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NON-TANGENTIAL LIMITS OF THE DOUBLE LAYER POTENTIALS
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INTRODUCTION

We shall first introduce some fundamental notations, notions and theorems that
will be used later.

Let G be a fixed Borel set in the Euclidean m-space R™, m = 2, and suppose that
the boundary B of G is compact. Let the points of R™ be identified with m-dimensional
vectors. For each x, y € R denote by xy the scalar product of the vectors x, y;
denote by |x| the Euclidean norm of the vector x. Further define, for any y € R™
and r > 0,

Ay, r)={xeR™ |x —y| <r};

the boundary of Q(O, 1) denote by I'. For a natural number a, « < m, denote by H,
the Hausdorff a-dimensional measure. Put

_ lim Hn(@0. 1) 0 M)
dM(y) rl-»o+ H,,,(Q(y, r))

for any Borel set M = R™ provided the limit exists. dy() is called the m-dimensional
density of the set M at the point y. The vector @ e I' is called the exterior normal
of G at the point y € R™ in the sense of Federer provided the symmetric difference of G
and the half-space

{xeR™ (x —y)©6 <0}

has m-dimensional density O at y. Since at every point- y € R™ there exists at most
one exterior normal in the sense of Federer, we may define a vector-valued function
n(y)in this way: we put n(y) = @ if there is the exterior normal @ at y; otherwise n(y)
equals the zero vector. Let B stand for the reduced boundary of G, i.e. the set of all
y € R™ with n(y) # 0 (always B = B). It follows from [3], theorem 4.5 that n(y) is
a Baire function; in particular, B is a Borel set.
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P(G) will denote the perimeter of G defined by

-

P(G) = supj‘ div v(x) dx ,
v G

where v ranges over all m-dimensional infinitely differentiable vector-valued functions
with compact supports in R™, satisfying [v(x)| < 1 for each x € R™. In what follows
we shall assume

(0.1) ~ P(G) < .
Then (cf. [5]) Hp-1(B) < oo.
For any.®@ € I' and z € R™ put

HO,2)={z +r@;r >0}, &(z)={H(O,z2); O€el}.
A point y € H(O, z) is called a hit of H(®, z) on G provided both
H(©,2)nGnQy,r) and (H(O,z) — G)n Qy, )

have a positive H,-measure for every r > 0. If n(®, z) denotes the total number of
all the hits of H(®, z) on G, then according to [5], prop. 1.6 n(®, z) is a non-negative
Baire function of the variable ® € I'. We may thus define a cyclic variation of G at
the point z by

v(z) = Jln(@, z)dH,_,(0).

By [5], lemma 2.12 and with respect to assumption (0.1) we have
02) o2) = j In) (y N an,(5)

for every z € R™. Since H,,—;(B) < oo and for any fixed z ¢ B the integrand in (0, 2)
is a bounded function, it is v(z) < oo (cf. also [5], lemma 2.9). Notice that v(z) < o
implies the existence of dg(z) (cf. [5], lemma 2.7).

Let C be a space of all continuous functions on B equiped with the supremum
norm. Denote C* the space of all linear continuous functionals on C. Elements
of C* may be interpreted as bounded measures with supports in B (cf. [1]). For
peC*let u*, p~ and. l,u] be positive, negative and total variations of the measure p
respectively (cf. [1]). It is known that p = p* — p~, |u| = p* + p~ and the norm
of u equals [u| (B). We define the integrability and measurability of functions and
sets with respect to u € C* in the same way as in [1]. N

If ¢y stands for the characteristic function of the set M = R™, put, for a Borel
set A © B, u| A = @y (for the multiplication of a measure by a function see [1]).
For every p € C* there exists a Borel set A  Bsuchthat u| A = p*, p|(B — 4) =
= pu~. By [1], chap. V, § 5, part 7, corollary of theorem 13 there are actually two
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disjoint sets M, N = B such that u* is concentrated on M and u~ is concentrated
on N. Clearly the set M is p-measurable (it is p*-measurable as u*(B — M) = 0 and
p~-measurable as p~(M) = 0). Thus there exists a Borel set A = Bsuchthat M = A4
and |u| (A — M) = 0. It is evident that 4 satisfies the above requirements.

Let 2 be the system of all bounded Baire functions on B. Assuming
0.3) u(z) < w0,

we define the double layer potential for each f € &, z € R™ by

(04) W5, 2) = j Bf(y)"—(lyy)—‘_yzil;z—) aH,_(y)

(cf. [5], lemma 2.12). Let p € C*. Then we define the double layer potential W(y, z)
for all z ¢ B and for z € B such that

[n(») & — 2)| <o
©09) [ P A 0) < .
by
(0.6) W, z) = .LE(I%(—Y—Z—_I"‘Z—) du(y).

For M = R™, y € R™ let us call the contingent of M at y and denote by contg (M, y)
the system of all half-lines H(®, y) € #(y) for which there is a sequence of points
Ya€M(n=1,2,..)withy, + y, y, > y and

lim J» ¥

Y -0.
= |Va — |

Obviously, contg (M, y) # @ if and only if y is an accumulation point of M.
Now we prove the following statement which will be needed later.

0.1 Proposition. Let M < R™, S < R™, n€ R™ and
contg (M, n) N contg (S, n) = 0.
Then there are a > 0, 6 > 0 such that
(0.7) MnSAQmnd)—{n}=9
and if dist (y, M) denotes the distance of the point y from the set M, then

(0.8) dist (y, M) 2 a|y — 1
holds for each y € S n An, d).
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Proof. The relation (0.7) follows from (0.8). Obviously, the statement is true in the
case y¢ Sn M.

If the stat¢ment (0.8) were false, we could find, for any sequence {a,}-, with
0<a,<1,a,—0, two sequences {y,},2y, {z,}i%, with y, €S Q(n, a,) — {n},
z,€ M and

Iyn - znl < anlyn - 77! = a,ly

where |y, — n| = r,. Putting |z, — n| = 7,, we get

rn—anrnéfné rn+ a,’n -

Further
(()9) Oé z"—r,__y"_nlélzﬂ_ﬂynl_*_ yn—n_.})n—nlé
|z — | |ya— 1l 7 7 r,
< Dl y Ir"_F"lgz % 0
Fr Tpln 1—a,

as n > oo. Since the sequence {(z, — n)/|z, — n|};=, is a sequence of points of the
compact set I', there is a convergent subsequence; we may assume it to have been
already extracted. This implies

limz"—_n—=@el‘.

n—+ o |Z'l - n
On the other hand, by (0.9) also

lim 2»~" _p.
o |y, — 1|

Hence H(O, n) € contg (M, n) N contg (S, n) which is the desired contradiction.

