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OF WEAK SOLUTIONS OF ORDINARY DIFFERENTIAL EQUATIONS
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Summary. The paper deals with the existence and uniqueness of weak (in the distributional
sense) solutions of linear and non-linear boundary value problems for ordinary differential
equations. The main tools are the smooth integral and classical fixed point theorems.
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INTRODUCTION

Distributional solutions of ordinary differential equations have not been studied
to a sufficient extent, due to certain difficulties in defining operations on distributions:
some operations (e.g. multiplication, substitution, definite integral) cannot be defined
for all distributions in a natural manner. In order to overcome these difficulties we
apply the operational approach to differential equations using the smooth integral
(see [1], p. 201).

In our paper we consider the existence and uniqueness of weak solutions of linear
and non linear ordinary differential equations satisfying some additional conditions.
The application of the smooth integral allows us to replace the given ordinary dif-
ferential equations by special integral equations. Next, we apply the classical fixed
point theorems to these equations to obtain, in particular, solutions in the Sobolev
space W*?(a, p) (a,beR, 1 < p < oo, s 2 0). In Chapter 2, we establish the main
properties of the smooth integral. In Chapter 3, we discuss systems of non linear
differential equations (of the first order) with some additional conditions which are
expressed in the form of linear continuous functionals defined on the space IZ(a, b).
The solutions of these equations are vectors whose all coordinates are functions of
the class I’(a, b). In Chapter 4, non linear differential equations of order n (n=2)
are studied with additional conditions in the form of linear continuous functionals
on the space W*?(a, b) (s 2 1,1 < p < ; a, b € R). From the fact that the unique
solution of the homogeneous problem is the trivial one we obtain in Chapter 5
the existence of solutions of the non homogeneous problem.
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The study of distributional solutions of ordinary differential equations is still
topical (see [7]). A particularly large number of papers have been devoted to linear
differential equations with distributional coefficients (see [6], [9], [10], [17], [19],
[20], [23], [26], [27], [29]). Other possibilities of generalization of the notion of
a solution of an ordinary differential equation are considered in [8], [11], [12] [15],

[16], [25], [28], [32].

Our considerations will be based on the sequential theory of distributions (see [1]).

1. NOTATION

Let R denote the set of all real numbers and N the set of all naturals. Let I denote
a closed interval [a, b] and I, the open interval (a, b) (a, b € R). By I?(I) we denote
the space of all real Lebesgue measurable functions f defined on the interval I such
that

171, = e [FP (M d)'? < 0 if 1<p <o,
and
P sup ess /()| < 0 if p=oo.
te

We put
L) = 20) X oo x 2O, Wyl =S Il 1] =0 a,

where y = (yy, ..., ¥a) and y, € I’(I) for i = 1, ..., n. We adopt the following con-
vention: if p = 1 and ¢ = oo, then 1/p + 1/qg = 1 and 1/q = 0.

Let W*?(I) or W*?(I,), se N, p 2 1 denote the set of all functions y possessing
a continuous derivative of order s — 1 on the interval I or on I, respectively, and
such that y® e I7(I). We introduce the following norm on these spaces:

s—1
Izl = 2 129l + 1215
The spaces (W**(I), |-|) and (W*?(Io), ||-|) are Banach spaces. For s = 0, we put

WOHIG) = IX(Iy) and |z, = |z]

where z € I7(I,).

If se NuU {0} and Lis a linear continuous functional in (W*(I), ||+|), then we
write Le (W=*(I), |- |)*.

The symbol I?*)(I,) denotes the set of all the k-th derivatives (in the distributional
sense) of functions of the class I7(,).

By C¥(I) we denote the space of all real functions with a continuous k-th derivative
on I, and by C(I) we denote the set of real continuous functions on I.

114



Throughout the paper w and @ stand for infinitely differentiable functions with
bounded carriers inside I, such that

fro(tydt = f@(t)dt = 1.

We adopt the convention thata, be Rand p = 1.

2. SMOOTH INTEGRAL

In the theory of differential equations the solving of various problems leads to
integral equations. However, for distributions the definite integral does not exist
in general. Therefore we introduce the operation ¥, which assigns to a distribution
which is the k-th derivative of a function of the class I7(I,) one of its k-th primitives.
In this chapter we establish some properties of the operation ¥ while in the next
chapters we present several applications.

