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Casopis pro p&stovéni matematiky, roZ. 93 (1968), Praha

STABILITY IN CONTINUOUS LOCAL SEMI-FLOWS')

Jozer NAGY, Praha
(Received July 6, 1966)

In this paper several stability properties of subsets of a solution space of a continu-
ous local semi-flow on a uniform space will be investigated. The corresponding results
are generalizations of some known results concerning relations between several
notions of stability in the theory of differential equations, as they are treated e.g.

in [2].
1. ABSTRACT LOCAL SEMI-FLOWS

1.1. Notation. In this paragraph P will denote an arbitrary abstract set, R the
naturally ordered set of reals, I the set of integers, N the set of all positive integers.
We shall investigate partial maps ¢t : R X P x R — P and use the following notation:
domain ¢ will denote the set {(0, x, @) € R x P x R : (0, x, o) is defined}. The value
of the map ¢ in the point (6, x, «) € domain ¢ will be denoted by 4t,x. To every a, f € R,
« < P, there corresponds a partial map gt, : P — P : gt,(x) = zt,x whenever (B, x, @) €
€ domain t. For every triple «, f, y € R such that o < g < y the symbol ,tz o gt, will
denote the composition of the maps ,t; and 4t,. To every partial map ¢ there cor-
respond the following sets:

D ={(x,x)eP x R:(x, x, a) e domain t},
C ={xeP:(x,a)eD for some a€ R},
B = {aeR:(x,a)eD for some x € P},
D, ={(x,7)eD:xeP,yeAc R}.

Finally, we shall define a map
e:D->Ruy {+oo}‘:s(x, ) = sup {6 € R : (0, x, @) € domain ¢} ,

which will play very important role in the following investigations. This notation
will be used to define the following notion.

1y The main part of this paper was lectured at the 2nd EQUADIFF Symposium held in
September 1966 in Bratislava.



1.2. Definition. A partial map #: R x P x R — P will be called an abstract local
semi-flow on P iff the following conditions are satisfied:

(i) 4t.x = x holds for each (x, a) € D;
(ii) &(x, @) > o holds for each (x, a) € D;
(i) ,tg o gtyx = ,t,x holds for each xe P and y = B = a such that at least one

side of this equality is defined.
An abstract local semi-flow ¢ on P will be called global iff &(x, #) = + oo holds for
each (x, a) e D.

1.3. In what follows, al semi-flow (ag semi-flow) will be written instead of abstract
local semi-flow (abstract global semi-flow). From 1.2. (iii) there follows directly the
following proposition: if (, x, @) € domain ¢, y > «, then (6, x, @) € domain ¢ holds
for all 6 e<a, y). Hence, using 1.2. (ii) there follows that corresponding to each
(x, @) e D thereis a § > a such that (6,x, «) € domain ¢ for each 6 e <a, ). Clearly,
if y = pt,x, then x = ,t,x, y = 4tgy and for each z e P such that z < 4t,x there
holds z < y. Finally, if y = 4t,x, then for each 6 > B there holds (6, x, «) € domain ¢
iff (0, y, B) € domain ¢, hence &(x, @) < &(y, B).

1.4. Example. Let P = Rand definet : R X R x R > R:gt,x = x/[1 + x(0 — «)]
for x,x € R, and 6 € {a, + o) for x = 0, 6 € {z, « — 1/x)for x < 0. Clearly, t isal
semi-flow on R, &(x, &) = + oo for x 2 0, &(x, ®) = « — 1/x for x < 0.

1.5. Definition. Let ¢ be an al semi-flow on P, (x, «) e D. A partial map s : R » P
will be called a solution of the al semi-flow ¢ through the point (x, o) iff the following
conditions are satisfied:

(i) domain s is a nondegenerate interval in R;
(ii) s@ = 4t,x holds for all  in domain s.

A characteristic solution s of al semi-flow ¢ through (x, «) will be called every
solution of ¢ through (x, «) such that domain s = {a, &(x, a)).

1.6. Remark. Clearly, domain s = {a, s(x, oc)) holds for every solution s through
a point (x, &) € D.

1.7. Definition. Let ¢ be an al semi-flow on P, T € R. The al semi-flow ¢ is said to
admit the period 7 iff

ﬂ—tta—-r = ﬁta = ﬂ+rt¢+r

holds whenever 4t, is defined.

1.8. Remark. If an al semi-flow ¢ admits a period 7, then it admits also the periad kt
for each k € 1. Hence there follows: if (x, «) € D, then (x, @ + kr) € D for each ke,
so that y = 4t,x implies (, 8 + It) € D for each I € I. In the case of the al semi-flow
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admitting a period 7 the map ¢ has the following interesting property.

&(x,a + kt) = sup {#e R : (0, x, @ + kr) e domain t} =
. = sup {0 R : (0 — k1, x, «) e domain t} =
sup {{ + kte R : ({, x, o) € domain t} = e(x, @) + kt.

We can characterise al semi-flows admitting a period in the following manner.

1.9. Lemma. An al semi-flow t admits the period t € R iff for every solution s of t
the partial maps s, : R — P : 5.0 = s(0 + 1) are also the solutions of t.

