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A NOTE ON A HEAT POTENTIAL AND THE PARABOLIC VARIATION
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INTRODUCTION

Let R" stand for the n-dimensional Euclidean space (n positive integer). We shall
deal with the plane R? in the sequel. Further let *R" be the real axis together with the
points + o0 and —oo. Whenever we say f is a function on a set M we mean f is
a mapping from M into *R'; a real function on M is a mapping from M into R'.
If we speak about a continuous function we always consider a real function. Given I
a compact interval in R', %(I) is defined to be the space of all continuous functions
on I. We consider 4(I) endowed with the supremum norm topology.

Let <{a, b) be a compact interval in R' and let ¢ be a continuous function of
bounded variation on <a, b). Conformably to [ 1] we shall introduce some notations.
For any point [x, t] € R? such that t > a we define a function «, , on the interval
<a, min {1, b}) by '

x — o(7)

20— )

o, . is always a continuous function of locally bounded variation on the interval
<a, min {t, b}). Further we define for each continuous function f on <a, b)

ax.t(r) =

l min{t,b}

(0.1) Tf(x, 1) = —- f(z) exp (= (7)) dx, (7)
2 \/ T J,

whenever [x, 1] € R?, t > a and the integral on the right hand side of (0.1) exists
in the sense of the Lebesgue-Stieltjes integral and is finite. If 1 £ a then we put
Tf(x, t) = 0. \

It turns out useful to investigate Tf considered as a function on R* — {[¢(¢), t];
t e {a, b} for a fixed f in connection with the boundary value problem of the heat
equation in R?, especially with the Fouriet problem (see [1]).

A theorem concerning the limit value of Tf on the set K = {[¢(), t]; t € (a, b)}
has been proved in [1] In this paper we shall show some complementary results on
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that matter and on the parabolic variation. The parabolic variation of the curve ¢
was defined in [1] and played the main role in the investigation of the potential TJ.
In the same way as in [ 1] we define the so-called parabolic variation with a weight Q.
Let Q be a nonnegative, lower-semicontinuous and bounded function on the interval
a,b). Let [x,t] € R® Fora,r > 0, « < + o0 put

(02 ) = 00,

where the sum on the right hand side is taken over all 7 € {(a, b) such that 0 <
<t—1<r and
_ 2
o= (Fo O
200

The parabolic variation with the weight Q and the radius r of the curve ¢ at the
point [x, t] is defined by

(0.3) V(s x, 1) = J e~ 1 (r, 1) do

0

(see [1], Definition 1.1). Further we denote
VE(o0; x, 1) = VE(x, 1), Vi(r;x, 1) = Vi(r; x, 1),
Vi(x, 1) = Vk(x, 1) ([x,t]eR?).

The function V§(r; +) (as a function on R?) is a nonnegative lower-semicontinuous
function on R? and is finite on R*> — K (see [1], Lemma 1.2). Further, it holds for
eachr >0, xeR', teR,a<t<.b +rthat

min{t,b}

(0.4 v%mw=j 0(c) exp (— 22 (1)) d var a,(2)

v max {a,t—r}

(see [1], Lemma 1.1). If t S @ or t 2 b + r then VE(r; x, 1) = 0.

The parabolic variation is analogous to the cyclic variation introduced in [4]
(or [3]). It has been found in [6] that there is a smooth curve which has infinite
cyclic variation at its every point. Now an analogous question arises: is there a con-
tinuous function ¢ of bounded variation on <a, b) such that Vj(x, t) = oo for every
point [x, 1] e {[¢(r), 7]; T€(a, b)}? This question is investigated in the second
part of this paper.

