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Časopis pro pěstování matematiky, rot. 97 (1972), Praha 

NON-TANGENTIAL LIMITS OF THE DOUBLE LAYER POTENTIALS 

MIROSLAV DONT, Praha 

(Received November 20, 1970) 

INTRODUCTION 

We shall first introduce some fundamental notations, notions and theorems that 
will be used later. 

Let G be a fixed Borel set in the Euclidean m-space Rm, m ^ 2, and suppose that 
the boundary B of G is compact. Let the points of Rm be identified with m-dimensional 
vectors. For each x, y e Rm denote by xy the scalar product of the vectors x, y; 
denote by |x| the Euclidean norm of the vector x. Further define, for any y e Rm 

and r > 0, 

Q(y, r) = {xe Rm; \x - y\ < r} ; 

the boundary of Q(0, 1) denote by F. For a natural number a, a ^ m, denote by Ha 

the Hausdorff a-dimensional measure. Put 

r-o+ Hm(Q(y, r)) 

for any Borel set M c Rm provided the limit exists. dM(y) is called the m-dimensional 
density of the set M at the point y. The vector 0 e T is called the exterior normal 
of G at the point y e Rm in the sense of Federer provided the symmetric difference of G 
and the half-space 

{x e Rm; (x - y) 0 < 0} 

has m-dimensional density 0 at y. Since at every point y e Rm there exists at most 
one exterior normal in the sense of Federer, we may define a vector-valued function 
n(y) in this way: we put n(y) = 0 if there is the exterior normal 0 at y; otherwise n(y) 
equals the zero vector. Let 8 stand for the reduced boundary of G, i.e. the set of all 
y e Rm with n(y) + 0 (always 8 a B). It follows from [3], theorem 4.5 that n(y) is 
a Baire function; in particular, 8 is a Borel set. 
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P(G) will denote the perimeter of G defined by 

P(G) = sup div v(x) dx , 
v JG 

where v ranges over all m-dimensional infinitely differentiable vector-valued functions 
with compact supports in Rm, satisfying ji;(x)| ^ 1 for each x e Rm. In what follows 
we shall assume 

(0.1) P(G) < oo . 

Then(cf.[5])Hw..1(5)<oo. 
For any,® e F and z e Rm put 

H(0, z) = {z + rO; r > 0} , Sf{z) = {H(0, z); 0 e F} . 

A point y e H(0, z) is called a hit of H(0, z) on G provided both 

H(0, z)nGn Q(y, r) and (H(0, z) - G) n Q(y, r) 

have a positive Hi-measure for every r > 0. If n(©, z) denotes the total number of 
all the hits of H(0, z) on G, then according to [5], prop. 1.6 n(0, z) is a non-negative 
Baire function of the variable 0 e F. We may thus define a cyclic variation of G at 
the point z by 

v(z)= [n(0,z)dHm.l(0). 

By [5], lemma 2.12 and with respect to assumption (0.1) we have 

(0.2) t<-)-f | n ( f ) ( '~ Z W^) 
JB | y - z | 

for every z 6 #m. Since Hm._ -.(.fi) < oo and for any fixed z £ B the integrand in (0, 2) 
is a bounded function, it is v(z) < oo (cf. also [5], lemma 2.9). Notice that v(z) < oo 
implies the existence of dG(z) (cf. [5], lemma 2.7). 

Let C be a space of all continuous functions on B equiped with the supremum 
norm. Denote C* the space of all linear continuous functional on C. Elements 
of C* may be interpreted as bounded measures with supports in B (cf. [l]). For 
/ieC* let /i+, n~ and, |/x| be positive, negative and total variations of the measure \i 
respectively (cf. [l]). It is known that \i = \JL+ - \T, |/z| = \i+ + \T and the norm 
of n equals |/i| (JB). We define the integrability and measurability of functions and 
sets with respect to \i e C* in the same way as in [ l ] . N 

If <pM stands for the characteristic function of the set M cz Rm, put, for a Borel 
set A c: B, ]x \ A = 9M/x (for the multiplication of a measure by a function see [1]). 
For every \i e C* there exists a Borel set Ai c B such that /* | A = /z+, /i | (B - A) = 
= H~. By [1], chap. V, § 5, part 7, corollary of theorem 13 there are actually two 
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disjoint sets M,N c B such that ji+ is concentrated on M and iT is concentrated 
on 1V. Clearly the set M is ^-measurable (it is fi+-measurable as p.+(B — M) = 0 and 
/("-measurable as n~(M) -= 0). Thus there exists a Borel set A c B such that M c A 
and |/i| (A — M) = 0. It is evident that A satisfies the above requirements. 

Let ^ be the system of all bounded Baire functions on 2?. Assuming 

(0.3) v(z) < co , 

we define the double layer potential for e a c h / e &, z e Rm by 

(0.4) W(f, z) « f f(y) n{y)iy~m
Z) dtfm_ .(y) 

J B |y - -I 

(cf. [5], lemma 2.12). Let \i e C*. Then we define the double layer potential W(/i, z) 
for all 2 £ B and for z e B such that 

JB | y - - r 
by 

(o.6) W(,,z)^mLzAMy). 
JB \y-z\m 

For M c i*w, j ; e Rm let us call the contingent of M at >> and denote by contg (M, y) 
the system of all half-lines H(0, y) e Sf(y) for which there is a sequence of points 
j f l 6 M ( n = l,2,...) with yff # y, y„ -• y and 

lim ^—-^ = e -
»-« |y« ~ y| 

Obviously, contg (M, j ) =}= 0 if and only if y is an accumulation point of M. 

Now we prove the following statement which will be needed later. 

0.1 Proposition. Let M c Rm, S c Rm
9 rj e Rm and 

contg (M, rj) n contg (S, rj) = 0 . 

77iew fhere arc a > 0, S > 0 st/ch fhaf 

(0.7) (MnSn Qfa 8)) - { > ? } = 0 

and i/dist (j>, M) denotes the distance of the point y from the set M, then 

(0.8) dist ( j , M) ^ a\y - q| 

hoWs / o r each y e S n flOf, 6). 
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Proof. The relation (0.7) follows from (0.8). Obviously, the statement is true in the 
case y $ S n M. 

If the statdnent (0.8) were false, we could find, for any sequence {an}n=l with 
0 < an < 1, an -> 0, two sequences {yn}n=u {zn}n=1 with yneSn Q(rj, an) - {rj}, 
zne M and 

|yn - *n\ < an\yn - rj\ = anrn, 

where \yn - rj\ = rn. Putting \zn - rj\ = rn, we get 

r„ - a,/., ^ r„ ^ rw + a,/,.. 

