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Summary. Let L be a chain and K, K, be lattices. We show that an isomorphism of powers
LK, X1 does not imply an isomorphism of lattices K, K;.In particular: for any lattice X there
exists a distributive lattice K; such that the ordered sets LK, LX1 are isomorphic.
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B. Zast&ra proved ([6]) the following assertion: Let Land L, be lattices. If the sets of
join homomorphisms of L and L, into reals areisomorphic as ordered sets by pointwise
ordering, then the lattices L, L, are isomorphic. In this note we study the set of
homomorphisms of a lattice K into a chain L, i.e. the power IX,

1. INTRODUCTORY CONCEPTS AND ASSERTIONS

The cardinality of a set A is denoted by |A| Throughout the paper, any set G will
be called nontrivial iff |G| = 2.
Let G be an ordered (=partially ordered) set. For any a € G denote
(@l ={xeG; x<a}, (a) ={xeG; x<a}.
Let G be an ordered set and H = G. We call H dense in G iff it has the property

X, y€G, x < y =>thereexist u,veH with xSu<vy.

1.1. Lemma. Let G be an ordered set which is a join-semilattice, let H < G
be dense in G. Then a = inf {x € H; x = a} for any a€G.

Proof. Let a € G and denote H(a) = {x e H; x 2 a}. Clearly, a is a lower bound
of H(a). Let b be any lower bound of H(a) and suppose b £ a. Thena vV b > a
and thus there exist u,ve H such that a £ u < v < a v b. This means u € H(a)
which implies a < u, b < u. Hence a v b £ u which is a contradiction. Thus
b < a and a = inf H(a).

Let G be a set, H an ordered set and f: G > H a mapping. We denote by Q; the
mapping of H into exp G defined by

0/a)=f"Y(a]) ={x€G; f(x) < a} forany acH.
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Analogously we define the mapping R;: H — exp G as
Ria) = f~'((a)) = {x€G; f(x) <a} forany aecH.
Let Lbe a lattice, I < L. I is called an ideal in Liff it has the properties
x,yel=>xv yel; xeL, yel, x<y=xel.
An ideal I in a lattice Lis called prime iff
x,yeL, x Ayel=>xel or yel.

We denote by #(L) the set of all ideals of a lattice Land by (L) the set of all prime
ideals of L. Both sets #(L), Z(L) are ordered by set inclusion.

Note that, according to our definition, § € #(L), Le #(L) for any lattice L.

If Lis a lattice and a € L, then (a] € #(L); it is called a principal ideal of L. As
a€(a], the necessary condition for (a]e 2(L) is that a is meet irreducible. An
element a of a lattice Lis meet irreducible iff

x,yeEL, a=xAy=>x=a or y=a.

However, as is well known, (a] € #(L) may also hold when a is meet irreducible.
Let us call an element a of a lattice L (v, A) — distributive, iff

av(xAay)=(avx)a(avy) forany x,ye.L.

1.2. Lemma. Let L be a lattice and ae La (v, A) — distributive element. Then
(a] € 2(L) if and only if a is meet irreducible.

Proof. The necessity of the condition is clear; we prove its sufficiency. Thus, let a
be meet irreducible and suppose be(al, b=x A y. Then a=avb=av
vi(xAy)=(avx)A(avy)and hencea=avxora=avyie x=<a
or y < a. Thus x € (a] or y e (a] and (a] e Z(L).

Especially, if Lis a distributive lattice and a € L, then (a] € (L) iff a is meet
irreducible ([1], p. 67 or [2], p. 28).

1.3. Remark. Let Lbe a chain. Then Lis a distributive lattice and any element
of Lis meet irreducible. Thus (a] € #(L) for any a e L. Further, it is easy to see that
also (a) € Z(L) for any a € L. '

Let K, L be lattices. We denote by Hom (K, L) the set of all homomorphisms
of K into L.

1.4. Lemma. Let K, L be lattices and f € Hom (K, L). If P e #(L) then f~*(P) e
€ P(K).

Proof. Let Pe #(L) and x,yef )(P). Then f(x)e P, f(y)eP, f(x v y) =
=f(x) vf(y)ePandx v yef ! (P). Let xe K, yef~*(P), x < y. Then f(y) e P
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and f(x) < f(y) as f is monotone. Thus f(x)e P and xef™!(P). Let x, yeK,
x A yef Y(P). Then f(x A y) = f(x) A f(») € P, hence f(x)e P or f(y)e P and
xef~Y(P) or yef~!(P).