In this part of the present note we shall show some simple assertions concerning
the parabolic variation and some complementary assertions concerning limits of
the potential Tf on the curve ¢.
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Let ¢ be a continuous function of bounded variation on a compact interval
{a, b) = R! and let Q be a nonnegative, lower-semicontinuous, bounded function
on the interval {a, b). Let the symbols a, ,, n2,, Tf, K, V§, Vi denote the same as

in the introduction.
By the assumptions there is a constant c € R' such that Q < ¢ on {a, b). It is

seen from the definition of the parabolic variation that
VE(r; x, ) < ¢ Vi(r; x, 1)
for every [x, t] € R%, r > 0. In particular,
Ve(r; x, 1) < oo iff VE(rix, 1) < .

Similarly if

sup V(r; x,t) < o then sup V§(r;x, 1) < o
[x,tleM [x,t]leM

for any nonvoid set M = RZ?. The converse statement is not valid. Nevertheless, one
may formulate the following assertion:
Let t, € {a, b) and suppose that Q(t,) > 0. Then

Vi(r; o(to), to) < oo iff  VE(r; o(to), o) <

for aliy r > 0. There is, in addition, an interval / < {a, b) which is open in <a, b)
such that t5 €I and

sup Vi(r; o(1), 1) < o <> sup VE(r; o(1), 1) < .

tel

One may prove this assertion by means of the equality (0.4) regarding the fact that
the function Q is lower-semicontinuous.

Lemma 1.1. Let to € (a, b), xo = ¢(t,) and suppose that

lim sup Lx_;f@l <
t=to - \/(!0 - t)

Then V(xo, to) <  if and only if

(1.2) J' Q(z) d var, [\/(0 _(’_’(3 <.

Particularly: Vi(xo, to) < oo if and only if

(L.1)

(1.3) var, [Xo = o), ; <a, to) < .

Jto =7)°
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Proof. If (1.2) holds then surely V@(xo, fo) < oo since

V& (xo, 1o) < J”o Q(r) d var a, (1)

according to (0.4).
Suppose now that V€(x,, t) < co. It is seen from (1.1) that
_ 2
co = inf Jexp( — (%0 — o(x))* ; tedacty)y >0
4to — 1)
so that

V8(xo, 1o) = f * () exp (= o, (1)) d var oy, 1) 2 co j ® 0(c) d var a, (%)

and thus (1.2) holds.

Now it suffices to note that if Q is the function which assumes the constant value 1
on <a, b) then the terms in (1.2) and (1.3) are equal.

In the same way as we defined the parabolic variation we may define a function
WE(r; -) on R? putting

(1.4) Wl(r; x, 1) = J’wng‘,(r, a) da

, 0
(r > 0). Similarly we define Wg, Wi(r; +) and Wy.
In the same way as (0.4) has been proved (see [1]) one may prove that

¢ Mmin {t,b}
W(r; x, t) = j 0(x) d var a, (1)

max {a,t—r}

for any r > 0, [x, f] € R* with a < t < b + r; particularly

Wi(x, 1) = 4 var, [xj(:—-(%(% ; <a, min {t, b})],

whenever [x,t]€R?, t > a.

It follows from Lemma 1.1 that if ¢ is moreover +-Hélder on {a, b) then it holds
VEx,1) < oo iff WE(x,1) < o0
for any point [x, t] e K.
Lemma 1.2. Let the function ¢ be +-Hdélder on the interhual {a, b). Then
(1.5) sup {V&(x, 1); [x, 1] eK} < o0
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if and only if
(1.6) sup {Wg(x,1); [x,t]eK} < .
Proof. There is‘a constant k € R' such that
lo(t) — o(t2)] < k|t — 1,

for each pair of points t,, t, €<a, b). It is seen from this and from the form of the
function a, , that there is a ¢, > 0 such that

e el > ¢
for every [x, 1] €K, t > a, t€{a, t). Hence
(1.7) . VE(x, 1) 2 ¢, f,Q(r) dvaroa, (1) = ¢, W@(x, 1).
If c e R' is a constant such that Q < ¢ on <a, b), then
V¥x,1) < c W (x, 1).

From this and from (1.7) the assertion now follows.