We suppose that ¢ = ®®, where @ is a locally integrable function on the inter-
val I, and the derivative is understood in the distributional sense. By the smooth
integral of ¢ we mean a distribution ¢, ; defined as follows:

(2.1) @ = OV + (—1) f; o(r) 0* V(1) dt  (see [1]).
The smooth integral of order r (r = 2) of a distribution ¢ is defined by
(2-2) (pz,r = l//a\:,,l ’

where Y = ¢, ,_;.
It is easy to see that

22y (pan ) =9
and
(2'3) Alfu‘;,r + )'Zga\;,r = h;,r ’

where f and g are distributions defined on I, A;, A, € R and h = A,f + A,9.
We shall use the notation fy i(y) instead of (f(y))s,1 and gy .(y) instead of
(9(y))a 4 Where f: LE(I) » IPV(Io), g: W~ %¥(I,) - I*®(I,) and 2 £ 2k < n.
Now we shall give the fundamental properties of the smooth integral.
Lemma 2.1. Let f be a mapping, f: Li(I,) — IZV)(I,), and letlim |y, — y|,,. = 0,
where y,, y € L5(I,). Moreover, let '
v]Ln; Ifa () — f;,1(y)llp =0.
Then
tim 112.0) = f240)], = ©-

Proof. In fact, by (2.1) and (2.2)" we have
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(2.4) faay) = fo1(n) = §efa(v,) (1) &(t) dt

and .

(25) fa4(y) = fa,1(v) = frfa,1(v) (1) B(t) dt .

Let 1/p + 1/g = 1. Then, by (2.4)—(2.5) and by the Hélder inequality, we obtain
26)  |fz.) — f2.0)e = (0 + 1], [3]) 112,:0) = 13,40 »

which proves our assertion.
Slmllarly, we can prove the followmg lemmas:

- Lemma 2.2. Let f be a mapping, f: W*~%8(I,) - IZ®(I,) (2 < 2k < n), and let
lim |y, — y|| = 0, where y,, y € W*~*2(I,). Moreover, let

lim "fa\),k(yv) _fa\)',k(y)"p =0.
Then ‘
' llm nf&'\)l.k(yv) —f(';,k(y)np =0 .
Lemma 2.3. Let f: Li(I,) —» I*Y(I,) and let

sl  alyl, + 8,

where o, Be R and y e '™)(I,).
Then there exist non negative numbers a4, B, such that

“fw l(y)“p “llly"p n+ By for yeLiI,).

Lemma 2.4. Let f: W*™*(I,) - I’®(I,) (2 £ 2k < n) and let
[fox)le = eyl + B for yew™*Hl) (xBeR).

Then there exist non negative numbers «,, B, such that

V2 i0)lp < aslly]l + By for yewsrx(I,).

Lemma 2.5. Let f: Li(I,) —» I’“)(I,) and let
17540) =723 S oy = 7l (2€R).

1/2.10r) = £Z.)» = aslly = 55
where y, y € L(I,), a, € R.

Then

Lemma 2.6. Let f: W*~*(I,) -» IP®(I;) (2 < 2k < n) and let
1fax) = fouP)o < aly = 5] (xeR).
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Then
1/3.4(7) = fau(P)p £ lly = 7|

for y, 7 e W A(I,).

Lemma 2.7. Assume that f, 1: Ii(I,) - L”(Io) and f, , is a compact mapping.
Then f3 ; is also a compact mapping.

Lemma 2.8. If fu ,: W*™*¥(I) - I¥(I) and f, is a compact mapping, then fy ,
is also a compact mapping.

3. WEAK SOLUTIONS OF SYSTEMS OF DIFFERENTIAL EQUATIONS

We consider the problem
(3'1) yi= fi(Y) s
(3'2) Ei(}’i)="sa rneR, i=1,...,n

where f; are operations, L; are functionals and all derivatives are understood in the

distributional sense.

Let y = (y1,-.» ¥u) € L(Io), fi: Li(Io) » IPM(1), Lie(IX(Lo); ||*|l,)* for i=
= 1,...,n and let y satisfy the system (3.1) on I, with the conditions (3.2). Then
we say that y is a weak solution of the problem (3.1)—(3.2).

Theorem 3.1. Assume that

(3.3) SeL(Io) » PV(Ip), i=1,..,n;
there exist a function w and o € R such that
(3.4) 1£540) = fioaG)p < oy = 55

Soralli=1,...,nandy,yeL(I,);

(3-5) el for i=1,..,n;
(3.6) LA)=1 for i=1,...,n;
(3.7) A=an(l + Mo|1],) <1,
where M, = sup L] -

1giz
Then the problem (3.1)=(3.2) has exactly one weak solution.

