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ON GRAPHS WITH GIVEN NEIGHBOURHOODS 
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Summary. A relationship between 1- and 2-realizability of graphs is established. Zykov 
problem of 1-realizability is solved for two classes of graphs. A concept of k-realizability of 
graphs is introduced; some necessary and some sufficient conditions of k-realizablity are presented 
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1. INTRODUCTION 

In this paper a graph will mean a finite non-oriented graph without loops and 
multiple edges: the edge set E(G) of a graph G is a subset of 0>

2(V(G)) — the set of 
all 2-element subsets of the vertex set V(G) of G. The usual concepts (but not neces­
sarily the notation) of the graph theory are taken from Harary [2]: degG(v) denotes 
the degree of a vertex v in a graph G, dG(v, w) the distance in G between its vertices 
v, w, eG(v) the eccentricity of v in G, r(G) the radius, d(G) the diameter, Z(G) the 
centre and G the complement of G, G<U> the subgraph of G induced by a set 
U £ V(G), Gx x G2 the Cartesian product, Gt u G2 the disjoint union, G1 4- G2 

n n 

the join (Zykov sum) and G t[G2] the composition of graphs Gx, G2. J | Gh (J Gt 
n i = l f = l 

and Ya Gi a r e natural generalizations of the above operations on graphs; for G, = G, 
i = l n 

i = 1, . . . , n, \J Gi is shortened to nG. A cycle, a path or a star with k vertices will 
i - = l 

be denoted by Ck, Pk or Sk, respectively. 
We define the periphery of G by P(G) = {ve V(G): VZ e Z(G) dG(z, v) = r(G)}> 

the k-neighbourhood of a vertex v in G by Nk(v, G) = G({w e V(G): dG(v, w) = fc}> 
and the closed k-neighbourhood (or k-neighbourhood) of v in G by Nj^v, G) = 

00 

= G<{w e V(G): dG(v, w) ^ k}>. A graph H is said to be k-realizable, ke\J {m, m}, 
m = l 

if there exists a graph G 4= K0 = (0, 0) (a k-realization of H) such that Nk(v, G) ^ H 
for all v e V(G). 
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The problem of 1-realizability posed by Zykov [9] is algorithmically unsolvable 
(Bulitko [5]), nevertheless it has been an object of study of many authors — see e.g. 
Blass-Harary-Miller [2], Brown-Connelly [3, 4], Hell [7], Sedlacek [9]. Bielak [ l ] 
defined the term fc-realizability and showed that a) the problem of 2-realizability 
is non-trivial, by founding an infinite number of examples of graphs which are 
2-realizable, as well as of those which are not, and b) for any k _ 3 and a non-empty 
graph H the composition C2k[H] is a Jc-realization of H. 

In the first part of this paper we show that the problem of 2-realizability is more 
difficult than the problem of 1-realizability. We present some results concerning 1-
and 2-realizability of graphs. In the second part we deal with Jc-realizability and give 
some necessary and some sufficient conditions for the E-realizability. 

2. GRAPHS WITH GIVEN 1- OR 2-NEIGHBOURHOODS 

2.1. Theorem. A non-empty graph H is l-realizable if and only if the graph H 
is 2-realizable by a graph with diameter 2. 

Proof, a) If G is a 1-realization of H, then no component of G is Kl9 hence G + G 
is a 2-realization of H (see [l]) and d(G + G) = 2. 

b) If G is a 2-realization of H with d(G) = 2, then G is a 1-realization of H. 
Indeed, for v e V(G) = V(G) we have N2(v9 G) _ B, V(Nt(v9 G)) = {w e V(G): 
{v9 w} e E(G)} = {we V(G): {v9 w} $E(G)} = {we V(G): dG(v9 w) = 2} = 
= V(N2(v9 G)) and E(Nx(v, G)) = {{x, y} e ^2(V(5)): dG(x9 y) = dG(v9 x) = 
= dG(v9y) = 1} = {{x, y} e &2(V(G)): dG(x9 y) = dG(v9 x) = dG(v9 y) = 2} = 
= E(N2(v. G)). 

2.2. Lemma, i / G is a 2-realization of a non-empty graph H with d(H) _ 2, 
then there exists a 2-realization K of H such that d(K) = min {d(G)9 2}. 