1.5. Lemma. Let L be a lattice. Put #(x) = {P € #(L); x € P} for any x € Land
R = {P(x); x € L}. Then & is a ring of sets (thus a distributive lattice with respect
to set operations) and P is a surjective dual homomorphism of Lonto A.

Proof. Clearly, 2 is a surjective mapping of L onto £. Let x, y € L. Then
Pxvy)={Pe?L);, xvyeP} ={Pe?L); xeP and yeP} = {PeP(L);
xeP}n{Pe?(L); ye P} = Z(x)n P(y), P(x A y)={PeP(L); x A ye P} =
={Pe?P(L); xeP or ye P} ={PeP(L); xe Py u{PeP(L); ye P} = ?(x)u
U 2(y). Thus 2 is a dual homomorphism and simultaneously we obtain that 2 is
a ring of sets.

2. CHARACTERIZATION OF LATTICE HOMOMORPHISMS

2.1. Theorem. Let K, Lbe lattices and f: K - La mapping. If there exists a subset
H < Ldense in Lsuch that Qy(y) e #(K) for any y e H, then f e Hom (K, L).

Proof. Let x;,x, €K and denote f(x,) = y;, f(x;) = y,. We prove first
f(x3 v x3) = f(x4) v f(x3) = y; V y,. Denote y, v y, =y, f(x; vV x,) = z and
assume z £ y. Then y < y v z and thus there exist u;, v, e H with y S u; < v; <
<y vz Then y; £ uy, y, S uy, i.e. x; € Quy), x; € Qf(uy), and as Q(u,)e
e #(K), we have x; v x,€ Qg (u,), i.e. f(xy vV x;) =z < u,. Hence y v z < uy,
a contradiction. Thus z < y; assume that z < y. Then there exist u,, v, € H such
thatz < u, < v, < y. AsX; v x,€ Q(u;) and Q (u,) € Z(K), we have x, € Q(u,)
and x, € Qf(“2)~ Hence f(x,) = y; £ uz,f(xz) =y Stuzand y; vV y, =y = Uy,
a contradiction. Thus f(x; v x,) = f(x;) v f(x2). Further, we prove f(x; A x,) =
= f(x1) A f(x;) = ¥1 A y,. Denote f(x; A X3) =u, y; A y, = v; we show first
u < yy. If this is not the case then y; < y; v u and thus there exist u,,vye H
with y; S 43 <3 S y; v u. As x; € Q(u3) and Q(u;) € #(K), we have x; A x, €
€ Qy(u3), ie. f(x; A x,) =u Sus;. Then y; v u < uj, a contradiction. Thus
u < y, and similarly u < y,. Hence u £ y; A y, = v; suppose that u < v. Then
there exist u,, v, € Hwithu < uy < vy < 0. Asx; A x, € Q(uy)and Qf(u,) € Z(K),
we have x; € Q(uy) or x, € Q(uy), i.e. f(x;) = y; < uy or f(x,) = y, < u,. But
then y; A y, = v < uy, which is a contradiction. Thus f(x; A x,) = f(x;) A f(x,)
and fe Hom (K, L).

2.2. Lemma. Let K be a laitice, L a chain and f: K — L a mapping. If there
exists a subset H = L dense in L such that R(y) e #(K) for any y e H, then fe
e Hom (K, L).
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Proof. Let x,, x; € K, f(x;) = yy, f(%2) = y,. Then either y; < y, 0r y; < yy;
let us assume that y; < y,. Denote f(x; v x,) = y and assume that y = y, does
not hold. If y, <y, then there exist u,,v, € H with y, £ u; <vy £ y; then
x; € Ri(v;), x, € Rf(v;) and x, v x, € Ry(vy),i.e. f(x; v x;) = ¥ < vy, a contradic-
tion. If y < y,, then there exist u,,v, € H with y S u, < v, £ y,;thenx; v x,€
€ R/(v,), thus x, e R({v,), ie. f(x;) = y, < v,, a contradiction. Thus y = y,,
ie. f(xy V X3) = y2 =¥, v y; = f(x1) v f(x2).