Further 

(0.9) 0 <; Уn-rj 

F. - fl 

a„r„ + r„ 

ž \z» - y«\ | 

WzlÁ<2-

Уn-Ц y n - ГJ 
< 

1 - a„ 

as n -> oo. Since the sequence {(Z„ — ̂ /)/|Zff — /̂|}̂ °=-i is a sequence of points of the 
compact set F, there is a convergent subsequence; we may assume it to have been 
already extracted. This implies 

lim z " ~ n -= <9eF . 

On the other hand, by (0.9) also 

lim y- ~ " 
»-» W - f| 

= &. 

Hence H(&, rj) e contg (M, rj) n contg (S, tj) which is the desired contradiction. 

The preceding proposition implies that for rj e B with H(Q, rj) $ contg (B, rj) 
a 5 > 0 may be found such that the set 

S == {rj + r0; 0 < r < 5} 

is included either in the interior of G or in jRm - G. Denoting for a e {0, \, 1} 

Ga =- {* e Kw; dG(x) = a} , 

then obviously G1/2 <z £, Gx c G, Kw - & c G0. We have S c Gt or S c G0. 
Further 5 c: G1/2 and by [5], lemma 3.7 

Hm-t(G1/z-B) = 0. 
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In the end let us make a note that the Hausdorff measure of a set is an invariant 
of the motion (i.e. a translation and a rotation) in Rm. Then also the quantities v(x), 
dG(x), W(f, x) are invariants of the motion, as well as the existence of the exterior 
normal in the sense of Federer; so for example the reduced boundary of the set 
after a motion is equal to the reduced boundary of the original set G, subjected to 
the motion. 

1. 

Recall that the symbol G denotes a fixed Borel set in Rm, m _ 2 with a compact 
boundary B and with a finite perimeter. 

Now we shall prove this statement: 

1.1 Proposition. Let S c Rm - B, r\ e S n B. Then 

(1.1) lim sup W(f, x) < oo 

xeS 

holds for every function f e C (or for every fe $) if and only if 

(1.2) lim sup v(x) < oo . 
x--»r/ 
xeS 

If, moreover, there is S > 0 such that 

(1.3) S n Q(rj, S) c G, 

holds for i = 0 or i = 1, then the limit 

(1.4) limFF(/,x) 
x-H7 
jceS 

exists /0 r each function fe C (or for each fe@ continuous at the point rj) if and 
only i/(1.2) holds. The value of the limit (1.4) is then given by 

(1-5) W(f, i,) + f(rj) Hm_ ,(r) (i - dG(ri)) . 

Proof. First we shall prove that the condition (1.2) is necessary and sufficient for 
(l.l) to be true for e a c h / e C. If this were false, we could find xk e S (k = 1, 2, . . .) , 
xk -> t], v(xk) -+ oo. The point x e Rm being fixed, the quantity W(f, x) determines 
a linear functional on the space C, whose norm is equal to v(x) (cf. [5], relation (2.5)). 
It follows from (1.1) by Banach-Steinhaus theorem that there are two numbers fc0 

and c such that v(xk) g c for each k > k0. This is the desired contradiction. 
Let (1.2) hold. Hence we have v(tj) < oo as the function v(x) is lower semicontinuous 

with respect to xe Rm according to the statement 2.9 in [5]. Further, this implies 
that the density dG(rj) at the point rj exists (cf. [5], lemma 2.7). 
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. Taking into account (0.2) and (0.4), we get that the condition (1.1) is satisfied for 
each function fe&. Now suppose that (1.3) holds and prove the existence of the 
limit (1.4) for any fe# continuous at the point rj. According to (1.2) there is Sl9 

0 < <5j < S such that 

c = sup {v(x); xe S n Q(rj, <5j)} < oo . 

From the lower semicontinuity of v(x) we obtain 

c = sup {v(x); xe S n Q(rj, 8^} . 

First assume thatf(x) = 1 for all xe B. This (by [5], lemma 2.5, provided v(z) < oo) 
implies 

W(f,z) = Hm_1(r)dG(z) 

if G is bounded and 

W(f,z) = Hm^(r)(l-dc(z)) 

if G is unbounded. By the assumption (1.3) just one of the following cases occurs: 
either dG(z) = 1 for each xe S n Q(rj, d) or dG(z) = 0 for each xe S n Q(rj, d). 
Moreover, comparing the values W(f9 rj) and W(f, z) for z e S n Q(rj, 5), we arrive 
at 

lim W(f, x) = W(f, rj) + Hm.x(r) (i - dG(rj)) . 
x-+n 
xeS 

Now let fe&,f continuous at the point rj and f(rj) = 0. Certainly there exists 
a function h continuous on Rm such that O g H 1, h(x) = 1 for each x e Q(0, i) 
and h(x) = 0 for each xeRm - Q(0, 1). Putting 

gr(x) = f(x) hfo- rj)\ , fr(x) = f(x) - gr(x) 

for any r > 0, we have gr(x) = 0 on B - Q(rj, r) and 

limsup{|0r(x)|; x e 5 } = 0. 
r-0 + 

Since fr(x) = 0 on B n Q(rj, r/2), the function W(fr, x) is continuous on Q(rj, r/2). 
To prove 

lim *V(f, x) = W(f rj) , 
xeS 

we shall prove that W(gr, x) tends to zero uniformly on S n Q(rj, Sx) as r -• 0 + . 
This will be sufficient because 

W(f,x)-W(f„x) + W(g„x) 
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holds on S n Q(r\, <5j). We have for each xeS n Q(rj, d_) 

JB \y - x\m 

JB \y — x\ 

S csup{|0 r(z) |; zeB}-+0 

as r -• 0-f. If nowfe 01, f continuous at the point n, we may express this function f 
in the form of a sum of two functions, a constant function on B and a function lying 
in St continuous and vanishing at n. As W(f, x) for a fixed x is linear with respect tof, 
the proof is complete. 

Now we shall establish conditions for the validity of (1.2). Let us prove first the 
following auxiliary statement. 

1.2 Lemma. Let S c Rm - B, n e S n B, 

contg (S, n) n contg (6, n) = 0 

and suppose 

Hm__(Q(n,r)nS) , 
sup 1V V f ' '- = k < co . 
r>o rm~l 

Then there are 8 > 0, c < co such that for each z e S n Q(n, S) and each r > 0 

(1.6) H^jajz^nB) ^ c 

Proof. Proposition 0.1 implies that there are <5 > 0, a > 0 such that for every 
zeS n Q(n, 5) 

(1.7) dist(z,5)_> a\z - n\ . 