Proof. For d(G) > 2 define K by V(K) = V(G) and E(K) = {{v9 w} e 0>2(V(G)): 
dG(v9 w) + 2}. Then evidently d(K) = 2 and V(N2(x, K)) = V(N2(x, G)), 
E(N2(x9 K)) _ E(N2(x9 G)) for each x e V(K). The assumption {v9 w} e 
eE(N2(x9K)) — E(N2(x9 G)) would lead to 3 ^ dG(v, w) ^ dNl(XtG)(v9 w) in contra­
diction with N2(x9 G) = H and d(H) = 2; hence, N2(x9K) = N2(x, G) _ H. 

2.3. Theorem. A disconnected graph H is l-realizable if and only if H is 
2-realizable. 

Proof, a) With respect to Theorem 2.1 a disconnected (obviously non-empty) 
l-realizable graph H the graph H is 2-realizable. 

b) Since the disconnectedness of H implies d(H) ^ 2 and H =t= K0, any 2-realiza­
tion of H has diameter at least 2 and by Lemma 2.2 there exists a 2-realization G 
of H with d(G) = 2, and according to Theorem 2.1 if is l-realizable. 
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The following lemma is in fact (in a more special form) proved in [7], but it is 
not formulated there as a special statement. 

2.4. Lemma, (i) 1/ H is a l-realizable graph, then for every positive integer n 
the graph H u nKt is l-realizable, too. 
•••(ii) / / H is a graph and there exists a positive integer n such that the graph 
HKJ nKx is l-realizable, then the graph H is l-realizable, too. 

Proof, (i) According to [7] the disjoint union of a finite number of l-realizable 
graphs is l-realizable, too, and the desired result follows since Kl+1 is a 1-realization 
ofK,. 

(ii) Let G be a 1-realization of H u nKt and let Hx be the graph obtained from H 
by deleting all of its isolated vertices. Then the deletion of all edges of G belonging 
to no triangle yields a 1-realization of Ht. As H _ Ht u mKt for a suitable non-
negative integer m, the graph H is l-realizable by (i). 

2.5. Theorem. (i)lf H is a non-empty l-realizable graph, then for every positive 
integer n the graph H + Kn is 2-realizable. 

(ii) J / H is a graph and there exists a positive integer n such that the graph 
H + Kn is 2-realizable, then H is l-realizable. 

Proof. Use Theorems 2.1 and 2.3, Lemma 2.4, the isomorphism of H u nKx 

and H + Kn, the disconnectedness of H u nK± (for H 4= K0 or n ^ 2) and the 
1-readability of K0 (for H = K0 and n = 1). 

2.6. Remark. Theorem 2.5 shows that the problem of 2-realizability is more 
complicated than the original Zykov problem — to solve the latter one it is sufficient 
to know which graphs of radius 1 are 2-realizable. 

2.7. Theorem. 1/ k, I, ml9 ...,ml are positive integers and n is an integer, 3 ^ 
^ n ^ 6, then the graphs Pk,Kmi mj and Cn are 2-realizable by a graph with 
diameter 2. 

Proof, a) The graph Ck+3 + Ck+3 is a suitable 2-realization of Pk. 
i i 

b) The graph f j Krm+i i s a 1-realization of the graph U Kmi (see [7]), hence by 
i = i t i = i 

Theorem 2.1 the complete /-partite graph 

Kmlt...tmi = U-^mi 
i = l 

is 2-realizable by a graph with diameter 2. 
c) For C3 _ K3 and C4 _ K22 recall b). Since C5 is l-realizable according to [3], 

it is sufficient to use Theorem 2.1 and the isomorphism of C5 and C5. Fig. 1 depicts 
a 2-realization of C6 with diameter 2. 
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Fig. 1 

Zelinka [10] proved that complements of paths are 1-realizable and that Ck is 
1-realizable if and only if k ^ 6. The following assertion is a generalization of this 
result. 

2.8. Theorem. If {ck}£-3, {pk}k=1 and {sk}k=1 are sequences of non-negative 
00 CO 00 \ 

integers such that £ (ck + pk + sk) is finite, then the graph \J ckCk u U pkPk u 
oo k = 3 °o 

u \J skSk is 1-realizable if and only if ]T ck = 0. 
k=3 k = i 

k = i 

Proof, a) For a positive integer k the graph Sk = Kk..1 u Kt is 1-realizable, and 
the same holds - in virtue of Theorems 2.1 and 2.7 - for the graph Pk. For a positive 
integer fc, 3 ^ k ^ 6, the graph Cfc is 1-realizable again by Theorems 2A and 2.7. 

oo 

Hence ]T ck = 0 implies the desired 1-realizability. 
k = 7 °° _ °° _. 