Lemma 1.3. Given a € (4, 1), t € (a, b) suppose that

lim sup 9(t) = o(1) < 0.

T=t— (f - ‘C)a

Then V(¢(t), 1) < oo if and only if

‘0@ |
(1.8) _[, ym d var (1) < oo .

If @ is even a-Hdlder on the interval {a, b), then

(1.9) sup {V¥(x, 1); [x, ] €K} < o0
if and only if

ro) var o(1); te(a )
(1.10) sup{ = r)d o(r); te( ,b)} < ®.

Particularly: if @ is a Lipschitz function on {a, b} then (1.9) holds.

Proof. Suppose that
lo(t) — o(t)| = k(t - ¢F

(where k is a suitable real constant) for each 1’ € (a, 1).
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Then we have

W(o(r), 1) = f 0(x) d var, [q;(\}(z it (:))]

j ﬁf)— )dvar (o(1) = o(r)) + f 0(x) |e(t) — o(z)| d var, [”7:1*——1)] -

(2 4 ar o le() — o) (ry de
_ﬁﬂJO—ﬂd o) + | e o <

A

<[ 2 gar g ~
=L2V/(t_1)d <p()+f4( i €0

Since Q is a bounded function and « > 4 by the assumption, the last integral is
finite. Hence (1.8) implies W(¢(2), ) is finite (and VZ(¢(2), 1) is finite, too).
In a similar way we obtain the following estimate:

e e K R

0@ e = @) 4 ar s — 1) =
+J. Jit=1 J(t-1) a9 = 2We. 0 +

J 1200 = o) o2 e < 2 We(o(o), 1) + f ' ___z(th(’L

2( )3/2 - .[)3/2—a

The last integral is finite.

We obtain together that (1.8) is valid if and only if WZ(¢(t), 1) < oo but this is
equivalent with VZ(e(r), 1) < oo in our case (see Lemma 1.1).

One may prove the second part of the assertion by analogous estimates.

Now let ¢ be a Lipschitz function on {a, b) — suppose that

lo(t:) — o(t2)] < K|ty — 1,

for any t,, t, €<{a, b). Let t € (a, b). Then

o var ¢(t) = ’_1(,0’(1) T < L T =
[ gtwreto =] e | e
— 2k Yt - a) < 2k (b — a).

Thus the condition (1.8) with Q = 1 on (a, b) is fulfilled and in fact, (1.9) is valid.
This completes the proof.

Let us now define the space €4(<a, b)) in the same way as in [l] Let Q be always
a nonnegative lower-semicontinuous and bounded function on the interval {a, b).
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The space €y(<a, b)) is defined to be the space of all functions f € ¢(<a, b)) for which
there is a real constant ¢ (dependent on the function f) such that

XY

on the interval {a, b) and with the property that
|£(t0) = £()] = o(Q())
for every point t, € {a, b). We endow the space €y(a, b)) with the norm defined by
|f]le = inf {ce R"; |f| < cQ on <a, b}

(f € €o(<a, b))). Then the space y(<a, b)) is a Banach space (see [1]).
In [1] we have shown an assertion concerning the limits of the form

(1.11) lim  Tf(x, 1),

[x,1]-[xo0,t0]
[x,t]leM

where M was a set in R? such that [x,, %] €K < M and either M < {[x, ];
tea,b), x > ¢(t)} or M <= {[x, {]; te<a, b), x < ¢(t)}. Provided Q(a) = 0 it
was proved that the limit (1.11) exists and is finite for each f € €,({a, b)) if and only if

(1.12) lim sup V¥(x, ) < .
[x,t]-[x0,t0]
[x,t]leM

The condition (1.12) is fulfilled, for instance, when there is a 6 > 0 such that
sup {V@(x, 1); [x,]eK, teda, by n(to — 8, to + 8)} < .
Let us now consider the case when the condition Q(a) = 0 is not supposed.