Proof. First we prove the necessity of this condition.

The sets domain s, , are clearly nondegenerate intervals in R, and s;.0 = s(0 + 1) =
= gielaz,S(@E T) = 54,0 for all @ 2 « in domain s, hence s, and s_, are also the
solutions of t.

Now we prove the sufficiency.

Let 4t, be defined. We have to prove that the partial maps g4.f,+, are also
defined and that there holds p_.t,_. = gty = piolesr Take (x, ) €D, Let s be
a characteristic solution of ¢ through (x, ). Then s, are also the solutions of t,
domains,, = {a F 7, &(x, a) F 1), 50 = s_,(0 + 1) = 5(0 — 7)forall 6 € domain s,
and x = sa = sy (@ F 7).Further, there holds f + t € domain s, so that 441, is
defined and there is

p:ttta:trx = ﬂitta:{:ts:;:r(a + T) = sq:t(ﬂ + T) = Sﬁ = ﬁta'x ’

so that _.t,_, = gty = pilysr 1.€. t admits the period 7.

1.10. Definition. Let an al semi-flow ¢ admits the period 7. A pair (x,@)eD is
called a t-periodic pair iff there holds , 4 ;t,x = X.

1.11. Remark. A t-periodic pair (x,a)eD can be characterised also in the
following way. (x, «) is a t-periodic pair iff 9+|tjfaX = of,x holds for each 0 = a.
Hence there follows that every solution s of ¢ through (x, ) is a periodic map with
the period |7|, i.e. s(6 + [t]|) = s0 for each 6 > a. Every t-periodic pair is also
a kt-periodic pair for each k eI, hence, a(x, a) = + oo holds for each t-periodic pair
(x, &) with ¢ = 0. If (x, «) € D is a t-periodic pair and y = 4t,x, then the pairs (y, f)
and (x, @ + k) for each k €1, are also t-periodic.

1.12. Definition. An al semi-flow ¢t on P is called stationary iff it admits all the
periods 7 € R.

1.13. Remark. From 1.9. one can easily obtain the following characterisation of
stationary al semi-flows: an al semi-flow ¢ is stationary iff for each solution s of ¢

a partial map s,, for each o € R, is a solution of t. Clearly, if (x, @) € D is a t-periodic
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pair of a stationary al semi-flow, for some 7 € R, then for each f € R all the pairs
(x, B) are also t-periodic. For stationary al semi-flows the following criterion of
globality takes place.

1.14. Lemma. If t is a stationary al semi-flow and there exist numbers o, r € R
such that « < r < &(x, a) for all (x, «) € D,, then t is global.

Proof. Suppose that there is a pair (¥, B) € D such that &(y, f) < +oo. Let
7 > 0 be such that § < &(y,B) + « — r + 7 < &(y, B) and set z = ,1,(;,5)-r+,15)-
Then, corresponding to 1.3. and 1.8., there follows

ey, B)=¢e(z,a+ ey, f) —r+7y)=¢(z,0) + &(y, B) = r + 7,

hence &(z, @) = r — y < r, contradicting the assumption &(z, ) > r for (z, «) € D,.

1.15. Corollary. For every stationary al semi-flow t either t is global or for each
« € R there holds inf {g(x, «) : (x, @) € D} = 0.

The following example indicates that lemma 1.14. need not hold for non-stationary
semi-flows admitting the period t > 0.

1.16. Example. Let P be a singleton {a} and let T > 0 be given. Define an al semi-
flow ¢ such that st,a = a iff f = o in R and there exists k €I such that o, f €

ek =31, (k+ 1))

1.17. Definition. Let ¢ be an al semi-flow. A pair (x, «) € D will be called a stationary
pair of the al semi-flow ¢ iff 4t,x < x holds for all 6 € <, &(x, ).

1.18. Remark. Finally, let us investigate in some details a structure of the set D
for al semi-flows admitting the period 7. Let {a, b> and {c, d) are intervals in R such
thatb — a = d — candlet ¢ = a + k1 for some k € I. According to 1.8., there holds
(x,a)e D iff (x, o + kt)e D for each k el. Hence one obtains (X, «) € D,y iff
(x, ¢ + kt) € Doy, i€ Dieay = {(x, B) : B =& + kt, (x, ) € D¢gpy}. Loosely
spaking, D consists of “strips” obtained by shifting “the strip” D, ., along the
0-axis by an integer multiple of . Hence there follows the corollary: if an al semi-flow
admits the period T > 0and Do .y, = 4 x <0, 7) forsome 4 = P,thenD = 4 x R.
Especially, if an al semi-flow is stationary, then there holds D = C x R (see 1.1.).