b) Suppose that / is an integer, I = 7, and that the graph U ckCk u U pkPk u 
oo n k = 3 k = l 

u U sk$k = U IIm with H! = Cx and each ifm, m e {2,..., n} being a cycle, a path 
k = l w = l 

or a star, is 1-realizable. Then by Theorem 2.1 the graph 

F n = l m = l 

is 2-realizable by a graph G with d(G) = 2. For any v G V(G) there exists a decomposi­
tion {Vm(v): m = 1,..., n} of V(N2(v, G)) such that N2(t;, G) <Vm(t;)> s Hm, m = 
= 1,..., n, and {x, y} e E(N2(v, G)) whenever x G Vf(t;), ^ G Vj(v), i 4= f. Denote the 
vertices of Vx(v) by vl9 ..., v, in such a way that {vh vi+1} e E(N2(v, G)), i = 1,... 
..., / - 1; then necessarily {i;,, t^} G E(iV2(i;, G)). As {u2, t;4} £ E(G), i = 4 , . . . , / , 
{r2, t;} §- E(G) and d(G) = 2, we have {v, t;4,..., »-} s F(N2(t;2, G)), and if t; e V/t;2), 
J e{l , . . . , * } , then evidently {t;4,..., t?,} £ V,(t;2) - otherwise {u, rm} G £(G) for 
some mG {4,...,/} in contradiction with vm e V(N2(v, G)). The connected graph 
Gj = N2(v2, G) (Vj(v2)y is clearly not a star (it has at least Z — 5 =t 2 vertices of 
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degree = 2), hence for q = min {dGj(v9 vp): p = 4 , . . . , 1} we have q = 2 and 
dGj(v> VP) > 4> P = 5> •••>' "" - ( i f no t> degcXup) = 3)- Suppose therefore without 
loss of generality da/^ *>/) = 4 a n - denote by u- = w0, ...9wq = v the vertices of 
a shortest path in Gj between v and vt. Since degGj(wi) = 2 and (w l f . . . , wfl} n 
n{vA9...,vt} = 0, {wi,r4} is not an edge of G and dG(wi9v^) = 2, wt e V5(t>4) 
for a suitable se { 1 , . . . , n}. Take tte { 1 , . . . , n} so that vte Vtt(v^)9 i = 1,2,6, . . . , I; 
then for i =# j with {t;., Vj} $ E(G) necessarily ti = tj and consequently ti = t2 = 
z= t6 = ... = tt. We can also assert s = fz_i — in the opposite case {wi9 i>j_i} e 
e £(G;) results in degG^(i;t_i) = 3. Now N2(u4, G) <Vs(u4)> has at least three vertice) 
of degree = 2 and at least one vertex of degree = 3 (t;, is adjacent to vi9 vl^i and wxs 
and it is neither a star nor a path nor a cycle. 

2.9. Theorem. If T is a tree, then T is l-realizable if and only if T is a path or 
a star. 

Proof, a) If Tis a non-empty path or star, Tis l-realizable according to Theorem 
2.8. For any positive integer n the graph n £ i is a 1-realization of the empty graph 
-% = So- ^ 

b) Suppose that a tree Tis neither a path nor a star and that Tis l-realizable. Let G 
be a 2-realization of T with d(G) = 2 (existing by Theorem 2.1). If v e V(G)9 then 
N2(v9 G) ;= T and in V(N2(v9 G)) we can find vertices x9 y such that dQgNl(VtG)(x) = 
= m = 3, dogNl{VfG)(y) = 1 and {x9 y} $ E(N2(v9 G)). Since d(G) = 2, V(N2(x9 G)) 
consists of v9 the vertices of N2(v9 G) non-adjacent to x, and of m remaining vertices 
wi9..., wme V(G) — {v} — V(N2(u, G)) necessarily adjacent to v in G. As >> is 
adjacent to exactly one vertex u of N2(v9 G), V(N2(y, G)) 2 {u} u V(N2(t;, G)) — 
— {w, .v}, hence V(N2(y, G)) contains at most one of the vertices wi9..., wm. Thus 
|V(Ni(j;, G)) n {wi,. . . , wm}| = m - 1 = 2 and if, without loss of generality, 
wi9 w2 e V(Ni(y, G)), then N2(x, G) contains as a subgraph the cycle of length 4 
passing through the vertices v9 wi9 y, w2, and we have obtained a contradiction with 
the structure of T = N2(x, G). 

3. E-REALIZABILITY OF GRAPHS 

In this part we deal with E-realizability of graphs. In view of the following two 
obvious facts we can restrict our analysis to connected /c-realizations of non-empty 
graphs. 