Proposition 1.1. Let us suppose that

(1.13) lim o) = ola) _ 0.

t—a+ \/(t - a)
Let B be a continuous function on {a, b) such that f(a) = 0 and
lo(6) — o(a)| < A1) V(¢ — a)
for all te(ab) (accérding to (1.13) such a function B exists). Put
M, ={[x,1]; te(a, b), o(t) < x < ¢(a) + B(t) /(t — a)},
M, = {[x,1]; te(a, b), o(a) — B(t) J(t — a) < x < ¢(1)} .
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Then there are finite limits

(1.14) lim  Tf(x, 1),

[x,t1]~[¢(a).a]
[x,tleM,

(1.15) lim  Tf(x, 1)

[x,1]-[¢(a),a]
[x,t]eM>

for each function f € €,({a, b)) if and only if there is a 6 > 0 such that
(1.16) sup {V&(e(1), 1); te(a,a + 8)} < o0.

Proof. One can prove the necessity of the condition (1.16) for the existence of the
limits (1.14), (1.15) in the same way as Lemma 2.1 in [1] and Theorem 2.1 in [1]
were proved.

Assume now that the condition (1.16) is fulfilled and let a function f € y(<a, b))
be given.

In the case f(a) = O the existence of limits (1.14), (1.15) may be proved in exactly
the same way as in [1] (making use, of course, of Theorem 1.1 in [1]). In that case
even

lim  Tf(x,1)=0.

< [x,t1-[o(a),a]

Now it suffices to show that the limits (1.14), (1.15) exist for any constant function f.
That may be proved even if we assume nothing about the parabolic variation. It holds
namely for ¢ € (a, b, x > ¢(t) that

Ti(x, 1) =2 — _?.G x = o(a)
Jr \2/(t — a)
(where G is the function on *R" defined in [1], i.e. G(— ) = 0,
t
G(1) =f e ¥ dx, t> —o).
Consequently, for [x, t] € M, it holds (for G is increasing)

2 fola) + KOG — @)~ ofa)) _, 2
2= o (T 2 s <

2 (o) - o(a)
< Ti(x,1) <2 \/nG<2\/(t——a)>'
Since )

:  1im 20 = o(a) _
fim ) = fim i "
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we obtain immediately that

lim  Ti(x,f)=1.

[x,11=({¢(a),a]
[x,tleM,

Similarly for the lifnit (1.15). The proof is complete .

Now let us present an assertion concerning limits of the form

lim Tf(x,t) or lim Tf(x,1),

x=+o(1)+ x=e(n -

where ¢ is a fixed point of the interval (a, b).
Theorem 1.1. Given t € (a, b) suppose that

: . ()=o) _
(1.17) hT.,sEp L(P—j(t_—‘%)J < ow.

Then there dreﬁnite limits

(1.18) lim Tf(x,1),
x—e(t)+

(1.19) lim Tf(x, 1)
x=o(t)—

for each function f € €y(<a, b)) if and only if
VE(o(t), 1) < .
Proof. If there is, for example, a finite limit (1.18) for each f e %y(<a, b)) then

lim sup VE(x, ) < o0 .
x—=@(h)+

Since the function V¢ is a lower-semicontinuous function on R?, this implies that
Ve(t), 1) < oo. )
Let V(o(1), 1) < oo. It is sufficient to show that

(1.20) lim sup V&(x, 1) < o
x=o(t)+

and

(1.21) lim sup V¥(x, 1) < .

x=e(t)—

or every x ave
F ry x € R! we h

VE(x,1) = sup { j T e (~22,0) o (0 Fe g, f]o 1}.
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Then it suffices to prove that there are ¢ € R', 6 > 0 such that
| ot t
(1 22) ’ J-f(r) €xp (—ai’,(r)) dax.l(r) - Jf(T) exp ("'“i,r(r)) daw(r).t(r) S
for each x € (¢(t) — 8, ¢(t) + 6) and for each function f € ¥(<a, b)) with 'f{ <

on {a, b). Since ¢ is a continuous function by assumption it follows from the con-
dition (1.17) that there is a constant k € R' such that

lo(t) = o()] < k(= )

for each t € {a, t). Let r > 0 such that

r 2
t—({— >a.
(=)
Putting x = ¢(t) + r and considering a function f € ({a, b)) with |f| < Q we have