Put r t = |z — r\\ and r = r t b for b > 0. Certainly the relation (1.6) holds for that r 
for which its corresponding value b satisfies b < a because in that case Q(z, r) n 8 = 
= 0 and thus also Hm__(Q(z, r) n 6) = 0. For that r for which its corresponding 
value b satisfies fr^awe have the following estimate: 

Hm-_(Q(z9r)n6) ^ Hm^(Q(n,r_ + r) n B) ___ 
rm-l ~~ j.tn-1 

_ H..,(fl(-,(1 + ft)r.)nfl) (1 + fr)"-1 _ fe (1 + ft)""1 _ k (1 + a r - 1 . 
w - 1 A 1 " - 1 / T 1 " " " 1 

(rŁ(l + b)Y~l b1"-1 b a" 

Now it is sufficient to put c = k[(l + a)m 7 a " T 
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1.3 Theorem. Let S c Rm - B, n e S n B and 

contg (S, n) n contg (B, n) = 0 . 

Further suppose 

(1.8) ^ ) + ^ p H m - 1 ( y n ^ 

Then 

< 00 
r > 0 

(1.9) lim sup v(z) < oo . 

zєS 

Proof. By the statements 0.1 and 1.2 we determine the constants a, 5, c such that 
(1.7) and (1.6) hold in the corresponding set. Further we fix a point z and denote 
r = \z — rj\, M = 6 n Q(z, 2r), N = 6 — fl(z, 2r). Using the triangular inequality 
and the fundamental properties of the integral, we obtain the estimate 

(i.io) Kz)a f Wafc-Jll„_,(,) + f l"Wfr-")ldH.. lW + 
JM \y - z| JN l̂  - nl 

L \n(y)(y-z)\ \n(y)(y-ti)\ 

У ~ 2 

dЯm-,W 

Now we number the quantities on the right-hand side of this inequality I, II, III 
respectively. Then we get 

(ar) m _ 1 ~ a m _ 1 ~ v 

To estimate III, we use 

f f(x) dti(x) = f^({x e ̂ m ; /(x) > *}) df, 
JRm JO 

where p. is a Borel measure and / is a non-negative, ^-integrable function on ,Rm. The 
last relation follows from [11] (there only non-negative measures are considered; in 
the present case we first decompose p. to the difference of the positive and the negative 
variations). There is 0 e f such that z = n + rO so that we obtain 

\n(y)(y-z)\ \n(y)(y - n)\ 

\y - Am \y - n\m 

\y - n\m - \y - z-

n(y) (y - z) n(y) (y - n) 

\y - nr y - z ' 
n(y) (У -*І)-r n(y) 

\y-i\ 
i 

\y - n\m -\y- z\ 

\y - n\m \y - Am 
|»0')<>->OI + r 

\y ~ -I 
1 

\y - z\m 
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Using the substitution t l/m = x and lemma 1.2; we obtain the following estimate: 

= r f2r) "i/«_,(_l n fl(z, r 1 ^ ) ) df = rm V II*-^ n ^ ( z > *)) d x < 

Jo J 2r X™ 

f°°dx 
' . ? • 

^ crm | —~ = - m 
2 

Since for y e N 

\y - ti\ ^ 2\y - z\ , 

it is also 

||y - n\m - |y - Am\ £\y- n\m + \y- Am = i1 + 2m) k - zlm • 
Thus we have 

Г Ш L - ч г - l^ - zľ 
JN \У~Z\ 

< ( 1 + 2M) f l»00 fr -jOI d H m _ . ( , ) < (i + 2-) ^ . 
JN \y-n\ 

Finally, we conclude that 

, < _ ) S c ( ^ + ^ ) + Kfl)(2 + 2-). 

Theorem 1.3 may be converted in this manner: 

1.4 Theorem. Let tj e B and suppose that there are linearly independent vectors 
Oi e T (i = 1, ..., m) and a number 5 > 0 such that 

m 

(1.11) sup (v(z); z e U H(Oh rj) n Q(rj, S)} = c < co . 
i = l 

Then 

(1.12) H m _ l ( f l ( , ? , r ) n t l ) < o o 

7 r>o r"1"1 

Proof. Assume that 17 = 0, <5 _g 1 and let Gt (i = 1, ..., m) be linearly independent 
vectors. Then there is b > 0 such that for each y e Q(rj, 2b) the vectors (y — 0j) 
are linearly independent. There is d > 0 such that 

£ |«(y - 0,)| _? d 
i = l 
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holds for each y e Q(*\, b) and each u e F. Obviously b ^ 1 and thus \y — €)\ ^ 2. 
Hence 

y Hy - *«)! ^ 1 j 

i=i |y - 6>,|m ~ 2m 

Let now 0 < r < 65 and consider y e fl(/j, r) n 5. Then we have 

I <. 2-d-1 v !— -£ = (1.13) ,?, I. 
y -

n(y)íy-l0\ 

y - - t 
0 

If we integrate the inequality (1.13) on the set B n Q(t\, r) with respect to Hm.i, we 
obtain for each r, 0 < r < bd 

(1.14) Hm^(Q{f,9r)nB)^ 

S r"-1 .2md-1bi-mf,v(-0^\ g rw-1m.2wd-1b1-mc. 

Since tfw-lv6) < oo, (1A2) follows from (1.14). 

1.5 Remark. The assumptions of theorem 1.4 are satisfied for example whenever 
tj€B and there are 0 ' e f , « 5 > O such that 

(1.15) lim sup v(z) < oo 
zeH{0,ti) 

holds for each 0 e T with \0 — 0'\ < d. That last assumption is satisfied for example 
whenever contg (B, tj) * Sf(rj) (or contg (G1/2, t\) * ^(iy) or contg (B, tj) # ^(i/)) 
and (1.15) holds for each 0 e F with H(<9, */) £ contg (5, fy) (or H(0, t\) $ 
i contg (G1/2, q) or H(<9, t\) £ contg (5, r/)). 

Let us make still a note that theorem 1.3 holds also when we write in its assumptions 
contg (G1/2, t]) or coritg (B, tj) instead of contg (B, tj). 

Taking into account the preceding remark, proposition 1.1 and theorems 1.3 and 
1.4, we obtain immediately the following theorem. 

1.6 Theorem. Let t\eB. Then there is a finite limit 

(1.16) lim W(f,z) 
Z~*ђ 

zeH( ,n) 
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for each feC (or each fe@ continuous at the point rj) and for each half-line 
H(0, rj) i contg (B, rj), if and only if (1.8) holds (provided contg (£, rj) # Sf(rj)). 
If H(0, rj) $ contg (B, rj), then there exist 8 > 0, i e {0, 1} such that 

H(0, rj) n Q(rj, 8) a G, 

and whenever (1.8) holds, then the value of the limit (1.16) is given by (1.5). 

In the case m — 2 we may change the suppositions of theorem 1.4 as follows. 