Before giving the proof of Theorem 3.1 we formulate the following lemma:

Lemma 3.1. Let us assume that the conditions (3.3), (3.5)=(3.6) are satisfied.
Then y € Li(1,) is a weak solution of the problem (3.1)—(3.2) if and only if y is
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a fixed point of the operation G = (Gy, ..., G,), where
(3.8) G(y) = fion(y) + ri = L(f5.(y), i=1,..,n,

and
G(y) = (G1(y); ---» G(¥)) -

Proof of Lemma 3.1. Let y € Li(I,) be a fixed point of the transformation G.
Then y is a solution of the equation (3.1) in I, and (by (3.5)—(3.6))

ii(yl) = Ei(fi:),l(y)) + Ei(vl) - Ei(fi::,l(y)) =r, i=1..,n
On the other hand, if y € L(I,) is a weak solution of the problem (3.1)—(3.2), then
Yi =f|2),l()’) + Cis

where c;e Rand i = 1,...,n.
Hence, by (3.5)—(3.6) we have

=Tr; — f‘l(fl:),l(.}’)) s

which proves the lemma.

Proof of Theorem 3.1. By Lemma 3.1 and the assumption (3.4) we have

16(») = G(7)pn < Ay = 7o -

We conclude by (3.7) that G is a contractive mapping. By virtue of the Banach
fixed theorem our assertion follows.

Example 3.1. Let D =1, x R". We say that a function g: D — R satisfies the
condition (C) in D if

(3.9) the function g(t, vy, ..., v,) is continuous with respect to (vy, ..., v,) for every
fixed ¢,

(3.10) the function g¢(t,v,,...,v,) is Lebesgue measurable with respect to ¢ for
fixed (v, ..., ,).

Let functions k; (i = 1, ..., n) satisfy the condition (C) in D and let
(3.11) ij(t, vl, ceay vn) - kj(t’ l_)l’ .o ] _<__ Z t) Iv l_),'l fOl' j = 1, veey n

(3.12) |k(t,0,...,0) < p(f) for j=1,...n,

where p; e L'(I,), q,€I{I,), 1/p + 1/g = 1 and i,j = 1, ..., n. Next, we assume
that

hi:I >1, hy;eCYI), hftf)>0 for tel.
We define

(3.13) (Fi) (1) = kft, y (e ), - vl BuiD)) + QY1)

where Q;€ I(Io), y;e IX(I,), i = 1,...,n
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Then
yi(hi)e Z(Io) and f;: L2(I,) = PV(I,) for i=1,...,n.
Let

(3.14) Ry (1) = Jaki(s, yi(h1i())s .- Yulhai(s))) ds + Qi) for i=1,...,n.
Then, applying (2.1) and the Hélder inequality we can write

(315)  |fiou() = fioa®lp = (1 + 1] [old) [RO) = R, < |y = 7],
where

w= 3 Naul (1 + [l Joll) 1] 106 ).

Hence the operations f; satisfy the assumptions (3.3)—(3.4) fori = 1, ..., n.

We adopt the following convention: for ge IZ(I,) we put g(t + 1) = 0 for
t + t¢1,. Let pe[1, ). We say that an operation F: I(I,) — L2(I,) (F: W™(Iy) -
— I¥(I,), meN) has the property R on I, if for every ball B < (I5(I,), |*||,.,)
(B = (W™*(I,), |-|)) and & > O there exists 6 > 0 such that
(3.16) BIFG)(t + 1) — FO) ()P dt < ¢

for every 0 < 7 < § and every y € B.
From the relation (2.4) we obtain the following corollary:

Corollary 3.1. Let fy, ,: Li(Io) » IX(Io) and let | £, «(¥)||, £ ||y, + B, where
pe[l, ©) and «, p € R. Moreover, let [}, | have the property R on I,. Then f;
also has this property onl,fori =1,..., n.

Corollary 3.2. Let f,; ,: W'™""(1,) — IX(Io) and let |f3(»)|, < of|y| + B, where
2<2k < n;a feRand pel, ©). Moreover, let f , have the property R on I,.
Then f3 , also has the property R on I.

Theorem 3.2. Let us assume that

(3.17) conditions (3.3), (3.5)—(3.7) are satisfied and p € [1, o0); there exists func-
tion w and o, f € R such that

(3.18) Ifoa, < alylpm + B
forallye5(Iy) and i = 1,...,n;

(3.19) fi,.1 are continuous operations on Li(I,) for i = 1,...,n;
(3.20) the operations fy, ; have the property R on I, fori =1,...,n.
Then problem (3.1)—(3.2) has at least one weak solution.