(1.23) | f F(x) exp (—a2 (1)) dage () — f F(2) exp (=2 1)) oty ()|

< { Lf(r) exp (—12,(1)) da, (2) — j ) ex0 (=) do )|+

N f 7(2) exp (= (1)) dotgy o(5) — j F(5) exp (=224 5)) darny f5)| =

- j F(2) exp (= 22.0)) d(oesl®) — e (0] +

¥ j 1(2) (exp (=22,(2)) — xp (= (1)) ot 1) <

(0 oo (a2 (g (0 + 7= 0() _ o) = 0(x)
=jf(> o x,,(»d,("’ =y N(,_f))

j I£(@)| lexp (= () — exp (22, ,(‘r))l d var o, (1) <

r 1 ) 3
< ¢ 7 J; ~——(t e exp (—of (7)) dt + L () d var a,,) (1),

where ¢, is a finite constant such that Q < ¢, on (a, b). Since the condition (1. 17)
is fulfilled it follows from Lemma 1.1 that

(1.24) J' O(7) d var a,,) (7) < 0.
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It holds for each 7 e (t — (r/2k)?, 1) that
o) = o(0)] S k(1 — ) 5 L.
that is -

o) + 7 = 90| 2

for this 7. Thus
dt

r [t 1 ot (r/2k)2
1.25 - | ————exp(=aZ (1)) dt = —- — 4+
(1.25) 4Lo—aw p(~a2 (2) 4j —

r 1 ’_2 r 1 t—(r/2k)?
+ - ——exp| - —|dtr = | ——— +
4 J-‘r-(r/zk)2 (t—1)*? p( 16(t — T)) 4 I:\/(t - T)]a
+2J‘ e—zzdzé—r(gl_(”‘—"l—“>+\/Tt§k+\/7l.
K2 2\r J(t-a)

On the right hand side of the estimate (1.25) we have a constant which is independent
of the value r > 0 (r < 2k /(t — a)). Hence the condition (1.20) is fulfilled. Similarly
for the condition (1.21). This completes the proof.

Let us now show some complementary assertions concerning the operators T, T_
which have been established in [1] in connection with the boundary value problem
of the heat equation. In [1] we have defined a space of all continuous functions on
<a, b vanishing at the point a. This space may be considered a space %y(<a, b))
where Q is a function on {a, b for which Q(a) = 0 and Q(t) = 1 for each t € (a, b).
Provided the condition

(1.26) sup {Vx(o(1), t); tea, by} < oo

was fulfilled the operators T, and T_ have been defined on that space by

(1.27) T, f(t) = - lim Tf(x’, t’),
’ [x',t’]1=[o(1),1]
t'e{a,by,x’ > ()

(1.28) T_f(z) = lim Tf(x’, t’)

[x’,t"]1=[o(1),1]
t’ela,b),x’ <e(t’)

(fe%o(<a, b)), te<a, b)). These operators map the space €,(<a, b)) into itself.
Now let Q be a nonnegative lower-semicontinuous and bounded function on {a, b}
and suppose that

(1.29) sup {V&(x, 1); [x,t]eK} < 0.

Then the limits (1.27), (1.28) exist for each f € €y(<a, b)) and for each t € (a, b).
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Proposition 1.2. Suppose that the condition (1.29) is fulfilled and let Q(a) > 0.
For each fe%y(<a, b)) let us define on the interval (a, by functions T.f, T_f
by (1.27), (1.28). Then the functions T, f, T_f may be continuously extended to the
whole interval {a, b for each f e €y(<a, b)) if and only if the limit (finite or in-
finite)

- o(t) — o(a)
(1.30) t]:rl —~——~\/(I —a

exists.