3.1. Proposition. If k is a positive integer, then 
(i) the graph K0 is k-realizable and is not ^-realizable; 

(ii) the graph Gi u G2 is a ^-realization of a graph G if and only if Gi9 G2 are 
^-realizations of G. 
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The question of 1-realizability has rested practically untouched; this is probably 
due to the following simple results. 

3.2. Lemma. A graph H 4= K0 is {-realizable if and only if the graph H + Kt 

is \-realizable. 

3.3. Lemma. / / fc is a positive integer and H 4= K0 is a graph with d(H) ^ fc, 
then H is k-realizable and a graph G is a connected k-realization of H if and only 
ifG^H. 

Proof. H is clearly a connected ^-realization of H. If G is another one, non-
isomorphic to H, it must be (up to an isomorphism) equal to a supergraph of H 
with V(G) — V(H) 4= 0. The connectednes of G yields the existence of vertices v e V(H) 
and w e V(G) - V(H) such that {v, w} e E(G), and then V(Nk(v, G)) 3 V(H) u {w} 
in contradiction with N^v, G) = H. 

The main result of this part is 

3.4. Theorem. If k is a positive integer and H is a ^-realizable graph with 
d(H) > k, then 

(i) r(H) = fc, 
(ii) P(H) 4= 0, 

(iii) q = |V(H)| / |Z(f-0| IS an integer and there exists a decomposition 1^ = 
= {^i, • •-, Vq} of V(H) such that Z(H)eiT and H<Vf> ^ tf<Z(H)>, i = 1,..., q. 

Proof. Let G be a connected supergraph of H representing a ^-realization of H. 
(i) For any vertex v of G we have r(H) = r(.ATs(t?, G)) ^ fc. Since V(N&(u, G)) 4= 

#= V(H) for each u e V(H) with eH(t>) > fc and d(H) > fc, V(tf) is a proper subset 
of V(G) and we can choose w e V(G) - V(H). Taking z e Z(if) we get Njfe, G) = if, 
hence d = dG(z, w) > fc: if z = w0, w lr,..., wd = w are the vertices forming a 
shortest path in G between z and w, then wfc e V(N^(z, G)) and r(H) ^ fc. 

(ii) Using wfc e V(H) and r(H) = fc we can state that dH(v, wk) ^ fc for every 
v eZ(H). On the other hand, dH(v, wk) ^ fc, for if this were not the case, wfc+1 e 
e V(Nz(v, G)) in contradiction with N^v, G) = H = NE(z, G) and dfl(z, wfc+1) = 
= k + 1. Thus ^ (u , wfc) = fc and wfc e P(H). 

(iii) As r(H) = k, any v e V(G) belongs to Z(Nk{v, G)) and it is easy to see that 
iVj~(w, G) = Nk(v, G) for all u eZ(Nlc(v, G)). If we V(Nl(v, G)) - Z(Nk{v, G)) = W, 
then by (i) dG(w, x)> k for a suitable xeW, while for w e V(G) - V(N*{t>, G)) we 
have dG(v, w) > fc; hence w e V(G) - Z(Nk{v, G)) implies A/^w, G) 4= N*^, G) and 
consequently Z(N^(w, G)) n Z(NK(t;, G)) = 0. This proves that r = |V(G)| / \Z(H)\ 
is an integer and there exists a decomposition ^ = {Uu ..., Ur} of V(G) such that 
Z(H)eW and G<17,> s H<Z(ff)>, i = l , . . . , r . Furthermore, since Z(ff) s 
c V(iV^, G)) for v e V(H) and V(Nn(w, G)) n Z(H) = 0 for w e V(G) - V(H), we 
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have Ui .= V(H) or Ut n V(H) = 0 for each i = 1,..., r, and q members of ^ form 
a decomposition^ V^). 

3.5. Corollary. J/ H is a 1-realizable graph with r(H) = 1, then \V(H)\ + 1 is 
divisible by \Z(H)\ + 1. 

Proof. By Lemma 3.2 the graph H + K1 = Hx is 1-realizable; r(H) = 1 leads to 
\Z(HX)\ = |Z(H)| + 1. As \V(Ht)\ = |V(H)| + 1, for d(H) > 1 (which implies 
d(Ht) > 1) apply Theorem 3.4 (iii), while for d(H) = 1, i.e. flsX,,I^2, make use 
of the equality of Z(H) and V(H). 

3.6. Remark. Corollary 3.5 is also a consequence of Theorem 1 in [7]. 

3.7. Theorem. If k is a positive integer, H is a H-realizable graph with d(H) > k 
and G is a k-realization of H, then {degG(v): v e V(G)} = {degH(w): w e Z(H)}. 