Proof. We consider the transformation G defined by (3.8). Let
B = {ye L(lo): |y],n = K}
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and let M, A be defined as in Theorem 3.1. Then

) 16, = ot + Mo]1],) K + B,

By =B+ (max |ri| + Mop) |1, -
1<i<n
Evidently G is continuous and
1G5 < 2K + By
Thus, if A < 1 and K = B,/(1 — A),.then G(B) = B. The property R and the Riesz
theorem imply that G(B) is a compact set in (I£(I,), | *||,..)- Applying the Schauder

fixed point theorem we conclude that the operation G has a fixed point, which com-
pletes the proof of the theorem.

Remark 3.1. It is easy to show that the operations defined in Example 3.1 satisfy
the assumptions (3.18)—(3.20).

Example 3.2. Let k; (i = 1, ..., n) satisfy the condition (C) in D, where D =
= I, x R". Moreover, let

(3.21) [kt o1, o0 0)| = X a0 [od + 215

where p;, ¢;; are non negative functions on I, p; € L*(I,),q;j € I(Io) fori,j = 1,...,n
and 1/p + 1/q = 1. Then the operations f; defined by (3.13) satisfy the assumptions
(3.18)—(3.20).

4. WEAK SOLUTIONS OF NON LINEAR DIFFERENTIAL EQUATIONS
OF ORDER n (n= 2)

In this chapter we are going to discuss the problem

(4.1) » =1,
(4.2) Ly)=r;, r,eR, i=1,..,n,

where f is an operation, L; are functionals and the derivative is understood in the
distributional sense.

Let f: W"™%r(I5) — r®(1,), 2 £ 2k < n, Lie (W"kx(1), ||||)* fori=1,...,n
and let y € W»~*2(]) satisfy the equation (4.1) on I, with the condition (4.2). Then
we say that y is a weak solution of the problem (4.1)—(4.2).

Before formulating a theorem, we introduce some notation. Let Q La;],
where ¢;; = L(¥'~!), i,j = 1,...,n, and let

(4.3) V() (1) = j(‘ S fw ) () ds.
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Moreover, let
do = (ry — Ly({U(3)), s 1w — L(Ua())) -

The symbol Q;,(y) will denote a matrix obtained from Q by replacing the j-th column
by the column d,. We put '

W;o(y) = det Q;(y) and W=detQ.

Now, we introduce the following hypothesis:
Hypothesis Hy,:

(4.4) f: W""‘"’(Io) - L"(")(Io) , 222k <n,
there exists a function w and a € R such that

(4.5) 1f24(y) = fouP), < 2y — 7]
for all y, j € W"~%x(I,).

Theorem 4.1. Let
(4.6) Lie(W%x(I), |-|)* for i=1,...,n,
4.7) W+0. |
Then there exists a number «, € (0, 00) such that the problem (4.1)—(4.2) has

exactly one weak solution for every a € (0, ao) and for every operation f satisfying
Hy,.

Proof. We observe that y € W"~%¥(I) is a weak solution of the problem (4.1)—(4.2)
if and only if y is a fixed point of the operation T, defined by

() T.0)0) = V) () + % )
where
W,y

J

4.9 aj_g0(y) =2, j=1,..,n.

I

Next, we shall introduce some notation. Let

M, = max [|Ly [ ..., |Laf,] »
o = lin sn[(max ("%, 1) (n — k + 1) (n — DI,

kio = max (L, |I|"), k;;=[max(L{ID}'~i...(i—j+1),
i=0,1,..,n—-1, j=1,...n—k, 0i—j,
and ,
n-k—1 H'n—k-j—1+llq

L= Y

+ 1
o (n—k—j—1)
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It is clear that
] < (n = D' (n — k + 1) max ([I]""*,1) for s=0,1,...,n—1.

Hence, by (4.5) and (4.9), we infer that

(410)  |aw(y) - ai,,,(y)l < pooLoly — 3| for i=0,1,..,n—1.

These inequalities and the assumption (4.5) yield

(4.11) (TP = (T(H)Y| =
= [(nllt' — 11 —/;)! + }loocLo(i;jku)] ly = 7],

i=01,..,n—k—-1

and
(4.12) (To() ™ = (T()" ] <
= lfa\;k(y) - fa\:k(.v)l + i:gikﬂoLok.‘,n-ka“y - 7.
Denoﬁng e
N() =,§; j;o ki + (15 (i="z_k Kin-1) >
we have

I1Tu(y) = Tu(®)|| < eLo(1 + #o N()) |y — 5] -

We conclude that T, is a contractive mapping if « < «,, where

(413) o = [La{1 + io N

By virtue of the Banach fixed point theorem our assertion follows.

Remark 4.1. Let ¥;(i = 0, 1,...,n — k — 1) be a function of bounded variation

on the interval I. Moreover, let y € W"~*¥(I), g € I(I), where 1/p + 1/q = 1. Then

n—k—1

L) = X [ry2) b+ frye (0 o() dee (W), | -[)* .