Proof. Suppose, for instance, that T, f has a continuous extension on the interval
a, by for each fe ®y<a, b)). Since Q(a) > 0 (and Q is lower-semicontinuous)
there are 6 > 0, f, € €y(<a, b)) such that f,(r) = 1 for each te<a,a + §). It is
easily seen that for each t € (a, a + 6)

~ 2 (o) — ¢(a)
(1.31) 7‘+f1(’)‘2—\7,§G('2—\/(t——‘a~)*>

where G is the function defined above (see [1], proof of Lemma 2.1). The limit

lim T, £,(2)

t—a+

exists by the assumption and since G is an increasing function the limit (1.30) exists
as well.

Suppose that the limit (1.30) exists. If f; denotes the same as in the first part of this
proof one may write any function f € €4({a, b)) in the form f = f, + kf,, where
fo€6o(<a, b)), fola) = 0 (k = f(a)). Operator T is linear (and so the operators
T., T_ are) and thus it suffices to show that T, fo, T+ fy, T-fo, T_f, may be con-
tinuously extended to {a, b). But

lim T, fo(t) = lim T_fo(t) = O

t—a+ t—a—

(for  lim  Tfo(x, t) = 0) and finite limits
[x,11-[¢(a),a]

lim T, f.(t), lim T_ f,(t)

t—a+ t—a+

exist according to (1.31) and to the assumption of the existence of the limit (1.30).
This completes the proof.

Remark. Provided (1.26) holds the operators T,, T_ have been defined on the
space %,({a, b)). Conformably to Proposition 1.2 we may define operators T.. T

39




on the space ¥y(<a, b)) (provided the condition (1.29) is fulfilled) by (1.27), (1.28)
for 1 € (a, b). We define

T.f(a)=1m T, f(t), T-f(a)=Ilim T_ f(1).

t—>a+ t—=a—

Then the operators T, T_ map ¢y(<a, b)) into ¢({a, bD).

2.

In this part we shall show that there is a continuous function ¢ of bounded variation
on an interval {a, b) such that

Vi(o(1), 1) =

for almost all 1€ (a, b) (K = {[¢(2), 1]; t e <a, b)}).
Let a, be R', a < b. The supremum norm on %(<a, b)) is denoted by H . L or
|- |le- Let us define a space # = #(<a, b)). Put

# = {fe C(Ca, by); var [f;<a, b)] < 0}
and endow the space # with the norm ..., defining

171a = 17le + var [ <a, B3], (Fe5).

It is well known that the space # with the norm !| .. H 4 15 @ Banach space.
For f € # we define on (a, b) a function W/ by

0 for t=a
wi) =

' _\ t 1 ( )
———dvarf(tr) for te(a,b).
-[a \/(t - 1.)
For a positive integer k such that 1/k < b — a we set

M, = {feg; there is a te<a +%,b> with W/(1) < k}.

Proposition 2.1. The sets M, are closed in 3.

Proof. Fore > 0,¢ < b — a, fe # we put

0 for teda,a+ ¢)
Wi =

\ t—e 1 ’
L mdvarf(t) for te(a +eb).



It is easily verified that W/ is a continuous function on <a, b} (since var [ f; <a, b)] <
< o) and it holds

W/A Wl oas eNO.

Hence it immedfately follows that W/ is a lower-semicontinuous function on {a, b).
Let f,€ M, (where k is a fixed number, n = 1,2,...) and let “f,, —f-”,, - 0.
Then particularly

limvar [f, — f;<a,b)] =0

n—oo

and thus

Win—s W/ as n- o
for any ¢ > 0, ¢ < b — a and this convergence is uniform on the interval <a, b)
(since the functions 1/./(¢ — t) are uniformly bounded on the intervals {(a,t — &)

with respect to re(a + & b) and W/"(r) =0 for te(a,e)). According to the
definition of the set M, there are points t, € {a + 1]k, b) such that

Wih(t,) < k.