The preceding proposition implies that for ne B with H(O, n)¢ contg (B, n)
a 6 > 0 may be found such that the set

S={n+r0;0<r<d}
is included either in the interior of G or in R™ — G. Denoting for « € {0, 4, 1}
G, = {xeR™; dg(x) = a},

then obviously G,;, « B, G; = G, R™ — G = G,. We have S = G, or S < G,.
Further B = Gy, and by [5], lemma 3.7

H, -Gy, — B)=0.
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In the end let us make a note that the Hausdorff measure of a set is an invariant
of the motion (i.e. a translation and a rotation) in R™. Then also the quantities v(x),
ds(x), W(f, x) are invariants of the motion, as well as the existence of the exterior
normal in the sense of Federer; so for example the reduced boundary of the set
after a motion is equal to the reduced boundary of the original set G, subjected to
the motion.

Recall that the symbol G denotes a fixed Borel set in R™, m = 2 with a compact
boundary B and with a finite perimeter.

Now we shall prove this statement:

1.1 Proposition. Let S =« R™ — B, n€ S N B. Then

(1.1) lim sup W(f, x) < o
x-q
xeS

holds for every function f € C (or for every f e .%)‘if and only if

(1.2) lim sup v(x) < oo .
x-n
xeS

If, moreover, there is .5 > 0 such that
(1.3) S n Qn, ) = G;
holdslfor i=00ri=1,then the limit

(1.4) lim W(f, x)

x—=n
xeS

exists for each function f € C (or for each f e # continuous at the point n) if and
only if (1.2) holds. The value of the limit (1.4) is then given by

(1.5) W(f,n) + f(n) Hp—1(I) (i — da(n)) -

Proof. First we shall prove that the condition (1.2) is necessary and sufficient for
(1.1) to be true for each fe C. If this were false, we could find x, € S (k = 1,2, ...),
X, = 1, v(x,) = . The point x € R™ being fixed, the quantity W(f, x) determines
a linear functional on the space C, whose norm is equal to v(x) (cf. [5], relation (2.5)).
It follows from (1.1) by Banach-Steinhaus theorem that there are two numbers k,
and ¢ such that v(x;) < c for each k > ko. This is the desired contradiction.

Let (1.2) hold. Hence we have v(n) < oo as the function v(x) is lower semicontinuous
with respect to x € R™ according to the statement 2.9 in [5]. Further, this implies
that the density dg(#) at the point 5 exists (cf. [5], lemma 2.7).
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. Taking into account (0.2) and (0.4), we get that the condition (1.1) is satisfied for
each function fe #. Now suppose that (1.3) holds and prove the existence of the
limit (1.4) for any fe # continuous at the point 7. According to (1.2) there is §,,
0 < 4, < J such that

¢ =sup{v(x); xe SN Qn,5,)} < 0.
From the lower semicontinuity of v(x) we obtain
c = sup {v(x); xe S n Qn, 6,)} .

First assume that f(x) = 1 for all x € B. This (by [5], lemma 2.5, provided 1(z) <o)
implies

W(f, z) = H,_,(I') dg(z)
if G is bounded and

W(f, 2) = Hp_y(T) (1 — do(2))

if G is unbounded. By the assumption (1.3) just one of the following cases occurs:
either dg(z) = 1 for each xe S N Q(n, §) or dg(z) = 0 for each x€ S N 2, J).
Moreover, comparing the values W(f, n) and W(f, z) for z e S n £(n, §), we arrive
at

lim W(f, x) = W(f,n) + Hp_,(T) (i — dg(n)) .

x=n
xeS

Now let fe &, f continuous at the point n and f(1) = 0. Certainly there exists
a function h continuous on R™ such that 0 < h < 1, h(x) = 1 for each x € (0, 1)
and h(x) = 0 for each x € R™ — Q(0, 1). Putting

a.(x) = £(x) h(‘ (x - n)) L 1) = 1) - g/¥)

for any r > 0, we have g,(x) = 0 on B — Q(z, r) and
lim sup {|g,(x)|; xe B} = 0.
r-0+

Since f,(x) = 0 on B n €(n, r[2), the function W(f,, X) is continuous on €(n, r[2).
To prove ‘
lim W(f, x) = W(f,n)

x-n
xeS

we shall prove that W(g,, x) tends to zero uniformly on § n Q(n, 8,) as r - 0+.
This will be sufficient because

W(f, x) = W(f,, x) + W(g., x)
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holds on S ~ Q(1, 61). We have for each x € § ~ Q(n, 4y)

90) 5(1)(—_}’—_—,,{2 dH,_(y)| <

|W(g,, )| =

s s (oo ze3) [ 1 '"‘”‘y dHo () S

x|"'

g,(z)]; zeB} -0

< csup

as r - 0+. If now f € 4, f continuous at the point 1, we may express this function f
in the form of a sum of two functions, a constant function on B and a function lying
in 4 continuous and vanishing at n. As W(f, x) for a fixed x is linear with respect to f,
the proof is complete.

Now we shall establish conditions for the validity of (1.2). Let us prove first the
following auxiliary statement.

1.2 Lemma. Let S « R™ — B, y€ S n B,

contg (S, n) N contg (B, n) =

and suppose

qup =120 1) 0 B)
r>0 r

Q .