1.7 Theorem. Let m = 2 and rj e B, 0eT such that H(0, rj) $ contg (8, rj), 
H( — 0, rj) $ contg (B, rj). If there is r0 > 0 such that 

(1.17) c = sup {v(z); z e H(G, rj) n Q(rj, r0)} < oo , 

then also 

(1.18) sup —^ ---—,J- < oo . 
r>o r 

Proof. Suppose rj = 0, 0 = [1,0] , r0 g 1. Choose r, 0 < r < r0 and ye 
eB n 0(*7, r). Then there is P e <0, 27i> for which y = |>;| [cos ft, sin /?]. Since 
neither H(0,rj) norH(-0, rj) belong to contg (8, rj), we may find r \ <5 so that 
r' > 0, 0 < d < \n, and 

(1.19) p e (5, n - 8) u (n + S, 2n - (5) 

for every y eB with |>>| < r', y = |y| [cos j8, sin /?]. Further it may be supposed that 
r0 = r'. Let y e B. Then there is a e <0, 27i> such that 

(1.20) n(y) = [cos a, sin a] . 

The rest of the proof will be divided into the following two parts: 

a) <xe <0, |(TT - <5)> u (i(n + 3), $(n - <5)> u <f (TT + 8, 2n} , 

b) a e (}(* - <5), ±(n + 8)) u ($(n - 8), \(n + 8)) . 

Put z = [r, 0]. It is easy to establish that 

(1.21) I n ^ j l + l n ^ ^ - Z ^ r l c o s a l . 

In the case a) we may write r cos \(n — 8) on the right-hand side of the inequality 
(1.21). 

We have \n(y) y\ = \y\ |cos(/? — a)|. In the case b), by (1.19) it is evident that 
\n{y) y\ >= \y\ cos }(rc - 8). 

Together we obtain that 

(i 22, Hy)A + \n(y) (y - z)\ > c o s K^ - 8 ) 
} \y\z \y-A2 = 4r 
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holds for each r, 0 < r _ r0, each yeSn Q(r)9 r) and z = [r, 0]. It follows from 
the lower semicontinuity of v(x) and from the assumption (1.17) that also v(r\) <; c. 
If we integrate the inequality (1.22) on 6 n Q(rj9 r) (for r such that 0 < r ^ r0) 
with respect to Hl9 we arrive at 

(1.23) HMn,r)rsB) ^ 8c 
r cos i(n — S) 

(1.18) is now a corollary of (1.23) and of HX(S) < oo. 

Throughout this paragraph G c Rm (m _t 2) denotes again a Borel set with 
a compact boundary B and with a finite perimeter. Now we shall deal with double 
layer potential W(p,9 z) for pieC*. 

DeR1 will be termed the Hm_t-derivative on B of fieC* at the point rjeB 
(briefly the derivative at rj) if for every r > 0 

(2.1) Hn_1{8nQ[r,,r))>0 

and if for each e > 0 there is 3 > 0 such that 

//(M) (2.2) 
я m _ t (м) 

- D 

holds for each Borel set M c £ n .&(*/, <5) with H^.^M) > 0. 
DeR1 will be termed the symmetric Hm_i-derivative on 6 of ju e C* at the point 

r\eB (briefly the symmetric derivative at rf) if there exists the limit 

(2.3) lim *<*>> r) ° *) = D. 
^ f l . - 1 ( f l ( i | , r ) n l ) 

(Note that in this definition also the assumption that (2.1) holds for each r > 0 is 
contained. This is valid, by [5], lemma 3.7, for each rj e B with \dG(rj) — %\ < ^). 

Obviously, if fi has the derivative at r\9 then there exists also the symmetric derivative 
of fi at r\ and their values are equal. 

2.1 Lemma. Let \x^C*9r\eB9S c Rm - _?, 

contg (S, */) n contg (5, rj) = 0 

and suppose that p. is a non-negative measure with the symmetric derivative on B 
at rj equal to zero. Further suppose that (1.8) holds and that 

(2.4) [míi^My)< 
}B \y - ri\m 

oo 
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Then 

(2.5) lim W(n, z) = W(n, n) . 
z-*rţ 
2ЄS 

Proof. For R > 0 put X = pt \ Q(r\, R), v = fi \ (Rm - Q(r\, R)). We have W(fi, z) = 
= W(k, z) + W(v, z) for each zeRm for which the left-hand side is defined. Analo­
gously to the proof of the proposition 1.1, it is sufficient to prove that there is 8 > 0 
such that 

W(X, z) -+ 0 

as JR -» 0 + uniformly on {r\} u S n Q(r\, 8). For zeS denote r = \z - r\\ and 

M = ^(.7, K) n £ - Q(r\, 2r) , N = G(*/, K) n J3 n afy, 2r) . 

We have 

Denote by I, II respectively the absolute values of the integrals on the right-hand 
side of (2.6). Applying the proposition 0.1 we find a, 8 > 0 such that 

dist(z, 6) = a\z - r\\ 

holds for each zeS n Q(r\, 8). If now z e S n Q(r\, 8), \z - r\\ = r, we arrive at 

ii < A ^ y-^ »(N) 
- (ar)"-1 " a"1"1 Hm-x(^, 2r) n 5) ' 

where 

J^sup^-^M^. 
r>o r1"""1 

Since the symmetric derivative of ft vanishes at r\, for each e > 0 there is 8t > 0 such 
that 

lx(Q(r\, Q) n 8) ^ ^ a""1 

Hm.i(Q(r\,Q)n6)- 2m^k 

for any Q, 0 < Q < 5t. Hence 

II < e 

for each R such that 0 < .R < <5t, as we have 

2m~lk fi{N) 2 " - ^ n(Q(n, 2r) n 8) 

a"-1 H^Ofr, 2r) n6)T a™"1 # „ _ . ( % , 2r) n £) < * 
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if R i> 2r (then 0 < 2r < 5t) and 

2m~Yk \i(N) < 2m~1k fi(Q(rj, R) n 6) 
am~- .ff^flfo, 2r) n 5) = a - 1 Hm.A(^, K) n £) *" * 

if.R<2r. 
This estimate is independent of z e S n Q(rj, d). 
Now estimate the expression I. We may consider only z e S n Q(r\, 5) with 2r < R 

(for a fixed JR) because in the opposite case M = 0 and thus 1 = 0. Since 

as g ~» 0 + , it is sufficient to prove that 

.1 U.<i,Wi, _ . - M \ 

L 

UiA b - z | m \y-n\ J 
as K -> 0+ uniformly with respect to z on the set S n i2(/;, 5). We have 

(2.8) w s (, + 2-) f miL^i My) + r ^ _ w 
JM \y - >?| J M |y - Z\ 

(cf. an analogous estimate in the proof of theorem 1.3). Further 

(1+s-)f iy^-^ld^)^(l + 2-)f Kf)^-;)ld^)->0 
JM \y - i\ Jft(,,R)ni» |y - v\m 

as i? -» 0+, where the last expression is independent of z e S n Q[t], $). Now estimate 
the expression II. Taking into account \y — z\ ^ \\y — t\\ for y e M, we arrive at 

(2.9) rf , d ^ , <2"r[ , d ^ , . 