Proof. Since all vertices adjacent to v e V(G) belong to Ni(v, G), we get degG(i?) = 
= degN]i(VtG)(v). By Theorem 3.4 (i) we have v e Z(NJl(v, G)), hence the isomorphism 
of Ni(v, G) and H implies the existence of w e Z(H) such that degG(v) = deg^w). 
The converse inclusion is obvious. 

In what follows we deal with fc-realizability of trees. 

3.8. Lemma. If T is a tree with P(T) + 0, then 

o) ra = i, 
(ii) T £ K! or degT(t;) = 1 for every v e P(T). 
Proof, (i) The assumption |Z(T)| > 1 leads to Z(T) = {zl9 z2} e E(T) (see [6]). 

If v e V(T) and v0 = v, vi9..., vm = zx are vertices of the (unique) path joining v 
and zt in T, then z2 = vm.1 with dT(u, z2) = dT(v, z-) - 1 or z2 £{i;0,..., î w} 
with dT(i;, z2) = dT(u, z t) + 1, both cases resulting in v $ P(T). Thus P(T) 4=0 
implies Z(T) = {z}. 

(ii) If v G V(T) and degT(i>) = 2, take a vertex w G V(T) adjacent to v and not 
belonging to the path joining v and z. Since dT(w, z) = dT(v, z) + 1, v is not a peri­
pheral vertex. 

For positive integers fc, J, let Tfc>- be a tree with radius fc and one-vertex centre 
whose all vertices except the peripheral ones are of degree 1. 

3.9. Theorem. If k is a positive integer, then a tree T 4= K0 is ^-realizable if and 
only if d(T) <>kor T^Tktlfor a suitable integer I = 2. 

Proof. In view of Lemma 3.3 it is sufficient to analyze the case d(T) > fc. 
(a) If T is a fc-realizable tree with d(T) > fc, then r(T) = fc and P(T) * 0 by 

Theorem 3.4. Hence using Lemma 3.8 we get |Z(T)| = 1. If Z(T) = {z} and 
degT(z) = i, then clearly / k 2. 
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Take a Jc-realization G of T which is a supergraph of T; by Theorem 3.7 it is an 

/-regular graph. For any v e V(T) — P(T) we have dT(z, v) < k, hence all vertices 

adjacent to v in G belong to Ni(z, G) and degT(i;) = degG(u) = /. Thus we have 

proved that T s Tktl. 

(b) Let G be an /-regular graph whose girth is 2fc + 2 — its existence is guaranteed 

by Sachs [8] for / ̂  3, for J = 2 take a cycle with 2fc + 2 vertices. It is easy to see 

that for every v e V(G) the closed fc-neighbourhood of v is a tree isomorphic to Tktl. 

A ^-realizable graph serves as a basis for a wide class of Jc-realizable graphs. 

3.10. Theorem. If k is an integer, k _ 2, and H is a k-realizable graph with 

|V(H)| _̂  2, then for any graph K + K0 the graph H[K] is k-realizable, too. 

Proof. As a ̂ -realization of H[K] we can take G[K] where G is a ^-realization 

of if. 

3.11. Theorem. If ke {1,1}, H is a k-realizable graph and G is a k-realization 

of H, then the graph H + G is k-realizable, too. 

Proof. The graph G + G is a fc-realization of H + G. 
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Súhrn 

O GRAFOCH S DANÝMI OKOLIAMI 

PETER BUGATA, MIRKO HORŇÁK, STANISLAV JENDROĽ 

Je nájdený vzťah medzi 1- a 2-realizovateInosťou grafov. Zykovov problém l-гealizovatelnosti 
je vyrieSený pгe dve triedy grafov. Je zavedený pojem E-realizovateInosti gгafov; sú uvedené isté 
nutné a isté postačujúce podmienky Æ-realizovateInosti. 

Peзюмe 

O ГPAФAX C ДAHHЫMИ OKPECTHOCTЯMИ 

PETER BUGATA, MIRKO HORŇÁK, STANISLAV JENDROĽ 

Уcгaнaвливaeтcя cвязь мeждy 1- и 2-peaлизyeмocтью гpaфoв. Пpoблeмa Зыкoвa oб 1-peaли-

зyeмocти peшaeтcя для двyx қлaccoв гpaфoв. Bвoдитcя пoнятиe k-peaлизyeмocти; пpивoдятcя 

нeкoтopыe нeoбxoдимыe и нeкoтopыe дocгaтoчныe ycлoвия £-peaлизyeмocти. 
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