Then there are 6 > 0, ¢ < oo such that for each z € S n Q(n, 6) and each r > 0

H,_(Qz7r)n B)
T

(1.6)

Proof. Proposition 0.1 implies that there are 6 > 0, a > 0 such that for every
ze S n Qn, 6)

(1.7) dist (z, B) 2 alz — 1.
Put ry = |z — 5| and r = rb for b > 0. Certainly the relation (1.6) holds for that r
for which its corresponding value b satisfies b < a because in that case Q(z, 7) N B =

= 0 and thus also H,,_,(2(z, r) n B) = 0. For that r for which its corresponding
value b satisfies b = a we have the following estimate:

H,_ l(Q(z, r)n B H,_(Qn, ry + r) 0 B) _

_ Hyy(Qn(1+ b)r)nB)(1 + by"~! < PR < +a)'"—1.
(ry(1 + B)1 bt b=t T am!

Now it is sufficient to put ¢ = k[(1 + a)"~'[a""'].
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1.3 Theorem. Let S < R™ — B, ne S n B and

contg (S, n) N contg (B,n) = 0.
Further suppose ‘

(15) oo) + sup BN 0 D)
Then
(1.9 | lim sup v(z) < o .

z—n
zeS

Proof. By the statements 0.1 and 1.2 we determine the constants a, , ¢ such that
(1.7) and (1.6) hold in the corresponding set. Further we fix a point z and denote
r=lz—n, M= B~ Q(z,2r), N = B — Q(z, 2r). Using the triangular inequality
and the fundamental properties of the integral, we obtain the estimate

(1.10) v(z) <J‘ In(y) (y Ide_ ) +f l”(Y) (Y IdH () +
h@ﬂy—ﬂllﬂﬁw nN

jN ly = 2" ly ="
Now we number the quantities on the right-hand side of this inequality I, II, 1II
respectively. Then we get

m I(Q(A, 21‘) N E)

(ar m—1 am-l

dH,,_,(»).

I= c, II§U(U).

To estimate III, we use
jjhmﬂﬂ fu@mnmﬂ@>qwt

where u is a Borel measure and f is a non-negative, p-integrable function on R™. The
last relation follows from [11] (there only non-negative measures are considered; in
the present case we first decompose u to the difference of the positive and the negative
variations). There is @ € I' such that z = n + r@ so that we obtain

Ir0) v = 2| _ [n0) & = m)l| _ |nG) (v = 2) _ mO) (v = m)| _

ly — 2| ly = nl ly — 2| ly —a" |
_ 1
o e e B R R L T
ly = n™|y = 2| ly =
Y el ek In(y) (v — m)| + r—*l—;.-
[y =n" |y = 2| ly - |
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-1/m

Using the substitution ¢ = x and lemma 1.2; we obtain the following estimate:

rf Mzrwam_l(Nh{xERm;———l——>t})d[:
R . |x — z["

_ rJ‘(Zr)""Hm-l(B A Q(Z, t-]/m)) dt = rmJ"" Hm—l(B N Q(Z, X)) dx <

o 2 xm+1

®dx ¢
S crm - = m.
X 2

Since for ye N
ly —n] 2y — 7|,
it is also
ly=nl"=ly =zl sly—n"+ 1y = 2" < (0 + 27) |y — 2.

Thus we have

e ="~ = 2 5) (- ) et 10)
N Iy - Z| |y - ’1‘

< (1 + 27) L |"(|yy) & n_l"'n) dH,_\(v) < (1 + 27) o(n) .

Finally, we conclude that

o2) < ¢ C:‘ + %) +o(n) (2 + 27).

Theorem 1.3 may be converted in this manner:

1.4 Theorem. Let n € B and suppose that there are linearly independent vectors
©,eI (i = 1,..., m) and a number & > 0 such that

(L11) sup {o(2); z e.t:JlH(@,., N Qnd) =c<w.
Then
(1.12) sup H’"'I(Q'(“n_’lr) n B) < 0.

r>0 r

Proof. Assume thatn = 0,6 < 1andlet ©,(i = 1, .., m) be linearly independent
vectors. Then there is b > 0 such that for each y € Q(r, 2b) the vectors (y — ©;)
are linearly independent. There is d > 0 such that

igmlllu(y -0) 24
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holds for each y € (1, b) and each u € I'. Obviously b < 1 and thus |y — @] £ 2.

Hence
. i]u(y-—@,-2|>_l_d.

Sy-e =

Let now 0 < r < bd and consider y € Q(n, r) N B. Then we have

(s - o)

m

(1.13) 1g2mg 1y - A
i=1 2y - @i
r
L o(-ze)
=t om y ! .
s N
b i

If we integrate the inequality (1.13) on the set B n Q(n, r) with respect to H,,_,, we
obtain for each r, 0 < r < bé

(1.14) H,_(Qn, r)nB) <

<mot.amgtipt-my v(% @,) <rim . 2md7 b e .
i=1
Since H,,-(B) < o0, (1.12) follows from (1.14).

1.5 Remark. The assumptions of theorem 1.4 are satisfied for example whenever
n € B and there are ©’ € I', 6 > 0 such that
(1.15) lim sup v(z) < o

z—

zeH(O,n)

holds for each @ € I' with |@ — @’| < 8. That last assumption is satisfied for example
whenever contg (B, n) + &(n) (or contg (G2, 1) + ¥(n) or contg (B, n) + ¥(n))
and (1.15) holds for each @ e I' with H(@, n) ¢ contg (B, n) (or H(O,n)¢
¢ contg (G2, n) or H(O, n) ¢ contg (B, n)).

Let us make still a note that theorem 1.3 holds also when we write in its assumptions
contg (Gy,5, 1) or cortg (B, n) instead of contg (B, ).

Taking into account the preceding remark, proposition 1.1 and theorems 1.3 and
1.4, we. obtain immediately the following theorem.

1.6 Theorem. Let ny € B. Then there is a finite limit
(1.16) lim W(f, )

z-n
zeH(O,1)
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for each feC (or each fe # continuous at the point n) and for each half-line
H(®, n) ¢ contg (B, 1), if and only if (1.8) holds (provided contg (B, n) + %(n)).
If H(©, n) ¢ contg (B, 1), then there exist § > 0, i € {0, 1} such that

H(0,n) n Qn, ) = G,
and whenever (1.8) holds, then the value of the limit (1.16) is given by (1.5).

In the case m = 2 we may charige the suppositions of theorem 1.4 as follows.