Let us suppose that the sequence {f,} converges to a point t e (a + (1/k), b>. We
assert that f € M,. To this end it suffices to show that W/(r) < k.

Suppose that
k< Wi(t) =k +c.

Then there are ¢, 6 > 0 such that

Wi(t') > k + g

for each t'€{t — &, t + 6) n <a, b) (we assume ¢ < o0; in the case ¢ = oo one
would proceed by analogy).
There is n, such that

Wi() - winw)| <

o

for each n > n, and each ¢’ € {a, b). But then
C

k = Wint,) = wit,) - i >k +

This is a contradiction which completes the proof.

Proposition 2.2. There is a function ¢ € # such that
(2.1) Vi(o(2), 1) = oo

41



(where K = {[x, t]; te <a, b), x = ¢(t)}) for almost all t € (a, b). The function ¢
may be even chosen to be absolutely continuous.

Proof. Let &/ denote the closure in # of the family of all Lipschitz functions on
<a, b (it is clear that & is the set of all absolutely continuous functions on {a, b)).
& endowed with the norm restricted from & is a Banach space.

Let us prove that the set
={fes; te(a, by = W/(t) = w0}

is of the second category in /. From this the assertion will follow.
Since
A == ‘d - U Mk ]

k>1/(b—a)

it suffices to show that the sets M, N & are nowhere dense in &/. Those sets are closed
and thus it suffices to prove that no set M, N &/ contains any interior point (with
respect to o). We assume for the simplicity that <a, b) = <0, 1). Let us define
functions f, € & in the following way.

For a positive integer n we put b, = 1/(2n°) and

1
0 . for te(0,- — b,
/ oo -n)

@t) =
N 1 1 1
=2n*) for te(—-—b, —].
n?b, n n

We extend the function ¢, periodically with the period 1/n on the whole interval
<0, 1>. Further, we put

1) = j () de (reCa by).

With respect to the fact that the function f, is nondecreasing (for ¢, is nonnegative)
and f,(0) = 0 we have

/il = 271) = 20 —— b, = 2.
nb

n

Let to € (0, 1/n). Then"

(p,,(r) 1 J‘ 1/n dt

1/n+1to
W + t dt = - -
( ° f "zbn 1/n—by l+t -1
n 0

42



=2 (-] =2 (V(to + by) = /to) =
n’b, n \n-b, by Y

2 b, S
n2b, (b, + to) + V1o n?/(2b,)

In virtue of the fact that the function ¢, is 1/n — periodic one sees that

Win(t) 2 n
for any te(1/n, 1).
Suppose now that for a positive integer k (with 1/k < b — a) the set M, N o/
has an interior point (in o). Then there are f, € M, N o/, ¢ > 0 such that
(2.2) (fesd, |fo—fla<e)=>SeM,.

Since the set of all Lipschitz functions on <0, 1) is dense in &/ (by the definition of
the set /) one may suppose that the function f, is a Lipschitz function. Then there is
a positive integer k, such that

WI(i) < ko

for each t € {a, b) (see Lemma 1.3). Choose n to be a positive integer such that

n > 2max {k, ko} ,

fn

2
gﬂ=“<8.
n

Then for each 1 e (1/k, 1),

ot () = t—-———’ ] var (fo 7) =
wueesi() = [ s avar (o + 1)) 2

! 1 t 1 " .
>n—ky> k.

It follows from this that f, + f, ¢ M, which contradicts (2.2) (where we put f =
= fo + f,). Thus, in fact, the sets M, N o are nowhere dense in /.
We conclude that there is a function ¢ € & such that W?(t) = oo foreach t € (a, b).

But ¢ has a finite derivative at almost all points f € (a, b) and at every such point ¢
it holds

We(t) = 0 < Vi(o(t), 1) = o

(where K = {[¢(t), t]; t € {a, b)}) according to Lemma 1.3.
The proof is complete.
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