According to the proof of theorem 1.3, one obtains 

(210) i^'WH^F 
However, 

\x e M; • --— > u\ = (Q(rj, R) n 6 - (% 2r)) n flfo, w"1/m). 
I \y - vr J 

For w ^ (2r)"m this set is empty and thus for these u the integrand on the right-hand 
side of (2.10) equals zero. For u such that 0 < u < R~~m this set is equal to M and 
thus for these u the integrand on the right-hand side of (2.10) equals /z(M). Now it is 
evident that 

(2.H) r f d/*(y\m = r ^ + r f̂ " ^(M n Q(t1, u~ifm)) du . 
J M | y — V|m -Rm J* -™ 
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The first term on the right-hand side of (2.11) may be estimated by 

(2.12) rџ(M) < k џ(ą~,R)nÊ) 
Г Ä" ' -2 Я . . 1 ( % Ä)n . ) 

By the substitution t = u 1/m in the second term on the right-hand side of (2.11) we 
obtain 

/»<2r)-»» 

(2.13) r n(M n Q(rj, u~1/m)) du = 
J R'm 

. mr f ^~Q(>/.2r))nQ(>?.t))df < m r f e fR /.(*-(>?. t) n J ) dt < 

J 2, tm+1 " Jarfl-iWl.OnU)^ " 

<wrfcsup _____̂ ____l__iL f ±< < «* s u p ti<*r,,x)nB) 
*e(o,j.) ifm_ ^ ( J J , x) n B) J 2r f

2 2 *6(O,R) Hm_ t(Q(rj, x) n >§) 

It follows from (2.13), (2.12), (2.11) and (2.9) that 

(2.i4) r f -^yL < y - i ^ + 1} sup ^ ; x ) ? \ - ° 
Ja\y-z\m~ -co.it> Hw_ ^ f r , *) n 5) 

as _R -> 04-. The quantity on the right-hand side of the last inequality is independent 
of z 6 5 n Q(rj, 8). Now it is evident that V(z) tends to zero uniformly on S n Q(rj, 8) 
as R -• 04-. Hence, in fact, W(X, z) -> 0 as R -> 04- uniformly on { t / j u S n Q(rj, 8), 
which completes the proof. 

2.2 Lemma. Let rjeB such that v(rj) < oo and Hm_i(-§ n Q(rj, r)) > 0 for every 
r > 0. Let / t e C * and suppose that there are 8 > 0 and fc < oo sucfe ffeaf 

< Ќ 
( 3 1 5 ) ».-,(«)! 

/or any Borel set M cz & n Q(rj, 8) with Hm-X(M) > 0. Then 

џ(M) 

(2.16) f M(У ~ý б\џ\(y) < 00 
Jв \У ~ Щ 

Proof. There exists a Borel set A cz B with fi+ =- \JL \ A, [T -= fi \ (B — -4)* 
Putting A = \i \ (.6 n (2(̂ 7, 8)), we obtain A+ = X \ A, X" = X \ (B - _4) and 

(217) L W ^ F M d | " l w = 

-f hfVH*iw+IM^^<'Ww-
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The first integral on the right-hand side of (2.17) is finite because the integrand is 
bounded on 8 — Q(r\, 8) and |/x| (8) < oo. It can be easily seen that 

<# 
(2.18) A + ( M ) ^ f c H w _ 1 ( M ) , A"(M)_ifcHm_1(M) 

for any Borel set M c 8. Since k+ and k~ are concentrated on two disjoint subsets 
of 8 n Q(r\, 8), it follows from Radon-Nikodym theorem that there is cp e & with 
\(p(x)\ <l k for each x e B, (p(x) = 0 for each xeB - (Q(r\, 8) n 8) and X = 
= (p(Hm_1 | 8). For such function cp we have 

Jfi ly-'-^l J* 1̂  "• 1̂ 

so that (2.16) is true. 

2.3 Lemma. Lef rj e B and let fi e C* has the derivative D at r\. Then there exist 
derivatives of \x+, ja~ and \fi\ at r\ and they are equal to 

D + \D\ - D + I D I - . 

respectively. 

Proof . There is a Borel set A c B for which n+ = \i \ A , fi~ = ft \ (B — A). 
Further there is 8 > 0 such that 

•Ҷм) 
Hm-t(M) 

ú\D\ + í 

for any Borel s e t M c . § n (2(.7, <5) with # m _ t(M) > 0. Now the proof will be divided 
into two parts: 

a) Let D = 0. 

The following two cases may occur: either 

Hm-M n $ n Ofa r)) > ° 
for every r > 0 or 

fl»-i((-9-i4)nfl(i,,r))>0 

for every r > 0. Consider the first case. Let M c fi n ;#(.»/, 8) be a Borel set with 
Hm-i(M) > 0. If Hm^t(A n M) = 0, then also J I + (M) = 0; if Hm_t(A n M) > 0, 
then 

H+(M) < /i(inM) 

' tf^Mptf^-inM)' 
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Therefore, since the derivative of p vanishes at r\, we obtain that p+ has the derivative 
vanishing at r\. From the relations \T = p+ — p and \p\ = p+ + p~ we now 
conclude that p~ and \y\ have alfcb derivatives which vanish at r\. In the second case 
we can proceed analogously. 

b) Let D * 0. 

Assume D > 0. There is o\, 0 < ^ < <5 such that 

D ќм) ъ < 
2 

( 2 1 9 ) I , ^ 

holds for each Borel set M c 6 n £(.7, <5X) with H^^M) > 0. Then necessarily 

Hm_1((B-A)nQ(r\,Sl)) = 0. 

Indeed, if this is not the case, the inequality (2.19) with (B — A) n Q(r\, 5t) written 
there instead of M is false. Hence 

p~(BnQ(r\,Sl)) = 0. 

This means that /J~ has the derivative which vanishes at r\, p+ and \p\ have deriva­
tives at r\ equal to D. 

The case D < 0 is analogous. 