1.7 Theorem. Let m =2 and neB, @ el such that H(O,n)¢ contg (B, n),
H(—6, 1) ¢ contg (B, n). If there is ro > 0 such that

(1.17) ¢ = sup {v(z); ze H(®, n) n Qn, ro)} < o,
then also
(118) SUPM < 0.

r>0 r

Proof. Suppose n =0, @ =[1,0], ro < 1. Choose r, 0 <r <ro and ye
€Bn Qn,r). Then there is Be<0,2r) for which y = |y| [cos B, sin B]. Since
neither H(O, ) nor H(—©, n) belong to contg (B, ), we may find r, 6 so that
r>0,0<d < in and

(1.19) Be(6,n — d)u(n + 6,2n — )

for every y € B with |y| < ', y = |y| [cos B, sin B]. Further it may be supposed that
ro = r'. Let y € B. Then there is a € <0, 2% such that

(1.20) n(y) = [cosa, sina] .

The rest of the proof will be divided into the following two parts:

a) ae 0, Hr — 0> u dxn + 8), 3(r — 8)> U 3(n + 4,2n),
b x& (3x — &), 3(x + 8)) U ((x - 3), 3z + 9)).

Put z = [r, 0]. It is easy to establish that

(1.21) |n() | + [n(3) (v = 2)| 2 rlcos of .

In the case a) we may write r cos 3(n — ) on the right-hand side of the inequality
(1.21).

We have |n(y) y| = |y| |cos (B — «)|. In the case b), by (1.19) it is evident that
(3) 3] 2 Iy cos 3(x — 9).

Together we obtain that

(1.22) [n() ¥l + In(y) (v = 2)| > 908 (m - 6)
|y[® ly — 22 4r
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holds for each r, 0 < r < ro, each ye B n Q(n, r) and z = [r, 0]. It follows from
the lower semicontinuity of ¢(x) and from the assumption (1.17) that also v(n) < c.
If we integrate the inequality (1.22) on B n Q(n, r) (for r such that 0 < r £ ro)
with respect to H,, we arrive at :

H(Qnr)nB) 8¢
(123) r = cos¥(n — 8)

(1.18) is now a corollary of (1.23) and of H,(B) < co.

2.

Throughout this paragraph G = R™ (m 2 2) denotes again a Borel set with
a compact boundary B and with a finite perimeter. Now we shall deal with double
layer potential W(u, z) for yu e C*.

DeR! will be termed the H,,_,-derivative on B of ue C* at the point ne B
(briefly the derivative at ) if for every r > 0

(2.1) H,_ (BnQnr)>0

and if for each ¢ > 0 there is 6 > 0 such that

(22)

uM)
Hm—l(M)
holds for each Borel set M = B n Q(n, 6) with H,,_ (M) > 0.

D e R* will be termed the symmetric H,,_,-derivative on B of u € C* at the point
n € B (briefly the symmetric derivative at #) if there exists the limit

@.3) lim MRN8 _

r~0+ H,_4(Q(n, r) n B)
(Note that in this definition also the assumption that (2.1) holds for each r > 0 is
contained. This is valid, by [5], lemma 3.7, for each n € B with |dg(n) — 3| < $).

Obviously, if u has the derivative at 5, then there exists also the symmetric derivative
of u at n and their values are equal.

2.1 Lemma. Let ue C*,n€ B, S < R™ — B,

—D‘<s

contg (S, n) N contg (B, ) =

and suppose that p is a non-negative measure with the symmetric derwatwe on B
at n equal to zero. Further suppose that (1.8) holds and that

(2.4) J' Jﬁ()’)_(_y_ld,,(y) ‘.

242



Then
(2.5) lim W(u, z) = W(u,n).

zon
zeS

Proof.ForR > Oputi = p| Q(n, R),v = u| (R™ — Q(n, R)). We have W(u, z) =
= W(A, z) + W(v, z) for each z € R™ for which the left-hand side is defined. Analo-

gously to the proof of the proposition 1.1, it is sufficient to prove that there is § > 0
such that

W(4,z) =0
as R — 0+ uniformly on {#} U S N Q(y, §). For ze S denote r = |z — #| and

M=QnR)nB-Q@n2r), N=QnR)nBnQn2r).
We have

Denote by I, II respectively the absolute values of the integrals on the right-hand
side of (2.6). Applying the proposition 0.1 we find a, 6 > 0 such that

dist (z, ﬁ) = a‘z - 11|
holds for each ze S N Q(n, 8). If now ze S n Qn, 8), |z — n| = r, we arrive at

I < [L(N) < 2m-1k Il(N) ’
~(ar)™* T a" ' H,_,Qn,2r) n B)

where

k = sup H,_(Qn, 1) 0 ﬁ).
r>0 r"'"l

Since the symmetric derivative of u vanishes at #, for each & > 0 there is ; > 0 such
that

u((n, o) n B) < am~!

H,_(Qn o) nB)~ fomik

for any ¢, 0 < ¢ < &,. Hence

IH=<e¢
for each R such that 0 < R < §,, as we have

2m 1k #(N) _ 2"k p(Q(n, 2r) n B)
a~ ' H,_(Qn,2r)nB). a~! H,_,(Qn,2r) n B)
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if R 2 2r (then 0 < 2r < &) and

% N _2"'k_ @ R)B)
a"' H,_(Q(n,2r)nB)~ a"~' H,_,(2(n, R) n B)

if R < 2r.

This estimate is independent of z € S N Q(n, 9).

Now estimate the expression I. We may consider only z € S n Q(y, §) with 2r < R
(for a fixed R) because in the opposite case M = @ and thus I = 0. Since

J n(») (v —m'r)l du(y) > 0
Q2(n,0)nB |y - "l
as ¢ — 0+, it is sufficient to prove that

2.7 V(z) = J;, (i"(J’) OG-23_[M»b- ﬂ)l) du(y)l -0

ly =2 ly =l

as R - 0+ uniformly with respect to z on the set S n Q(n, 6). We have

e vz g [ T
w |y—=n| u |y — 2|

(cf. an analogous estimate in the proof of theorem 1.3). Further

(1 +2m) JMI"(TQ (—y ’Jm’?)l du(y) < (1 + 27) n(y) (v — n)| du(y) - 0

Q(n,R)nB |y - 'Tlm

as R —» 0+, where the last expression is independent of z € S N Q(n, 8). Now estimate
the expression II. Taking into account |y — z| = 4|y — n| for y € M, we arrive at

(2.9) r J' ) ———Iyd‘i(yz)lm < o J . —__|yd‘i(y3‘m .