Thus, taking functions ¥; and g in a special form, we obtain the interpolation
problem or the de la Vallée-Poussin problem as particular cases of the problems

considered in our paper.

Example 4.1. Let functions g, g, satisfy the condition (C) in the set D = I, x R?

and let
(4.14)  |9i(t, vo, v1) — gi{t, Bo» B1)| < 4,(2) |v0 — Bo| + 42(t) |01 — 74

and
g, 0,0)| < g5() (i =1,2),
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where 4y, 4,, 45 are non negative functions such that q,, g5 € L'(I), g, € I(I) and
1/p + 1/g = 1. Moreover, let

hy, hy:I -1, hyeC(I), hyeCYI), hy(t)>0 for tel.

We define
f(v) = (1) ¥(t) + Ro(2) 1 g:(t, y(ho(1), y' (1)) dt +
+ ga(t, y(hy(0)), y'(ha(9))) + 4() y'(9)
where Qe L(I), r = max(p, q), Roe IX(I), Ae Wi(I), ye W'H(I) and Q'y =
= (Qy)' — Qy'. We put
(415)  F(y) (1) = Q) »(8) — Ja Q(s) ¥'(s) ds + Ro(t) 1 g4t y(hs(9)) ,
(@) 86 + T 9205 5016, Y (he(5) & + 4G) Y1) = o 4G) y(6) ds.

Fridentl F: Wo(Io) - (L), f: WP(Io) » IPU(I,)
and
(4.16) [£2.40) = £5.aO)l, = (1 + 1] |ollg) [FG) = F(G) [ = o]y - 5]
(by (2.1) and the Holder inequality), where

a=[lel, + [ela Iths + (IRoll, + [11) (laulls + lazlla (1527 1)) +
+ [4]o + 1l |43 (0 + [1], el -

Hence f,; ; satisfies the assumption (4.5).

Before giving a theorem on existence of weak solutions of the problem (4.1)—(4.2),
we formulate the following hypothesis:

Hypothesis H,,

(417)  frWTRR(I) > B®(I,), 252k <n, pe[l, );

there exists a function w such that

(4.18) Ifoc)p < |yl + B, where ye W"™*HI,), « BeR;
(4.19) fox is a continuous operation on the space  W"~%#(I) ;
(4.20) the operation f , has the property RonI.

Theorem 4.2. Assume that the conditions (4.6)—(4.7) are satisfied. Then there
exists a number o, € (0, ) such that the problem (4.1)—(4.2) has a weak solution
Jor every a.€ (0, ay) and for every operation f satisfying Hy,.

Proof. We use the Schauder theorem for the transformation T, defined by (4.8).
Let B be the ball

{yewrx(1): |y] S K}
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By (4.8)—(4.9), we have
(4.21) ‘ Iaj—m()’)l < polr + aMoKLy + fM,Ly),
r,,|) and g, My, Ly are defined in the proof of Theorem

where r = max (|r|, ...,

Hence, we infer that
(4.22) [Tu(y)| S 0oe'K + By,

where
By = BLy + N(I) #0(" + BM,L,) .

K = max[l, ——ﬂ‘—] .

- aao

Let o < o and let

Then T,(B) = B and

(4.23) 1) = T = 5[ £54(33) = s, -
Thus

T,: W%(I) » W"~H(1)
and T, is continuous. Let x, € B, i.e. '

x, = T,(y,), y,€B.

Since T,(B) is a bounded set in (W" **(I), |+||), there exist subsequences (by the
Arzela theorem) {x$”} and {y} of sequences {x{"} and {)$"}, almost uniformly
convergent to x and yY, respectively, for j = 0, 1,...,n — k — 1. Without loss
of generality we can assume that the sequences {x{”} and {y{”} are almost uniformly
convergent to x? and y\, respectively (forj = 0,1, ...,n — k — 1). The property R
of the operation f, , implies that the sequence {xf,""‘)} satisfies the assumptions of
the Riesz theorem. There exists a subsequence {x{.™®} of the sequence {x{"~}
convergent in I?(I) to a function x"~%. Applying the Schauder theorem we can show

that the problem (4.1)—(4.2) has a weak solution, which implies our assertion.

Remark 4.2. It is easy to show that the operation f defined in Example 4.1 does
not satisfy the assumption (4.20) (in general). If A = 0, then the operation f satisfies
the assumptions (4.4), (4.18), (4.19) and (4.20).