2.4 Theorem. Let S a Rm - B, r\ e S r\ B, 

contg (S, r\) n contg (£, .-7) = 0 , 

suppose that (1.8) hoZds and fftere is S > 0 swcft ffcaf (1.3) holds. Let p e C*, p = 
= A + v, A, v e C* such that X has the derivative D at r\, jv| has the symmetric 
derivative which vanishes at r\. Further suppose 

J . f c W d H W < -
Then there exists the limit 

(2.20) lim W(}i, z) = W(n, r,) + DHm_ t(r) (i - d^n)) . 
2->if 
zeS 

Proof. We have 

W(p, z) = W(X, z) + W(v+, z) - W(v", z) 

for those z e JRm for which both sides of this equality are defined. It follows from 
lemma 2.1 that 

lim W(v, z) = W(v, rj) . 
x-*n 
zeS 
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It is sufficient to prove that (2.20) holds if we write there X instead of fi. Put y = 
-=- X — D(Hm_! | S). Since X has the derivative D at r\ and D(Hm_ t \ S) has the deriva­
tive D at r\ y has the derivative vanishing at r\. According to lemma 2.3, y+ and y" 
have also derivatives vanishing at r\. If fe C is a function equal to unity on B9 we 
have 

W(X9 z) = D W(f9 z) + W(y+
9 z) - JVftr, z) 

for those z e ,Rm for which the left-hand side is defined. It is known (cf. the proof of 
the proposition 1.1) that there exists the limit 

lim W(f9 z) = W(f9 r\) + Hm_t(r) (i - dG(r\)) . 
2€S 

According U> lemma 2.1 the limit 

lim W(y9 z) = W(y9 r\) 
z-+n 
zeS 

also exists (to verify the assumptions one uses lemma 2.2). This implies the statement 
of the present theorem. 

2.5 Remark. It is not possible to replace the requirement (2.15) in the lemma 2.2 
by the "symmetric requirement", i.e. by 

lim sup 
r - 0 + 

џ(Q)(r\9 r) n Ê) 

H^^QfaĄnÊ} 
< 00 . 

Moreover, we shall introduce an example proving that it is not sufficient to suppose 
that /x is a non-negative measure with the symmetric derivative vanishing at r\. 

Fig. 1 
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Let m = 2. Denote by [x, y] (x, j € R1) the points of R2. We construct in _R2 the 
curve q> consisting of the curves q>t and \j/j as in fig. 1 — the reader certainly can 
describe this curve precisely. Here we put rk = l/fc (fc = 1, 2, ...), <xk = jr/4fc (fc = 
= 2, 3, ...), at = |7r, rfc denotes the radius of the arc <pk, afc the angle. For the curve <p 
we may easily find a rectification, for example by an arc length — but we shall not 
need it here. The curve <p is a Jordan curve (i.e. simple closed curve) and thus we may 
consider the domain G = Int <p. It is evident that P(G) < oo, B = <(p> and B — & 
is a denumerable set. Let 7/ = [0, 0]. We have v(rj) < oo. Now we define a function f 
on B as follows: 

, , v 4 fc + 1 
f(Z) = 

n log fc 
for all z on the open arc <pk, k = 2, 3, . . . , 

/(-) = o 
for all other z e 5 . Putting /i = f Ht \ B, we have that \i e C* and /j is a non-negative 
measure. Let 

u \\ t , 4 fc + 1 1 
q* = M W ) = rk(ock - a k + 1 ) -n log fc fc2 log fc 

for fc = 2, 3 , . . . . We shall prove that jx has the symmetric derivative which vanishes 
at rj. Given r, 0 < r < 1, there is a natural number fc such that r e (rk+u rk}. Then 

# . ' ) ) " « ) - £ 1n= £ -T7— --
„= f c + 1 n=jfc+i ?r j o g n 

= log(fc+ l)„=* + i n2 = log(fc+ 1)J, t2 ~ fclog(fc+ 1)' 

Taking into account 

Ht(B n Q(rj, r)) = 2rf>2rk+l = ^ - - M , 

we see that /i has the symmetric derivative vanishing at rj. 
For y e (<pk) we have n(y) = j/|>>| and therefore 

f ^ ( y - , ) ! ^ __ f /();) ^ ( y y ) ! dHi(y) _ 
JB |y - t/| JB \y - w 

OO OO j 

fc=2 rfc *=2 fc l o g fc 

The measure \i satisfies a desired requirements. Let us remark that in the preceding 
example one may require q> to be a smooth curve. 
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Throughout this paragraph we always assume that m = 2. Where necessary, we 
identify JR2 with the set of all complex numbers. Introduce the following notation: 

If ueR\ zeR2, write H(a, z) = H(0, z) = {z + r&; r > 0}, where 0 = 
= [cos a, sin a]. 3f stands for the set of all infinitely differentiable functions with 
compact supports in R2. For zeR2 put 

$(z) = {cpe 9i\ z$ supp q>) , 

where supp q> denotes the support of the function q>. 
No.w we shall prove two simple auxiliary assertions (which could be pronounced 

in a more general form). 

3.1 Lemma. Let (p be a Jordan curve in R2 defined on <a, b> and 9 a function 
with a finite variation on <a, b}. Further suppose that the function 9 is either 
continuous from the right on <a, b) or continuous from the left on (a, b}. Then 

(3.1) var [9; <«, t»>] = sup J [/(*(')) d9(t); fe 2, \f\ g l l 

(the integrals in (3.1) are meant in the sense of Stieltjes). 

Proof. If var [9; <a, 6>] = 0 , then the statement is obvious. Suppose that 
var [3; <a, fe>] > 0. It is known that 

var [S; <a, b>] = sup 1 f/(t) áS(ty,fe c«a, 6», | / | ^ l i 

(integrals are always meant in the sense of Stieltjes). 
Given e > 0, there i s / x e C(<a, 6», |fi| ^ 1 such that 

(3.2) J f^O d9(t) > var [3; <a, 6>] - | . 

Assume conversely that 9 is continuous from the right on <a, fc). Then the function 

s(t) = var [9; <a, 6>] 

is continuous from the right at the point a and thus there is t0 e (a, b) such that for 
each t e <a, f0> 

<0<I. 
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Further there exists f2 e C(<<p>) with |f2| = 1, f2(<p(t)) = fx(0 for each t e <i*o> fe>-
Then 

f f2(<K0)d9(0 = f/i(0d9(0 + f^OKOWO = 
J a J to J a 

>= j*/.(0 ds(0 - I [VaOKO) - A(0) ds(0| > var & <«• fe>] - *E • 
J a I J a I 

Since <</>> is a compact set andf2 e C(<(?>), there isfe@, \f\ = 1 such that 

| f (z ) - f 2 (z ) l =
 £ 

3 var [3; <a, b>] 
holds for each z 6 <(p>. Then 

jbf(<p(t))d9(t)^jbf2(<p(t))d9(t)-

- I f W o ) - Ml®)) d9(')| > var [9; <a, * > ] - « . 
I Ja I 

In the case of 3 continuous from the left on (a, b> we may proceed completely 
analogously. 