According to the proof of theorem 1.3, one obtains

0] e e e

However,

{x eM; 1> u} — (A, R) n B — O, 20)) ~ Q(n, u~"/").
ly = |

For u 2 (2r)™™ this set is empty and thus for these u the integrand on the right-hand
side of (2.10) equals zero. For u such that 0 < u < R™™ this set is equal to M and
thus for these u the integrand on the right-hand side of (2.10) equals u(M). Now it is
evident that

du(y) —-r”(M) r e N u~ 1)) du
(2.11) rIMIy_"lm— e + J'R_m u(M ~ Q(n, u=1m) du .
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The first term on the right-hand side of (2.11) may be estimated by

(2.12) M) _ k(@1 R) 0 B)
R™ =~ 2H, (2nR)nB)

By the substitution ¢ = u~'/" in the second term on the right-hand side of (2.11) we
obtain

(2r)-m
(2.13) , f WM ~ Qn, u™ ™) du =

-m

. J’ (B = A 2r) 0 QA D) 4, f Y _w@m)nB) dt
2 tm+l

2r Hm— 1(9('19 t) n B) tz -

< mrk sup M%) 0 B) <mk o MO x) 0 B)
x(0.8) H,,_,(2(n, x) N B) 2t 2= 2 xe0,8) H,_1(2(n, x) N B)

It follows from (2.13), (2.12), (2.11) and (2.9) that

214)  r L lyd’i(yz)lm =277 (m + 1) sup ({12((:2(: )xr;f)ﬁ)

as R - 0+. The quantity on the right-hand side of the last inequality is independent
of z € S n Q(n, 5). Now it is evident that V(z) tends to zero uniformly on S n Q(n, d)
as R - 0+. Hence, in fact, W(4, z) - 0 as R - 0+ uniformly on {#} U S n Q(n, 6),
which completes the proof.

2.2 Lemma. Let n € B such that v(y) < co and H,,_,(B n Q(n, r)) > 0 for every
r > 0. Let p € C* and suppose that there are 6 > 0 and k < oo such that

#(M)
H,_,(M)

for any Borel set M = B n Q(n, 8) with H,,— (M) > 0. Then

219 [ 2=l ) < .

(2.15) <k

Proof. There exists a Borel set A = B with u* = |4, p~ = p|(B— 4%
Putting 2 = p | (B n Q(n, 3)), we obtain A* = 2|4, A~ = 1| (B — 4) and

(2.17) j nly )(—yn—l"'") dlu| () =
L -201,9) n(y) (y ’l el 0) + L |n(lj-}39”-1-l"”) PHO)-

245



The first integral on the right-hand side of (2.17) is finite because the integrand is
bounded on B — Q(y, 8) and |u| (B) < co. It can be easily seen that

-

(2.18) A*(M) < kH,,_(M), A~(M) < kH,,_,(M)

for any Borel set M = B. Since A* and A~ are concentrated on two disjoint subsets
of Bn Q(n, 9), it follows from Radon-Nikodym theorem that there is ¢ € # with
|e(x)] < k for each x € B, ¢(x) = 0 for each xe B — (@, 8) n B) and 1 =
= ¢(H,,, | B). For such function ¢ we have

J'B_—ll"(l"y)(i’im" dja[(») = J.lrp(y)l ) (y I"') dHp_y(y) < ko(n)

so that (2.16) is true.

2.3 Lemma. Let n € B and let u € C* has the derivative D at n. Then there exist
detivatives of u*, p~ and |p| at n and they are equal to

D+|D[, -D+ |D|’ ID]
2 2 .
respectively.

Proof. There is a Borel set 4 = B for which wt=up | A, p~ =p | (B — A).
Further there is 6 > 0 such that

HM)
H,_,(M)

for any Borel set M = B n Q(n, 8) with H,,_,(M) > 0. Now the proof will be divided
into two parts:

s[p[+1

a) Let D = 0.

The following two cases may occur: either

H, (AnBnQnr)>0

for every r > 0 or
H,_((B-A)nQnr)>0

for every r > VO Consider the first case. Let M = B n Q(n, 6) be a Borel set with
H,_ (M) >0.If H,_,(4A n M) =0, then also y*(M) = 0; if H,,_,(4 n M) >0,
then
M) _ wAoM)
H,_ M) H,_,(4nM)

.
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Therefore, since the derivative of u vanishes at 5, we obtain that u* has the derivative
vanishing at 5. From the relations u~ = pu* — p and |u| = p* + u~ we now
conclude that p~ and |4i| have also derivatives which vanish at #. In the second case
we can proceed analogously.

b) Let D 0.
Assume D > 0. There is 6;, 0 < ; < d such that

wM) ol _D
H,_(M) 2
holds for each Borel set M = B n Q(y, 8,) with H,,_;(M) > 0. Then necessarily

Hyp_o((B = 4) o Q(n, 8,)) = 0.

(2.19)

Indeed, if this is not the case, the inequality (2.19) with (B — A) n Q(n, 6,) written
there instead of M is false. Hence

W(B n 9(n, 8,)) = 0.

This means that u~ has the derivative which vanishes at #, u* and |u| have deriva-
tives at n equal to D. -

The case D < 0 is analogous.

