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časopis pro pěstování matematiky, roč. 101 (1976), Praha 

LATTICE ORDERED GROUPS 
WITH CYCLIC LINEARLY ORDERED SUBGROUPS 

JAN JAKUBIK, Kosice 

(Received October 18, 1974) 

In this aote a solution is given to a problem proposed by CONRAD and MONTGO­
MERY [3] on lattice ordered groups G with the property that each linearly ordered 
subgroup of G is cyclic. 

Let G be an archimedean lattice ordered group. Consider the following conditions 
for G: 

(a) G is singular; 
(b) each linearly ordered subgroup of G is cyclic. 

In [3] it was proved that (a) implies (b) while the problem whether (a) is implied 
by (b) remained open. We shall show that the answer is negative in general; none­
theless, (b) => (a) is valid if G is complete. 

For the basic notions and notations cf. BIRKHOFF [I] and FUCHS [4]. Let G be 

a lattice ordered group. An element 0 ^ g e G is called singular, if x A (g — x) = 0 
for each xeG with 0 ^ x g ^. It is easy to verify that a strictly positive element g e G 
is singular if and only if the interval [0, g] is a Boolean algebra. The /-group G is 
singular, if for each 0 < g e G there is a singular element h e G such that 0 < h :g g. 
Singular lattice ordered groups were investigated in the papers [2], [5], [6], [7], [8]. 

The following theorem is known (cf. [2]): 

(A) Let G be a complete l-group. Then there are l-subgroups A, B of C such that A 
is singular, B is a vector lattice and G -= A x B. 

(The symbol A x B denotes the direct sum of /-groups A and B.) 
Now let G be a complete I-group that is not singular. According to (A) we have 

B 4= {0} and hence there is b, 0 < b e B. Let R be the set of all reals; since B is a vector 
lattice, for each reR there exists rbeB. Denote Bt = {rb :reR}. Then Bx is 
a linearly ordered subgroup of G that fails to be cyclic. Therefore (a) is implied by (b) 
whenever G is a complete lattice ordered group. 

The following example shows that an archimedean lattice ordered group fulfilling 
(b) need not be singular. 
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Let Q be the set of all rational numbers and let G0 be the set of all real functions 
defined on Q. Forf, g e G0 weputf ^ g iff(x) ^ g(x)forallx e Q. Then(G0; -F, g ) 
is an archimedean lattice ordered group. Let <p be a one-to-one mapping of the set N 
of all positive integers onto the set Q. Further, let G be the set of allfe G0 with the 
following properties: 

(i) 2"'1 f(<p(n)) is an integer for all n e N; 

(ii) there are irrational numbers at < P\ ;= a2 < P2 ^ ... S %m < Pm SUCu thatf 
is a constant on each set Q n [cth j8f] (i = 1, ..., m) and f(x) = 0 for each x e 
G Q \ U[«f» Pi] (' = -»•••» w). Then G is an /-subgroup of G0. 

Let H 4= {0} be a linearly ordered subgroup of G. For each h e H put 

s(h) = {x e Q : h(x) 4= 0} . 

Lemma 1. Let 0 * ht e H (i = 1, 2). Then s(hx) = s(h2). 

Proof. Suppose that s(h t) 4= s(h2). Then we can assume that there is 
xes(ht)\s(h2). We have \ht\ e H, s(|hf|) = s(hf) (i = 1,2). The elements |h i | , |h2 | 
are comparable and |h j | (x) > 0 = |h2 | (x). Since h2 4= 0, there is y e s(h2) and hence 
l^l (y) > 0. There is a positive integer n with n|h2| (y) > |h , | (y). Since n|h2 | e H, 
the elements n\h2\ and |h t | are comparable, thus n\h2\ > \ht\. But 

0 = n\h2\(x)<\ht\(x) 

and this is a contradiction. 

For x e Q let 
Fx = {h(x) : /, e G} . 

Obviously Fx is an additive group. • 

Lemma 2. Lel 0 4= h0 e H, x e s(h0). The mapping 

<Pi'.h-+ h(x) 

is an isomorphism of H into Fx. 

Proof. If hi, h2e H and o e { + , A , v } , then 

(pi(hl o h2) = hi(x)o h2(x), 

thus <px is a homomorphism of H into Fx. Let <l>i(hi) = <Pi(h2) and suppose that 
h! 4= h2. Then h = hx - h2 e H, h 4= 0 and h(x) = 0 4= h0(*). Thus s(h) 4= 5(h0), 
which contradicts Lemma 1. Therefore hi = h2 and hence <p1 is an isomorphism. 

Lemma 3. The l-group H is cyclic. 

Proof. Let x e Q, <p~x(x) -= n. There exist irrational numbers a, P such that x e 
e [a, j8] and ( ^ ( y ) = n for each y e [a, j8] n Q. Let fe G0 such that f(z) = 2 1 _ n 
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for each z e [a, /?] n Q and f(z) = 0 otherwise. Then feG0 and hence 2x"n e Fx. 
Thus by (i), 21""" is a generator of the group Fx and therefore Fx is cyclic. Hence 
each subgroup of Fx is cyclic; by Lemma 2, H is cyclic. 

Lemma 4. Let 0 < fe G0. Then f is not singular. 

Proof. Suppose thatfis singular. Then eachf! e G0, 0 < ft < fis singular. There 
exist irrational numbers a1? fit and a real c + 0 such that f(x) = c for each x e 
€ [al5 jffj n Q. Let fx e G0 such that ft(x) = f(x) = c for each x e Q n [a1? /fj] 
and ft(x) = 0 otherwise. Clearly fteG and 0 < fx S f Let 

N, = {^- 1 (x) :xeQn[a 1 , i 8 1 ]} . 

Let k be the least element of N,. According to (i) and (ii), 2k~1c is an integer. We 
can choose irrational numbers a < /? such that [a, /?] cz [al5 jf^] and cp(k) $ [a, j8]. 
Let y e [a,j8] n Q. Put (p_1(y) = *. Since t > k, we infer that 2fc"1(|c) is an integer. 
Thus the function g e G0 defined by 

g(x) = \c if x € [a, j5]n<3 and g(x) = 0 otherwise 

belongs to G0. We have 0 < 2g < fu hence g < f, — g and therefore 

g A (fi - g) = g > 0 ; 

thus ft cannot be singular. This shows that f is not singular. 
From Lemma 2 and Lemma 4 it follows that there exists an archimedean lattice 

ordered group fulfilling (b) with no singular elements. 
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