3.2 Lemma. Let (p be a Jordan curve in R2 defined on <a, b>, let t0 e <a, fe>, 
-'I = <«> *o)> * 2 = (*o> b} (of course, if t0 = a, fhen J t = 0, if r0 = b, then I2 = 0), 
to Sj (j = 1, 2) be a continuous function with a locally finite variation on Ij. 
Then 

(3.3) 2>ar [3/, Ij] = sup J £ f f(cp(t)) d9j(t); fe ®(<p(t0)), | / | = l l 

(if is obvious how (3.3) reduces in the case t0 = a or t0 = fe). 
2 

Proof, a) Let £ v a r [ 3 / ' I / ] < °°- Suppose t0e(a, fc). Define a function 3 
on<a,fe>by i = 1 

3(0 = 3 ^ ) for *e<a, f 0 ) , 
3(0 = 32(0 - lim 32(z) + lim 9t(z) for f e (t0, fe> , 

z-*to+ z-»fo~ 

% ) - lim 3,(z). 
x-.o" 

ObvidUsly, 3 is a continuous function on <a, b} with a finite variation 

var[3;<a,&>] = Xvar[S, ; / / ] . 
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Forfe C(<a, by) we have 

t f/(0<»A0-f/(') <»*(')• 
J=1Jlj Ja 

Given e > 0, then according to lemma 3 A we may findf! e &•> |/i| = 1 suc^ ^ a t 

Í i --

Further there is <5, 0 < 8 < min {r0 — a, b — /0} such that 

var [3; <*0 - <5, t0 + <5>] < - . 
4 

Since cp(t0) is not contained in the compact set 

<P«a> t0 - 8} v Oo + $> b}), 

there is f e @(<p(t0)) such that |f| ^ 1 andf(z) = fx(z) for each 

z e <p«a, f0 - <5> u <f0 + <5, b>). 

From the choice of fx and 8 it follows 

Í f{ę{t)) dЩ > var Џ; <a, f>>] - є. 

Analogously in the cases /0 = a or t0 = £>. 

fc) Suppose, conversely, var [i9x; <a, f0)] = oo. 

Let t0 e (a, b). Given k > 0, there is tx e (a, f0) such that var [&t; <a, fr>] > 
> fc + 2 and thus there isfj e 9 with \ft\ <i 1 and 

ViW0)d»i(O>* + l. í 
There î  5j > 0 such that Q(<p(t0), 28t) n <p«a, rx>) = 0. Further there is t2 e (tit t0) 
such that 

var [S i ; <*!,*,>] < J 

(since Si is continuous). We may find 82 > 0, 2<52 < tt — a such that 

var[S1;<a,fl+-2«a>]<i. 

Then <p«a + 252, txy) and <p«a, a + <52> u <r2, fe>) u Q(<p(t0), 8X) are two disjoint 
compact sets and thus there isfe 9) with |f| <; l,f(z) =fi(z) on the former of both 
described sets and f(z) = 0 on the latter. Therefore, moreover, fe@((p(t0)). We 
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arrive at 

i f f(<p(t))^j(t) = P f(KO)d^(o = 
J=X Jlj Ja + d2 

Mtl ra + 2d2 t*t2 fia + 2d2 

= ji * ^ - A * (p d», + f* <p d&t + f*cpd9l> k. 
Ja Ja J ti Ja + d2 

Analogously for t0 = b. 

The case var [#2^2] == °° m a y ^ e solved in the same way. 
Throughout the rest of this paragraph \j/ stands for a Jordan curve in R2 defined 

on a compact interval <a, /?> (a < f>). Further suppose that ^ is a positively oriented 
curve with a finite length. Denote G = Int \j/ and, according to the preceding notation, 
B = <i^>, 6 being the reduced boundary of the set G. From [12], part 8, we get 
var ty; <a, /}}] = P(G) and so 

(3.4) P(G) < 00 . 

For 2 e R2, a e <0, lit) let N(a, Z) be the number of all points of the set <i/>> n 
n H(a, Z). The function N(a, Z) is a measurable function with respect to a 6 <0, 2n} 
(and non-negative), thus we may define 

V(z) = I *N(a, Z) da 
Л2я 

г) = N(oc, 

(cf., for example, [6], lemma 2.1). If 0 = [cos a, sin a], then n(<9, Z) ^ N(a, Z) 
(where w(<9, Z) has the same meaning as in the introduction). Hence 

(3.5) v(Z) = V(Z) . 

For z e R2 let 91 be the system of all components of the set <a, />> — ^ _ 1 ( z ) 0 n t n e 

present case 91 has at most two elements) and for 16 91 let 9r

z be a single-valued 
continuous argument of \l/(t) - Z on I. Define, for z e R2 andfe C, 

(3.6) W*(f,z) = j : (f(ilf(t))d&l(t) 

provided the integrals on the right-hand side exist and their sum is defined. 

Prove that if <p e @(z), then 

(3.7) W*(q>, z) = W(<p, z) . 

Hence we obtain by passing to the limit that if V(Z) < 00, then W*(f, z) = W(f, z) 

for each / e C — as regards this, see the equality (3.10) in the following. 

If q> e ®(z), then (cf. [5]) 

W((p, z) = grád q>(x) z— dx . 

J G I* - - I 

253 



The proposition 2.3 in [8] implies 

where z — [x, >>], i/' = [i/^, ^ 2 ] - For »̂ and the function 

MO = ["-9(0 ^"^ , o(C) ^~* 1 
w L v ' | c - z | 2 n j | c - z | 2 J 

(where f = [£, ^]) the requirements of Green theorem are satisfied (cf. [4], theorem 
8.49) and thus we conclude 

W*(q>9 z) = wx d£ + w2 dn = rot w = grad <p(w) -̂ - dw = W(<p9 z) . 
J* JG JG l M - 2 r 

3.3 Theorem. If ze R2
9 then 

(3.8) V(z) = ,(z). 

Proof. Since by [5], assertion 1.6 

v(z) = sup {W(<p9 z); <p e &(z), \<p\ = 1} , 

it is sufficient to prove, with respect to (3.7), that 

(3.9) V(z) = sup {W*(q>9 z); q> e ®(z)9 \q>\ = 1} . 

Let $1, 9[ have the same meaning as in the definition of W*(f9 z). It follows from (6) 
in [8] that 

(3.10) K*) = I var [# ; / ] . 
JєЯ 

If a ** a < b £ 09 z $ i/̂ (<a, b>) and 9 is some single-valued argument of \\f(i) - z 
on <a, fe>, then (by 1A2 from [7]) 

var [9; <a, b>] = dist (z; <A«a, &») var fy; <a, b>] . 

This implies that S' has a locally finite variation on J e 91. If now z e B, we may use 
lemma 3.2, therefore we see that (3.9) holds. If z £ B9 then (3.9) follows from lemma 
3.1. 

3.4 Remark. Since n(G9 z) <: N(a, z) (where 0 = [cos a, sin a]), it follows from 
theorem 3.3 that for each fixed z e R2

9 n(G9 z) = N(a, z) for almost all a e <0, 2TT>. 