2.4 Theorem. Let S <« R™ — B,ne S n B,

\ contg (S, n) N contg (B,n) = 0,

suppose that (1.8) holds and there is & > 0 such that (1.3) holds. Let pe C*, p =
= A+ v, 4, ve C* such that A has the derivative D at 1, |v| has the symmetric
derivative which vanishes at n. Further suppose

f I"(Iy) (v *l n) dl", () < .
B |[y—n"

Then there exists the limit

(2.20) lim W(g, z) = W(u, n) + DH,,_((T) (i — dg(n)) .

z-y
zeS

Proof. We have
Wu, z) = WA, z) + W(v*,z) — W(v~, 2)

for those z € R™ for which both sides of this equality are defined. It follows from
lemma 2.1 that
lim W(v, z) = W(v, n).

z-
zeS
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It is sufficient to prove that (2.20) holds if we write there A instead of u. Put y =
= A — D(H,,-, | B). Since 4 has the derivative D at y and D(H,,_, | B) has the deriva-
tive D at n 7 has the derivative vanishing at 5. According to lemma 2.3, y* and y~
have also derivatives vanishing at #. If fe C is a function equal to unity on B, we
have

W(2,z) = DW(f, z) + W(y*,2) — W(y, 2)

for those z € R™ for which the left-hand side is defined. It is known (<f. the proof of
the proposition 1.1) that there exists the limit
|
lim W(f, z) = W(f,n) + H,_ () (i — d¢(n)) -

z-n
zeS

Accdrding to lemma 2.1 the limit

lim W(y, z) = W(y, n)

z=n
zeS

also exists (to verify the assumptions one uses lemma 2.2). This implies the statement
of the present theorem.

2.5 Remark. It is not possible to replace the requirement (2.15) in the lemma 2.2
by the “symmetric requirement”, i.e. by

lim sup u@n. 1) o B)
r~0+ |H,_,(Q(n,r) n B)

< ©.

Moreover, we shall introduce an example proving that it is not sufficient to suppose
that u is a non-negative measure with the symmetric derivative vanishing at 7.

R
a;
®

g % a

A
a,
Y. r=0.
Fig. 1



Let m = 2. Denote by [x, y] (x, y € R") the points of R?. We construct in R? the
curve ¢ consisting of the curves @; and ; as in fig. 1 — the reader certainly can
describe this curve precisely. Here we put r, = 1/k (k =1,2,..), o = nfdk (k =
= 2,3,...), a; = in, r, denotes the radius of the arc ¢,, «, the angle. For the curve ¢
we may easily find a rectification, for example by an arc length — but we shall not
need it here. The curve ¢ is a Jordan curve (i.e. simple closed curve) and thus we may
consider the domain G = Int . It is evident that P(G) < o, B = {¢) and B — B
is a denumerable set. Let 7 = [0, 0]. We have v(n) < oo. Now we define a function f
on B as follows:

kK+1
z) = -
/) n log k

for all z on the open arc ¢4, k = 2,3, ...,
f2) =0

for all other z € B. Putting u = f H, | B, we have that u € C* and u is a non-negative
measure. Let
4k +1 1

n log k TR log k

9 = I‘((‘Pk)) = rk(“k — %yq) -

for k = 2, 3, ... . We shall prove that p has the symmetric derivative which vanishes
at n. Given r, 0 < r < 1, there is a natural number k such that r € (r 44, r,>. Then

#(An, 7)) n B) =n=;§+lqn = i 1

n<tx1nlogn ~

SUNE S U SRS S i U S
]og(k+1 Yn=krin® " log(k + 1)), * klog(k+1)

IIA

Taking into account

Hy(B A Qn, ) 2 2r(>2rk+l - k_jl)

we see that p has the symmetric derivative vanishing at #.
For y € (¢,) we have n(y) = y/|y| and therefore

[ L aut = [ 70y O = ) -

-y & _ 1
k=21, k=2klogk

= 0.

The measure u satisfies a desired requirements. Let us remark that in the preceding
example one may require ¢ to be a smooth curve.

249



3.

Throughout this paragraph we always assume that m = 2. Where necessary, we
identify R? with the set of all complex numbers. Introduce the following notation:

If «eR', zeR? write H(x,z) = H(®,z) = {z + r®; r > 0}, where O =
= [cos o, sin a]. 2 stands for the set of all infinitely differentiable functions with
compact supports in R%. For z € R? put

9(z) = {p € D; z ¢ supp ¢},

where supp ¢ denotes the support of the function ¢.

Now we shall prove two simple auxiliary assertions (which could be pronounced
in a more general form).

3.1 Lemma. Let ¢ be a Jordan curve in R? defined on {a, b) and 8 a function

with a finite variation on {a, b). Further suppose that the function 3 is either
continuous from the right on {a, b) or continuous from the left on (a, b). Then

(3.1) var [9; (a, b)] = sup {J‘bf(w(t)) dy(r); fe 2, |f| < 1}

(the integrals in (3.1) are meant in the sense of Stieltjes).

Proof. If var[9; (a, b)] = 0, then the statement is obvious. Suppose that
var [9; {a, b)] > 0. It is known that :

var [9; <a, b3] = sup { f "1 d8(0); f e O(<a, b3). |f] < 1}

(integrals are always meant in the sense of Stieltjes).
Given ¢ > 0, there is f; € C(<a, b)), |f,] < 1 such that

(3.2) J bf,(t) ds(¢) > var[9; <a, bY] — %

Assume conversely that 3 is continuous from the right on {a, b). Then the function

s(t) = var [9;<a, b)]

is continuous from the right at the point a and thus there is to € (a, b) such that for
each te (a, t;)

s(1) <§.
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Further there exists f, € C(<p)) with |f;| < 1, f(e(t)) = f1(t) for each t e (to, b)-
Then

j "f.lol) d5(r) = j " £ ds) + j " 1a(o(2) 49() 2

> _rfl(t) ds(r) — > var [9; <a, b)] — %e.

j “alo) - £,9) d()

Since {¢) is a compact set and f, € C((qa)), there is fe 9, | f | < 1 such that

17() - £22)] =

holds for each z € {¢). Then

j "flol) d5(1) 2 f "Flol) d5(t) —

€
3 var [9; <a, b)]

J.b( flo(t)) — £2(e(t)) d9(t)| > var [9; ¢a,b)] — €.

In the case of 9 continuous from the left on (a, b)) we may proceed completely
analogously.