5. APPLICATIONS OF THE ROTATION OF A VECTOR FIELD
IN THE THEORY OF WEAK SOLUTIONS

Let (E, |+|) denote a Banach space, let Sg = {z€ E: |z| = R} and Kg = {z€ E:
|z| < R}, where R > 0. Moreover, let the operation F: E — E be completely con-
tinuous (i.e. continuous and compact). Then functions of the form ¢(z) = z — F(z)
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are called completely continuous vector fields. If #(z) # 0 on Sk, then to each system
(@, Sg) there corresponds a certain integer y(®, Sg), which we shall call the rotation
of the vector field & (or the degree of the mapping @, see [13] and [5]). If (2, Sg) + 0
on the sphere Sg, then there exists at least one solution of the quation

x = F(x) (see [14], p. 189).

Let E, =L5(I) X R" and let E;, = W ™/(I) x R" (1 £p< o, 252k S,
I = R) denote linear spaces. The sum of two elements and the product of a scalar
and an element of E; (i = 1,2) are defined in the usual way. We introduce the
following norms on the spaces E,, E,:

|z1]s = max ( max ||y;]|,, max|q;]),
15isn 1Sisn
|z2]2 = max (|y], max|q),
15isn
where

Zy = (V1 +ees Yu» 15 +--» d) € E; and z, = (v, 4y, ..., q,) € E,. The spaces (E;, ||,)

and (E,, |*|,) are Banch spaces.

Theorem 5.1. Assume
(5.1) foge Li(I) » PV(1,), i=1,..,n;
(52)  f{Ay) = Afdy) forall LeR, yeLjl,) and i=1,..,n;
(5.3) the mappings fi, 1, 91,12 Li(Io) = I¥(I,) are completely continuous for a fixed
function w (i = 1,...;n);
(5.4) Lie(@I), |*|)*, i=1,....n;
(5.5) the problem

) {yi = f{y)

Ei(yi)=0’ i= 1,.--,”
has only the zero solution (in the class I(I,)),

(5.6) lgio 1), S M < o0 forall yeli(I,).
Then the problem ‘

yi =fi{y) + gi(}’) )
(5'7) {f,i(yi) =r, neR, i=1,...,n

has at least one weak solution (in the class I(I,)).
Proof. We consider two vector fields:

(5.8) 8y, 9) = (¥1 = f10a(¥) = 415 o0 Vn = Froa(¥) = @ Li(31), ... Li(3a))
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and
(5.9) VP, 9) = (01 — floa(y) = 9Yaa(y) — 415 -0
Yn —fr:'w.l(y) - g:m,l(y) — 4y, El(yl) - Ty, -'-’f‘n(yn) - rn) ’
where y = (yy,...,y,) € i(Io) and q = (qy, ..., g,) € R". Obviously &:E, —>vEl,
¥: E, — E; and the vector fields ® and ¥ are completely continuous. &(y, ) is non
zero on a sphere Sk in the space E; (R > 0). In fact, if &(¥,g) = 0 on S, where
(7,3)eSg and § = (G4, ..., gn), then ¥ is a solution of the problem (). Thus, (5.5)
implies y = 0. Taking into account that
#(0,3) = (-3,0)
we obtain
|#(0, )|, = max|g;| |1], > 0 (because R > 0)
1<i<n

and
&(y,q) =0 on Sg.
By [13] (p. 112) we get

(5.10) inf |¢(y, q)|1 =a>0.
(y,9)eSr

Now, we shall show that y((b, S x) # 0. For this purpose we apply the Borsuk theorem
(the antipodal theorem, [13] p. 130). Therefore, it is enough to prove that

y.q) , #(-y,—q)
|20 @)ls  [2(=2. )
Suppose the contrary, then there exists a number § > 0 satisfying the equality
(5.11) ®(y,q) = p&(—y, —q) on Sg.
By the assumptions (5.2), (5.4) and the relation (2.3), we infer that

f;,w,l(ﬁy) = ﬁfl\:\),l(y) for i= 1, o

on SR’

and
L+ B d(y,q) =0 on Sg,

which contradicts (5.10). Hence it follows that y(®, Sg) % 0. Let m be a real number
such that

am > M + max \r,-|
1<5izn

and let S,z be the sphere of radius mR. Then we have

|®(v, q) — ¥, @)1 = |[(970,1()s -+ Gno 1 (V) Tas e )1
< M + max |rj| < inf |®(y,q)|s < |®(y,9)|, on Smx-

15isn ¥,9)ESmR
Using [13] (p. 128), we get

')‘(W, SmR) F 0 ’
which completes the proof.
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Theorem 5.2. Assume
(5.12) 59 W"""P(Io) - L"”"(Io) , 252k <En;
(5.13) f(Ay) = Af(y) for AeR and ye W' “HI,);

(5.14) the mappings fy 1, gax: W' %(Io) —» L(I,) are completely continuous for
a fixed function w;

(5.15) Lie (W™ %H(I), |-[)* for i=1,...,n;
(5.16) the problem

(s, %) {y"" = f(y)

L(y)=0, i=1,..,n
has only the zero solution (in the class W"~**(I));
(5.17) 9o, S M < 0 forall ye W ¥I).
Then the problem

(5.18) {y‘"’ =70) +9(»),

L(y)=r;, meR, i=1..,n

has a weak solution (in the class W"~“?(I)).