Denote further f(x; A x,) = z and assume that z = y, does not hold. Let y, < z;
then there exist u;,v3 € H such that y; S u; <v; <z As x; € Rf(v3), we have
Xy A X3 € R{vs), i.e. f(x; A x,) = z < v3, a contradiction. Let z < y,; then there
exist uy,v4€ H with z S uy < vy £ yy. As x; A x, € R(v,) and Ry(v,) e Z(K),
we have X, € Ri(vy) or x, € R/(v,), i.e. f(x;) =y, < vy o1 f(x;) = y, < v,. As
¥1 £y, wehave y; < v, and this is a contradiction. Hence z = y,,i.e.f(x; A x;)=
= y1 = y1 A ¥2 = f(%4) A f(x,) and f € Hom (K, L).

2.3. Theorem. Let K be a lattice, L a chain and f: K = L a mapping. Then the
following statements are equivalent:

(1) feHom (K, L);

(2) 24y) e Z2(K) for any ye L;

(3) there exists a subset H = L dense in Lsuch that Q/(y) € ?(K) for any ye H;
(4) R{(y) e Z(K) for any ye L; v

(5) there exists a subset H < Ldense in L such that Ri(y) € Z(K) for any y e H.

Proof. (1) = (2) by 1.3 and 1.4. (2) = (3) is trivial and (3) = (1) by 2.1. (1) = (4)
by 1.3 and 1.4, (4) = (5) is trivial and (5) = (1) by 2.2.

2.4. Theorem. Let K be a lattice, L a nontrivial chain, and let x,, x, € K. Then
the following statements are equivalent:

(1) f(x1) = f(x3) for any feHom (K, L);
(2) x,e P<>x,€ P for any Pe P(K).

Proof. 1. Let (1) hold and let P e #(K). Choose any yi, y2€L, y; <y, and
define a mapping f: K —» L by f(x) = y, for xe P and f(x) = y, for xeK — P.
It is easybto show that fe Hom (K, L): if u,veK, u,veP, then u v ve P and
fluvo)y=y, =y, vy =fu)Vvf(v); if uEP or vEP, then u v vEP and
fluvo)y=y,=fu) v f(v) fuEP,vEP, thenu A vEP and f(u A v) = y, =
=y, Ay, =f(u) Af(v);if uePorveP, thenu AvePand f(u Av) =y, =
= f(u) A f(v). Thus fe Hom (K, L) and by (1) f(x;) = f(x2). But this implies
x;eP<ex,€P.

2. Let (2) hold and let f € Hom (x, L). Denote f(x;) = Y1, f(x2) = y,. By 2.3,
we have 0 (,) € #(K) and as X, € Q((y,), we have x, € Q/(y2), i.e. f(x1) = 1 < .
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Similarly Q,(y,) e 2(K) and x; € Q«(y1), thus x; € Qy(y,), i.e. f(x;) = y2 = 1.
We have y, = y,,ie. f(x;) = f(x2)-

3. FURTHER PROPERTIES OF LATTICE HOMOMORPHISMS

3.1. Lemma. Let K be a lattice, L a distributive lattice and f € Hom (K, L). Let
there exist a subset Ly < f(K) dense in f(K) and containing only meet irreducible
elements in L. Then Q;: Ly — P(K) is an isomorphic embedding and f(x) =
= inf {z € Lo; x € Q/(z)} holds for any xe K.

Proof. By 1.2 and 1.4 we have Q/(y) € Z(K) for any y € L,, so that Q, maps L,
into -J}(K)~ Let y1, Y2 € Lo, ¥y < y2- Then x € Qf(h) =>f(x) Eyn=fx)sy.=>
= x € Q/(y,) and thus Q,(y;) € Q,(y2). Let Q/(y1) S O/(y,) and choose x; € K,
x, € K such that f(x,) = y;, f(x2) = ¥2. Then x, € Q(y,), thus x; € Q(y,) and
x2€ Q). As Qy(y;) e Z(K), we have x; v x, € Qy(y,) so that f(x; v x;) =
= f(%1) Vv f(x2) = y1 Vv y, < y, Which implies y, < y,. Thus Q,: L, » #(K) is
an isomorphic embedding. Let x € K be any element and put f(x) = y. By 1.1 we
have y = inf{zeLy; y < z} = inf{zeLy; f(x) < z} = inf {z € Ly; x € Q,(2)}-

3.2. Theo}em. Let K be a lattice, L a chain and f: K — L a mapping. If there
exists a subset Ly = Lsuch that Q;: Ly — g’(K) is an isomorphic embedding and
f(x) = inf {z € Ly; x € Q(2)} for any x €K, then f € Hom (K, L).