3.2 Lemma. Let ¢ be a Jordan curve in R?* defined on {a, b), let t, € {a, b),
1, = {a, to), I, = (to, b) (of course, if t, = a, then I, = 0, if to = b, then I, = 0),
let 9; (j = 1,2) be a continuous function with a locally finite variation on I;.
Then

(3.3) j;zlvar [9,1;] = sup {,-é I S (0(1) d9,(0); f & D(o(to)). || = 1}

(it is obvious how (3.3) reduces in the case t, = a or t, = b).
2
Proof. a) Let Y var[9;;I;] < . Suppose t,€(a, b). Define a function 9
on <a, b by =t
(1) = 9,(r) for tela,ty),

(1) = 9,(t) — lim 9,(z) + lim 9,(z) for te(ty, b),
z=to*

z=to"~

8(to) = lim 9,(2).

z=to~

Obvidusly, 9 is a continuous function on {a, b) with a finite variation
. 2
var [9; {a, b)] = Y var [9;;1,] .
i=1
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For f € C(<a, b)) we have

2 b

‘ v [ r0as0 = j £(6)d8(0).

i=1 I; a )

Given ¢ > 0, then according to lemma 3.1 we may find f, € 9> [f1] £ 1 such that
b
J fi(e(1)) d3(¢) > var [9; <a, b)] - % :

Further there is 8, 0 < § < min {t, — a, b — t,} such that

var [9; (to — 8, 1o + 8Y] < %.
Since ¢(t,) is not contained in the compact set

o(<a, tog — &) Uty + 6, b)),
there is f € 2(¢(to)) such that |f| < 1 and f(z) = f,(z) for each

zep(a, ty — 8 U<ty + 5, b)).

From the choice of f, and 4 it follows
b
_f 1(o(1)) dS(1) > var [9; <a, 3] — 2.

Analogously in the cases 1, = a or t, = b.

b) Suppose, conversely, var [9;; <a, t,)] = co.

Let t,€(a, b). Given k > 0, there is t, €(a, to) such that var [8,; <a, t,>] >
> k + 2 and thus there is f, € @ with |f,| < 1 and

I (@) 49,0 > K+ 1.

There is 6, > 0 such that Q(¢(1,), 26,) N ¢(<a, t,>) = . Further there is t, € (t,, t,)
such that

var [9;;<t;, ;0] < 3
(since 9, is continuous). We may find 6, > 0, 26, < t, — a such that
var [9;<a,a +23,5] <.
Then ¢(<a + 265, 1,)) and ¢(<a, a + 8,> L {t,, b>) U Q(e(t,), ;) are two disjoint
compact sets and thus there is f € @ with |[f| < 1, f(2) = f. 1(z) on the former of both
described sets and f(z) = 0 on the latter. Therefore, moreover, fe 2(o(t,)). We

252



arrive at

2 t2
[ ste@ a0 = [ stonasc) -
i=tdy; a+8,
11 a+ 252 t2 a+25;
= f1*¢d91—f fl*‘Pd'91+J‘f*(Pd91+J f*xpd3, > k.
a a t a+d>

Analogously for t, = b.

The case var [9,; 1 ] = oo may be solved in the same way.

Throughout the rest of this paragraph ¥ stands for a Jordan curve in R? defined
on a compact interval {a, §» (« < B). Further suppose that y is a positively oriented
curve with a finite length. Denote G = Int  and, according to the preceding notation,
B = (Y, B being the reduced boundary of the set G. From [12], part 8, we get
var [{; <&, B3] = P(G) and so

(3.4 P(G) < o .
For ze R?, a €0, 2n) let N(a, z) be the number of all points of the set {y)> N

A H(w, z). The function N(a, z) is a measurable function with respect to « € <0, 27>
(and non-negative), thus we may define

V() = I:"N(a, ) da

(cf., for example, [6], lemma 2.1). If @ = [cos a, sin a], then n(@, z) < N(«, z)
(where n(@, z) has the same meaning as in the introduction). Hence
(3.5) u(z) S V(2).

For z € R? let A be the system of all components of the set {a, B> — ¥ ~!(z) (in the
present case 2 has at most two elements) and for 1€ let 9] be a single-valued
continuous argument of |//(t) — z on I. Define, for z € R? and feC,

(3.6) Wi(s2) = ¥, j F0(2)) d31(0)

provided the integrals on the right-hand side exist and their sum is defined.
Prove that if ¢ € 9(z), then

(3.7) W*(o, z) = W(p, ) .

Hence we obtain by passing to the limit that if ¥(z) < oo, then W*(f, z) = W(f, z)
for each f € C — as regards this, see the equality (3.10) in the following.

If ¢ € 9(z), then (cf. [5])

x—z
W(p, z) = J. grad ¢(x) m dx .

G
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The proposition 2.3 in [8] implies

(0. 2 Va(r) - v, (t)
W¥(p, 2y = J¢W“ﬂw) Pd¢”+J¢“”Nw) =2 20)

where z = [x, y], ¥ = [V, ¥]- For ¢ and the function
W(C)=[ () > o(C é_xz]
Rl

(where { = [¢, n]) the requirements of Green theorem are satisfied (cf. [4], theorem
8.49) and thus we conclude

W*(o, z) =J w,dé + w, dy =J. rotw = j. grad(p(u)—!—l—_—z—zdu = W(p, z).
v G G |u - 2|

3.3 Theorem. If z € R?, then
(3.8) V(z) = v(z) .

Proof. Since by [5], assertion 1.6

v(z) = sup {W(p, z); 0 € 2(2), |o| = 1
it is sufficient to prove, with respect to (3.7), that
(39) V(z) = sup {WH(p, 2); 9 € 3(2), |o] < 1} .

Let 9, 9] have the same meaning as in the definition of W*(f, z). It follows from (6)
in [8] that

(3.10) V(z) =I§l var [85; 1] .

Ifa < a<bzp z¢y(<a, b)) and 9 is some single-valued argument of Y (t) — z
on <a, b}, then (by 1.12 from [7])

var [9; (a, b)] < dist (z; Y(<a, b)) var [¢; <a, b)] .

This implies that 9! has a locally finite variation on I € 2. If now z € B, we may use
lemma 3.2, therefore we see that (3.9) holds. If z ¢ B, then (3.9) follows from lemma
3.1.