Proof. We consider two vector fields

(5.19) ?4(y,9) = (v — Uu(y) —:Z:qit', Ly(»), ... L(»))
and
(5.20) ?1(3,9) = (v = Ua(y) = gau(y) —:g:qit‘,

Li(y) = T Li(y) = 1) s

where y € W**X(I), ¢ = (qo, 1, .++» dn-1) € R" and U,(y) is defined by (4.3).

It is clear that ¢,:E, — E,, ¥,: E, — E, and the vector fields ¢, and ¥, are
completely continuous. Let Sy be a sphere in the space E, (R > 0). Then ®,(y, q) + 0
on Sg. Indeed, if ®,(7, 3) = 0 on Sx (7, d) € Sg and § = (o, dy5 ---» dn—1)), then 7
is a solution of the problem (x, *). By (5.16) we have

n-1
=0 and 9,0,3) = (Y 4t 0). -
i=0

Hence _
n—-1 .
|@,(0, q)|, = “.Zoq‘tl“ >0 (because R > 0)
and
(5.21) inf |®,(y,q), = >0 (see [13], p. 112).
(9SSR
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We shall prove that
Py(y,9) , P4(-y,—4q)
|27, 9)|: ~ |2:(=y, —9)2"
In fact, if there exists a number B > 0 satisfying the equality

®(y,q) = pPy(—y, —q) on Sg,

then :
(L+B)®4(y,9) =0 on Sk (by(2.3),(5.13) and (5.15)),
which contradicts (5.21). By the antipodal theorem (K. Borsuk) we have
7Py, Sr) + 0.
Now, we take a number m such that

am > M + maxlrl
15isn

and consider the sphere S,z in the space E, of radius mR. Evidently

I¢l(y’ q) - 1(}’, Q)lz = l(g,:,’ k(y) Fiseee I, )|2
< M + max |r,| < mf |(l51(y, q)]2 < ldil(y, q)]z on S,z

15isn .9)e
and

WPy, Smr) 0 (see [13], p. 128),

which completes the proof.
Now, we shall give some examples and remarks.

Example 5.1. Let mappings k;;: I x R" — R satisfy the condition (C) in the set
D =1 x R" and let

[kif(t, 4y, o0 t)] S M for (t,uy,..,u)eD, MeR,
i=1,...,n and j=1,2.
Moreover, let hj: 1 — I, hye C'(I) and hi(tf) > 0 for tel and j = 1,...,2n. Then

the operations
9:») (1) = kis(t, y1(hy(1)), -, (1)) +
= 0i(¥) Ib kis(t, Y1(hns 1(‘)) voos Vu(haa(2))) d2,
where Q; € I’(I), y;e IX(I), pe [1 ) and i = 1, ..., n satisfy the assumptions (5.1),
(5.3) and (5.6).

Example 5.2. We assume that

1° the function ko:I x R — R is continuous and bounded,

2° the functions ky, k,:I x R® - R satisfy the condition (C) in the set D =
=1 x R* and |ko(t, u)| £ M,

|kt,u, )| =M for (t,u,v)eD, i=1,2
and MeR, '
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3° the functions h;:I -1 for j =0,1,2,3,4; hy, hy, hye C(I), hy, hye CY(I),
h3(t) > 0 and hjy(t) > 0, where teI;

4° Q is the function of bounded variation on I,

5° SelXI), pe[l, ).
We define
(5:22)  9(y) () = Q'(8) ko(t, y(ho(1))) + S'(2) fa kst (hs(9)), y'((r)) dt +

+ ka(t, (rs(1))s y'(ha(6)) »

where y € WA(I), the product Q'(t) ko(t, ¥(ho(t))) is understood as a generalized
operation (see [1], p. 256 and [2]) and the derivative is understood in the distribu-

tional sense. It is worth noting that the product Q'(f) ko(t, y(ho(t))) exists and is
a measure (see [2]). Hence

g: Whr(I,) —» PM(1,) and gy o2 Who(Io) - IX(I,) .