Proof. Put o = {Q/(2); ze Lo} S #(K); by assumption, Q7 ': o'g — Ly is an
isomorphism. Denote #(x) = {P€ #'¢; x € P} for any x € K; by assumption we
have f(x) = inf{z € Ly; x e Q/(z)} = inf {Q;*(P); P e #(x)}. For any x,,x,eK
we have #(x; v x,) = {PeHo; Xy V X,€P} = {PeAy; x,€P and x,€ P} =
= RB(x1) O B(x;), R(xy A x;)={PeHy; x4 Ax,6P} ={PeAy; x,€P or
x, € P} = %&(x,) U %(x,). Denote -f(x;) = yy, f(x2) = y2. Then either y, < y,
or y, < y;; let us suppose that y; < y,. Let first y; < y, and Pze%(xz). As
yy = inf{Q;'(P); PeR(x,)} <inf{Q;'(P); Pe R(x;)} = y,, there must exist
P, € A(x,) such that Q7 '(P,) £ Q;'(P,). As Q7' is an isomorphism, we have
P, < P,. Then P, € R(x,) and this shows %#(x,) = %(x,). This implies f(x, v x,) =
= inf {Q;'(P); Pe #(x, v x,)} = inf {Q;'(P); P € %(x,) N #(x,)} =
= inf{Q;I(P);Pe %(xz)} =f(xz) =Y2=¥V1 V)= f(x1) v f(xz)sf(xl A X)) =
= inf{Q;'(P); Pe A(x, A x,;)} = inf{QF'(P); P e #(x,) L #(x,)} = inf{Q}'(P);
Pe R(xy)} = f(x1) = y1 = y1 A Y2 = f(x1) A f(x,). Now suppose that y, = y,
holds. If for any P, € #(x,) there exists P, € %(x,) with Q5 '(P;) < Qf'(P,), then
repeating the preceding consideration we obtain f(x; v x;) = f(x;) v f(x,),
Sf(x1 A x3) = f(x;) A f(x;). Thus let there exist P, € %(x,) such that Q;'(P) >
> Q7 !(P,) for any P e %(x,). As Q5" is an isomorphism, this means P 2 P, for
any P e %(x,). As x, € P,, we have x, € P for any P € %(x,) and hence %(x,) <
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c A(x,). Now we obtain f(x; v x,) =inf{Q;'(P); Pe %(x, v x,;)} =
= inf {Q; (P); P € #(x,) N R(x;)} = inf {QF'(P); P e R(xy)} = f(x,) = yy =
=y1 V¥ = f(x1) vV f(x2), f(x1 A x;) = inf{Q;(P); Pe R(xy A x,)} =

inf {Q7'(P); Pe%R(xy) L R(x,)} =inf{Q;' (P);P € R(x3)} = f(x2) = y2 =
= y1 A ¥z = f(x1) A f(x;). Thus f€ Hom (K, L).

3.3. Theorem. Let K be a lattice, L a chain and f: K — L a mapping. Then the
following statements are equivalent:

(1) fe Hom (K, L);
(2) 9s:f(K) > 2(K) is an isomorphic embedding and f(x) = inf {y e f(K); x €
€ Q(y)} for any xeK;

(3) there exists a subset L, < f(K) dense in f(K) such that Q;: Ly —» #(K) is an
isomorphic embedding and f(x) = inf {y € Ly; x € Q/(y)} for any xe K.

Proof. (1) = (2) by 3.1, (2) = (3) is trivial and (3) = (1) by 3.2.

4. POWER OF LATTICES

4.1. Lemma. Let K be a lattice, L a nontrivial chain and let x,, x, € K. Let the
mapping P have the same meaning as in 1.5. Then the following statements are
equivalent:

(1) 2(x1) = P(x,);
(2) f(x4) = f(x,) for any fe Hom (K, L).

Proof. #(x,) = #(x,) means {P e #(K); x, € P} = {P e #(K); x, € P} which
means x,; € P<>x, € P for any Pe g’(K). But by 2.4 this statement is equivalent
to f(x,) = f(x,) for any fe Hom (K, L).