In the same way as in [8] we define for t0 e (a, P) 

(3.11) T^fo) = hm —J- —-f = e , ^(t0) - nm —— —— - e 
t->t0+ \il/(t) - f(t0)\ f-fo- |iA(0 - lK*o)| 

254 



provided the limits exist. We may suppose that a+ ^ a_ < a+ + 2n. If T^"(f0) = 
= — T^(r0), then we put 

(3-12) T ^ O ) = - ; o 0 ) . 

3.5 Lemma. Let t e (a, jS). If there exist t£(t) and t^(t), then there exists the density 
dG(z)for z = \j/(t). If moreover a+ + a_, then 

(3.13) d c ( * ) - i - ( > _ - a + ) ; 
271 

if a+ = a_, then eif/ier dG(z) = 0 or dG(z) = 1. 

If, besides that, there exists T^(f), then there exists the exterior normal of G in 
the sense of Federer 

n(z) = - i r , ( z ) . 

Proof. Suppose that i//(t) = 0, a+ + a_ and that there is y e (0, n) such that 

a+ = -y, a_ = y . 

Given e, 0 < e < y, then by the definition of r£ and T^ there is d > 0, 8 < 
< min {t — a, /? — f} such that 

(3.14) [u e (t, t + 5), tfr(ii) - xjj(t) = eVi|^(ii) - ^(t)\, pt e <-TT - y, n - y>] => 

=> |/»i + y| < £, 

[« e (* - S, t), ij/(u) - +(t) = eVa|iKu) - tfr(*)|, P2z<y-n,y + *>] => 

=> |^2 - y| < £ • 

There is r0 > 0 such that =0(0, r0) n ^(<a, £> - (t - 5, f + 5)) = 0. Prove that for 
each r such that 0 < r < r0 

(3.15) Q(0, r)n{z = |z| e1'"; z + 0, rj e <e - y, y - e>} c Q(0, r) n G c 

c 0(0, r) n {z = |z| e1'*; >/ e < - e - 7, E + y}} . 
The sets 

(3.16) Q(0, r)n{z = |z| e*1; z + 0, 1; e <e - y, y - e}} , 

(3.11) Q(0, r)n{z = |z| e"; z + 0, r\ e <y + e, 2TC - y - £>} 

are connected. To prove that (3.16) is contained in Int \j/ and (3.17) is contained in 
Ext {// (which implies (3.15)), it is sufficient to prove that there is a point zt in (3.16) 
with ind^ (zx) = 1 and a point z2 in (3.17) with ind^ (z2) = 0. Put zx = \r, z2 = 
-= — \r (zu z2 are considered in the terms of complex numbers). Since there exist 
T*(0> T* (0 a n d T* (0 - e~iy> T*(0 = ei/ w here y e (0, n), it is clear that the function 
Im {// is decreasing at the point t. By Mafik theorem (cf. [2], theorem 126) we have 

ind^ (z2) = ind^ (zx) - 1 . 
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Since ^ is a positively oriented curve, this equation yields necessarily ind^ (zt) = 1, 
ind^ (z2) = 0. The relation (3.15) implies 

(y - £) r2
 = H2(Q(0, r)nG) = (y + e) r2 

and thus, in fact, dG(z) = yjn ( = (a_ — a+)J2n). The rest of the proof, i.e. dG(z) = 0 
or dG(z) = 1 if a+ = a_ and the existence of the exterior normal in the sense of Fe-
derer if x^(t) exists is analogous. 

Let z e R2, t > 0 and let M(t, z) stand for the number of all points of the set 
\l/"l({x; \x — z\ = t}). Then M(t, z) is a measurable function with respect to 
t e (0, oo) (cf. ,e.g., [6], lemma 2.5) and we may thus define, for each r > 0, 

(3.18) u(z,r) = \M(t,z)dt. 

3.6 Theorem. If neR2 with v(n) < oo, then 

holds if and only if 

u(n, r) 
sup - ^ — - < oo 
r > 0 r 

Hx(Q(n, r) n È) 
sup v Vf } -; < 00 
r>0 Г 

Proof. If n i B is the case the statement is obvious, because n(z, oo) ^ 

= var [\j/; <a, 0>] for each z e R2 (cf. (7) in [8]) and H^B) < oo. 

Let n e B. Therefore by [8], theorem 3.9 

(3.19) u(n, r) = var [ijj; Kr] = r v(n) + u(*/, r ) , 

where Kr = ^"^{z; \z — 17] = r}). Now it is sufficient to prove that 

(3.20) var [i/t; Kr] = Ht(6 n flfr, r)) . 

According to [13], theorem 1.1 we have 

var ty; Kr] = fl^K,)) = H ^ B n flfo, r)) 

(in the present case Nj(z; Kr) from theorem 1.1 in [13] is equal to unity on i//(Kr) 

except at most at one point). Further we have 8 c B. Prove Ht(B - S) = 0. Taking 

into account theorem 1.17 from [13] we obtain that there exists x^(i) for var^-almost 

all t e <a, p>. By [13], theorem 1.4, var [xj/; M] = 0 for any M c <a5 /?> if and only 

if Hi($(M)) == 0. By lemma 3.5, B contains the set of all z e B for which there exists T^ 

i n i T 1 ^ ) -
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3.7 Remark. As (3.20) holds, it is 

Hx(Q(rj, r) n B) ufa r) 
sup 1V Vf—'- < oo => sup v / ' < oo . 
r>o r r>o r 

If v(rj) < oo, then the converse of this implication holds by theorem 3.6. If v(rj) ^ cc, 
then the converse of this implication need not hold. This will be proved by the fol­
lowing example. 

Ўy^ 0 . 

r» 
a> 

— ^ L 
—^ř4 

—í4 

U ľ \t\ 
Y. a, a. 

Fig. 2 

Analogously to the remark 2.5 we construct a positively oriented Jordan curve q> 
as in fig. 2. (The figure is only a sketch.) Here we put ak = \\k2 (k = 1, 2, ...). 
The curve q> has a finite length and if r\ = [0, 0] then v(rj) = oo. For t > 1 we have 
M(f, 17) = 0 and for t with 0 < f < 1, f 4= ak, we have M(f, */) = 2, therefore 

S U p_vj—_ 
r>0 r 

Further 

Hence 

2 и=jfe+i 2 J л + 2 x 2 к + 

Hi(Q(ri, aк) n £) ^ тт fc2 

0* " 2 fc 4- 2 

as k -> 00. 

3.8 Remark. In [8] (cf. also [4]) it is proved that if r\ e B, then the limit 

(3-21) lim W(f,z) 
г-чi 

ieH(Є,>f) 
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exists for any function fe C and any half-line H(0, tj) $ contg (B, rj) if and only if 

00 . 

Here this assertion follows immediately from theorems 1.6 and 3.6. If we compare 
the value of the limit (3.21) introduced in [8] (or [4]) with the value of that introduced 
in theorem 1.6, then lemma 3.5 certifies that these values are equal. 
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