Now, we shall show that the operation g, ; is continuous and bounded. For this
purpose we shall define the definite integral of a measure p as

2 p(t) dt = PX(t,) — PX(t,),

P'=ponly, ty,trely, P*t)=3P(t;+)+ P(t;—)),
P(t;+) and P(t,—) denote the right and left hand side limits of the function P at the
point ¢; (for i = 1,2). It is known (see [3], [22]) that

(5:23) |§i2 Q(2) kolt, (o(2))) dt| < M|UX(t;) — UX(ty)|

and

(5.24) lim f;, Q'(1) [ko(ss ya(fo(s)) = kols, y(ho(S)))] ds =0

(almost uniformly on I), where U’ = |Q'|, |@'| is defined as a generalized operation
(see [1] and [3]) and llm Ly, =y (uniformly on I, y,, y € C(I)). By the relations

where

(5.22)—(5.24) we conclude that g ; is a continuous and bounded operation and g, ;
has the property R in I. Next, from the Riesz theorem we infer that g, ; is a completely
continuous operation. Sy g and g, satisfy the assumptions (5.12), (5.14) and (5.17)
(for n =2 and k = 1).

Remark 5.1. Let g,,; be mappings such that
() gi,1: I2(Io) = (L) for i =1,...,m;
(b) gi,1 are bounded and continuous for i = 1, ..., n;
(¢) g1,4 have the property Rin I, for i.= 1,...,n
Then g;,, ; are completely continuous mappings fori = 1,...,n

* Remark 5.2. If g3 satisfies the conditions
(@) gou: WR(lo) > IXIo) (2 < 2k < n),
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(b) g« is bounded and continuous,
(¢) 9o has the property R in I,
then g, , is a completely continuous mapping.

Example 5.3. We consider “homogeneous problems” of the form

(525) Y6 = =3

Z(x) = —(x)

T y(x)dx = [§"z(x)dx =0
and
(5.26) Y'(x) = = y(x)
»0) = y(2m)=o0.

It is easy to observe that the problems (5.25)—(5.26) have non trivial solutions (for
instance y(x) = sin x, z(x) = cos x).

Remark 5.3. In the papers [4], [12], [17], [18], [19], [21], [24], [29], [31] we
can find some conditions which guarantee that the trivial solution is the unique solu-
tion of the homogeneous problems.

Remark 5.4. A. Filippov in [7] considers some ordinary (linear and non linear)
differential equations with distributions as coefficients, which can be replaced by
a system of equations satisfying Caratheodory’s conditions.

Remark 5.5. Let g € ’®)(I,), where I, =« R, re N and pe (1, o0). Then there
exists exactly one element g* € L”(Io) such that

(5-27) lg* 1> = inf {|Gll,: G & L(lo), G = g}

(by the uniform convexity of the space 12(I,) for p € (1, )). In [33] an operation *
is considered which assigns to a distribution g € I?*)(I,) one of its r-th primitives
(satisfying the condition (5.27)). If 1-< p < oc, the operation * is not linear unless
p = 2. Hence we conclude that

(5.28) gt =922 = |G = Gaf2»

where g, = G, g, = G, G,, G, € I)(I,) and r € N. Taking into account (5.28),
we obtain a better estimate for the coefficient « in Examples 3.1—3.2 and 4.2 (for
p = 2) using the operation * than for the operation Y.
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Souhrn

APLIKACE HLADKEHO INTEGRALU V TEORII SLABYCH RESENI
OBYCEINYCH DIFERENCIALN{CH ROVNIC

JAN LIGEZA

" Clanek se zabyva existenci a jednozna&nosti slabych (distributivnich) FeSeni linearnich a neli-
nearnich okrajovych uloh pro oby&ejné diferencidlni rovnice. Hlavnimi prostfedky jsou pojem
hladkého integralu a klasické véty o pevném bodg&.

Pesome

ITPAJIOXKEHUA I'JIADKOI'O MHTETPAJIA B TEOPUU CJIABBIX PEMEHUI
OBBLIKHOBEHHEBIX JU®PEPEHIIMAJIBHEIX VPABHEHU

JAN Li1GEzA

' B cTaThe H3y4aeTCs CyIMECTBOBAHAE M OJIHO3HAYHOCTD CJIa0bIX (B CMBICIe 0600IEeHHBIX hyHKImK)
pelICHAK JMHEHHBIX M HEJIHHEKHBIX KpaeBbIX 3amay Ui OOBLIKHOBEHHBIX IMddepeHmAanbHbIX
ypaBHenmit. OCHOBHBIMHE CPEICBAMH SBJIAIOTCA NIOHSATHE IJIaJKOI'0 HHTETpaJjia ¥ KJIaCCHYECKHE Teope-
MBI O HEIIOJABMXXHOHK TOYKE.
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