(z) = I, then clearly I > 2,
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Take a k-realization G of T which is a supergraph of T; by Theorem 3.7 it is an
I-regular graph. For any ve V(T) — P(T) we have d(z, v) < k, hence all vertices
adjacent to v in G belong to Ny(z, G) and degy(v) = degg(v) = I. Thus we have
proved that T = T; .

(b) Let G be an l-regular graph whose girthis 2k + 2 — its existence is guaranteed
by Sachs [8] for I = 3, for I = 2 take a cycle with 2k + 2 vertices. It is easy to see
that for every v € V(G) the closed k-neighbourhood of v is a tree isomorphic to T; ;.

A k-realizable graph serves as a basis for a wide class of k-realizable graphs.

3.10. Theorem. If k is an integer, k = 2, and H is a k-realizable graph with
|V(H)| = 2, then for any graph K + K, the graph H[K] is k-realizable, too.

Proof. As a k-realization of H[K] we can take G[K] where G is a k-realization
of H.

3.11. Theorem. If ke {1,T}, H is a k-realizable graph and G is a k-realization
of H, then the graph H + G is k-realizable, too.

Proof. The graph G + G is a k-realization of H + G.
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Sthrn

. O GRAFOCH S DANYMI OKOLIAMI
PETER BUGATA, MIRKO HORNAK, STANISLAV JENDROL
Je njdeny vzfah medzi 1- a 2-realizovateInostou grafov. Zykovov problém 1-realizovateInosti

je vyrieSeny pre dve triedy grafov. Je zavedeny pojem k-realizovatelnosti grafov; si uvedené isté
nutné a isté postafujuce podmienky k-realizovatelnosti.
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3YEMOCTH pelaeTcs AJIS ABYX KIaccoB rpadoB. BBOAUTCA NOHATHE k-pean3yeMOCTH; OPABOAATCA
HEKOTODPbIC HEOGXOAMMBIE H HEKOTOPhIE JOCTATOYHbIE YCIOBHS K-pPeaM3yeMOCTH.
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