3.4 Remark. Since n(0, z) < N(a, z) (where @ = [cos a, sin «]), it follows from
theorem 3.3 that for each fixed z € R?, n(@, z) = N(a, z) for almost all « € €0, 27)-
In the same way as in [8] we define for t, € (o, f)

i OV e ) i VO Ul _
G ) =t v~ I 0 — v
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provided the limits exist. We may suppose that a, < a_ < a, + 2n. If 1: (to) =
= —1,(to), then we put

(3.12) t(to) = 7 (to) -

3.5 Lemma. Let t € (o, p). If there exist 1, (1) and t, (1), then there exists the density
dg(z) for z = y(t). If moreover o, *+ a_, then

(3.13) do(2) = zin(a_ — )

if a, = a_, then either dg(z) = 0 or dg(z) = 1.
If, besides that, there exists t,(t), then there exists the exterior normal of G in
the sense of Federer
n(z) = —ity(z).

Proof. Suppose that y(7) = 0, a, # «_ and that there is y € (0, ) such that
Ay = =Y, a_. =79.

Given ¢ 0 < & < y, then by the definition of 7, and 7, there is 6 > 0, § <
< min {t — «, B — t} such that

(3.14)  [ue(t t + ), Y(u) — !ﬁ(t) = ewlll//(u) - l//(t)l, pie{—n—y,n—9p]=>
= |By + 'YI <eg,
[ue(t - 6,1), y(u) — y(r) = e*|y(u) — Y(1)|, Bre<y — m, 7 + 1] =
=|B, -y <e.

There is ro > 0 such that Q(0, ro) N ¥(<a, By — (t — 6, t + 8)) = 0. Prove that for
each r such that 0 < r < rg

(315) QO r)n{z=|z]e"z+0, nee—py-ed} = Q0,r)NnGc
cQO0,r)n{z=|z]e" ne<—e—v, e+ }.

The sets
(3.16) Q0,r)n{z=|z]e" z+0, nece — v,y — &)},
(3.17) Q0,7 n{z=|z]e" z+0, necy +¢& 2n —y — &)}

are connected. To prove that (3.16) is contained in Int y and (3.17) is contained in
Ext y (which implies (3.15)), it is sufficient to prove that there is a point z, in (3.16)
with ind, (z;) = 1 and a point z, in (3.17) with ind, (z,) = 0. Put z, = }r, z, =
= — }r (2, z, are considered in the terms of complex numbers). Since there exist
14 (1), 7, (z) and 1, (f) = ™", 1, () = " where y € (0, n), it is clear that the function
Im y is decreasing at the point ¢. By Mafik theorem (cf. [2], theorem 126) we have

ind, (z,) = ind, (z;) — 1.
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Since ¥ is a positively oriented curve, this equation yields necessarily ind, (z,) = 1,
ind, (z;) = 0. The relation (3.15) implies

(-9 r S H Q0N NG S (y+2)r

and thus, in fact, dg(z) = y/n (=(a- — a,)[2n). The rest of the proof, i.e. dg(z) = 0
ordg(z) = 1if a, = a_ and the existence of the exterior normal in the sense of Fe-
derer if 7,(7) exists is analogous.

Let ze R? t > 0 and let M(t, z) stand for the number of all points of the set
Y~ '({x; |x — z| =1}). Then M(t, z) is a measurable function with respect to
t € (0, ) (cf. ,e.g., [6], lemma 2.5) and we may thus define, for each r > 0,

(3.18) u(z, 1) = I ;M(t 2 dt.

3.6 Theorem. If n € R* with v(n) < oo, then

supm <
r

r>0

holds if and only if
sup H,(Q(n, r) n B) <

r>0 r

@ .

Proof. If n¢ B is the case the statement is obvious, because n(z, o) <
< var [y; <a, B)] for each z € R* (cf. (7) in [8]) and H,(B) < co.
Let € B. Therefore by [8], theorem 3.9

(3.19) u(n, r) < var [y; K,] < ro(n) + u(n, 1),
where K, = ¢~ !({z; |z — n| £ r}). Now it is sufficient to prove that
(3-20) var [{; K,] = Hy(B n Q(n, 1)) .
According to [13], theorem 1.1 we have

var [¥; K] = Hy(W(K,)) = Hy(B 0 Q(n, 1))

(in the present case N,(z; K,) from theorem 1.1 in [13] is equal to unity on Y(K,)
except at most at one point). Further we have B — B. Prove H,(B — B) = 0. Taking
into account theorem 1.17 from [13] we obtain that there exists 7,(t) for var,-almost
all t e (&, B)>. By [13], theorem 1.4, var [y; M] = O for any M < {«, B if and only
if H 1(;#((1\)4 )) = 0. By lemma 3.5, B contains the set of all z € B for which there exists 7,
in |//— zZ).
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3.7 Remark. As (3.20) holds, it is
H,(Q(n, r) n B) u(n, r)

r
sup—— 22/ < o0 = sup —— < 0.
r>0 r r>0 r

If o) < oo, then the converse of this implication holds by theorem 3.6. If v(1) ~ oo,
then the converse of this implication need not hold. This will be proved by the fol-
lowing example.

%

Y.

Fig. 2

Analogously to the remark 2.5 we construct a positively oriented Jordan curve ¢
as in fig. 2. (The figure is only a sketch.) Here we put a, = 1/k? (k = 1,2, ...).
The curve ¢ has a finite length and if # = [0, 0] then v(1) = oo. For t > 1 we have
M(t,n) = 0 and for t with 0 < t < 1, t + a,, we have M(t, n) = 2, therefore

sup“("’r) 2
r>0 r
Further
d ® dx 7w 1
HQ,a ﬁB ZE anZE —_— -,
(@ a)n Bz 3 ez) iz X0 2k +2
Hence
HI(Q(n,a,‘)nB)ZE k2 o
a; T2k +2
as k — oo.

3.8 Remark. In [8] (cf. also [4]) it is proved that if n € B, then the limit

(3,21) lim W(f, 2)

z-9
zeH(6,n)
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exists for any function f € C and any half-line H(©, 1) ¢ contg (B, n) if and only if

‘ v(r])+sup£(—"-’i)<oo.
r>0 r

Here this assertion follows immediately from theorems 1.6 and 3.6. If we compare
the value of the limit (3.21) introduced in [8] (or [4]) with the value of that introduced
in theorem 1.6, then lemma 3.5 certifies that these values are equal.
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