4.2. Definition. Let K, L be lattices. The power L¥is the set Hom (K, L) equipped
with an order < given by f < g < f(x) £ g(x) for any x e K.

The power L* of lattices L, K is thus a subset of a cardinal power (L, <)% of
ordered sets (L, <), (K, <) which consists of all monotonic mappings of K into L.
The cardinal power (L, <)%= is a lattice in which f v g:x - f(x) v g(x),
f A gix > f(x) A g(x), xeK. I¥ is, however, not a sublattice of (L, <)*=) as
fvg, fAg need not be homomorphisms of K into L whenever f, g are such
homomorphisms.

4.3. Theorem. Let K be a lattice, L a chain. Then there exists a distributive
lattice K, such that the ordered sets L, L** are isomorphic.
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Proof. If Lis trivial, then the assertion is clear; thus let ILI 2 2. For the lattice K,
let us construct the lattice £ and the mapping 2 as given in 1.5 and let #* be a dual
of #. Then 2 is a surjective homomorphism of L onto #£* and #* is a distributive
lattice. We show that the ordered sets IX and L** are isomorphic. Let us define
a mapping ¢: Hom (#*, L) - Hom (K, L): for g € Hom (#*, L) let ¢(g) = g - 2,
i.e. (g): K - Lis such a mapping f that f(x) = g(2(x)) for any x e K. As ¢(g) is
a composition of two homomorphisms £ and g, it is a homomorphism of K into L
so that really ¢: Hom (#£*, L) - Hom (K, L).

We show that ¢ is surjective. Let f € Hom (K, L). Let us define a mapping
g: #* > Lby g(#(x)) = f(x) for any #(x)e #*. This definition is correct, for if
P(x,) = P(x,)for some x,, x, € K, then f(x;) = f(x,) by 4.1. Now, if Z(x,), 2#(x,) €
€ #*, then g(2(x,) v 2(x,)) = g(P(x1 Vv x3)) = f(x1 v x;) = f(x1) Vv f(x2) =
= g(2(x,)) v g(#(x,)) and similarly we see that g(2?(x,) A 2(x,)) = g(?(x1)) A
A g(2(x,)). Thus g e Hom (#*, L) and from its definition we conclude ¢(g) = f.
We show further that ¢ is injective. Let gy, g, € Hom (2%, L), g, # g,. Then there
exists a 2(x) € #* such that q,(#(x)) + g2(#(x)) and then ¢(g,) (x) = g,(2(x)) +
+ 9:(2(x)) = 0(g2) (x). ie. 0(g1) * 0(92).

Thus ¢ is a bijection of Hom (#*, L) onto Hom (K, L). For any two elements
91, 9, € Hom (#*, L) we now have g, £ g, in L*" <> g,(#(x)) < gz(g’(x)) for any
P(x) € B* <> ¢(g,) (x) £ ¢(g,) (x) for any x e K <> ¢(g,) < ¢(g,) in IX. Hence ¢
is an isomorphism of L** onto IX.

Note that 4.3 in particular implies that the isomorphism of ordered sets I¥, IX
does not generally imply the isomorphism of the lattices K, K.

4.4, Problem. Let K, K, be distributive lattices and L a nontrivial chain. Does
the isomorphism of ordered sets IX, IX* imply the isomorphism of the lattices K, K,?
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Souhrn

NEKTERE VLASTNOSTI SVAZOVYCH HOMOMORFISMU
VitézsLAv NovAk

Necht L je fet¥zec a K, K jsou svazy. V praci je ukazano, Ze z izomorfismu mocnin LK LK1
obecng neplyne izomorfismus svazu K, K. Zejména plati: pro kaZdy svaz K existuje distributivni
svaz K, tak, Ze uspofadané mnoZiny LK, LX1 jsou izomorfni.

Pesome

HEKOTOPBLIE CBOVICTBA TOMOMOP®U3IMOB PEINIETOK
ViTEZSLAV NovAK

IIycte L — nene 1 K, K, — pemeTku. B cTaThe IOKa3aHO, YTO M3 M30MOpdH3Ma cTemeHel
LK, LK1 ye cnepyer uzomopdnsm pemerok K, K. B uactHOCTH: ANIst BCAKOMK pemeTky K CymmecTByeT
mucTpubyTuBHAs pemeTka K; Takas, YTO yNOPSJOYCHHbIE MHOXCTBA LK, LK #30MOpdHEI.
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