2. CONTINUOUS LOCAL SEMI-FLOWS AND BOUNDEDNESS OF SOLUTIONS

2.1. Notation. In the remaining part of this paper P will denote a uniform space
with a uniformity U, R will denote a uniform space of reals with the natural uniformity
(induced in the natural way by the Euclidean metric on the one-dimensional Euclidean
space) and € will denote the set of all compact subsets of the space P. For 4, B « R,
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X < P, the set {gt,x : (0, x, «) e domain t N (4 x X x B)} will be denoted by ,t,X.
Finally, for X = P and U e ¥ let U[X] denote the set {y € P :(x, y) € U for some
x e X}. i

2.2. Definition. A partial map t: R X P x R —» P will be called a continuous
local semi-flow (a continuous global semi-flow) on a uniform space P iff the following
three conditions are satisfied:

(i) ¢ is an abstract local (global) semi-flow on P;
(ii) ¢ is continuous (in the corresponding uniform topologies);
(iii) the map ¢ is lower semi-continuous, i.e.

g(x, ) < liminf &(y, B).

G,B8)(x,a)
(»,B)eD

2.3. Remark. We shall write cl (cg) semi-flow instead of continuous local (global)
semi-flow.

From 2.2. (ii) there follows directly that, for each (x, «) € D, the partial map ¢’ : R —
— P :t'(0) = t,x is continuous, hence every solution of a cl semi-flow on a uniform
space P is continuous.

In what follows, the term ‘‘a solution of a cl semi-flow through (x, oc)” will denote
“a characteristic solution of a cl semi-flow through (x, a)”.

2.4. Lemma. Let P be a uniform space, t a cl semi-flow on P, (x, a) € D.If ¢(x, a) <
< + 00 and numbers 0; € {a, &(x, «)) are such that the sequence {0} tends to ¢(x, o)
for j & + oo, then the sequence {(y t,x, 0;)} has no accumulation point in D.

Proof. Suppose that (y, &(x, ) € D is an accumulation point of this sequence.
According to 1.3. &(g,t,x, 8;) = #&(x, &), hence by 2.2. (iii) one obtains

ey, e(x,a)) < liminf  &y,t,x, 6;) = lim inf &(x, a) = &(x, a)
(g, ta%:09)= 0,2(x,)) _

but &(y, &(x, «)) < e(x, a) contradicts 1.2. (ii) as (y, &(x, «)) € D, which proves the
lemma.

2.5. Corollary. Let (x,«) €D be such that &(x,«) < +o0, and let L, = {yt,x :
: max (o, &(x, @) — 1/n) < 0 < &(x, @)}. Then for each ye (L, there holds
(», &(x, @)) ¢ D. ‘ neN

2.6. Definition. Let P be a uniform space. A set X < P is said to be bounded
iff its closure X in P (with the corresponding uniform topology) is compact.

2.7. Lemma. Let P be a locally compact uniform space. Then to every bounded
set X < P there corresponds a U € U such that U[X] is bounded.
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Proof. Since P is locally compact, there exists a family {V(x)} of open relatively
compact neighbourhoods of points x € X such that X = ) V(x). As X is compact,

xeX
there exists a finite subset {V(x,),..., V(x,)} = {V(x)} such that the set V=
= U V¥(x;) is an open relatively compact neighbourhood of X. Hence (see e.g. [1],
j=1

chap. 1L, § 4;3,1), there is a U € W such that U[X] = U[X] = V = Ve, so that the
set U[X] is relatively compact.

2.8. Definition. A solution of a cl semi-flow ¢ through (x, cx) € D is said to be
bounded iff the set gzt,x is bounded.

2.9. Lemma. Let t be a cl semi-flow on a uniform space P with D closed in P x R.
If a solution of t through (x, a) € D is bounded, then &(x, &) = + co.

Proof. Let numbers B; € {a, &(x, «)) are such that {8,} — ¢(x, a) for j > +o0.
According to the assumption gt,x is relatively compact, and we can assume that the
sequence {gt,x} converges to some y € P. Since (p;tux, B;) € D, and D is closed, there
holds (y, &(x, a)) € D, what contradicts 2.4. and proves the lemma.

2.10. Corollary. Let t be a cl semi-flow on a uniform space P with D closed in
P x R.

(i) If the solution through (x, «) is bounded for each (x, o) € D, then cl semi-flow t
is global.
(ii) If C (see 1.1.) is compact, then cl semi-flow t is global.

2.11. Remark. From 2.2. (ii) there follows immediately the following simple
proposition, which we shall use often in what follows. Let ¢ be a cl semi-flow
on P, X €€, « < B < & reals such that g(x, a) > & for all (x,y) e X x <{a, ). Then
sta,pX €€ Hence there follows easily that every solution through some
z-periodic pair, for © + 0, is bounded. Especially, a solution of ¢ through some
stationary pair is bounded.

Now we shall formulate some simple propositions concerning boundedness of solu-
tions of cl semi-flows admitting a period.

2.12. Lemma. Let cg semi-flow t admits the period t + 0, and let the solution
through (x, 0), for each (x, 0) € D, is bounded. Then each solution of t is bounded.
Proof. Let (x, @) € D and let B = a — kt € €0, 7) for some k € I. Clearly,

Rtax = (1,kt>t¢x v ke, + oo)tax s
where (4 k:y1,% € € according to 2.11., and from the relation
et oo)ta® = {olke © peleX 10 2 kt} = {jtoy 1 ¥ = wteX, 0 = O}

there follows that (k:, + «)t.% is bounded, hence the lemma easily follows.
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If the cl semi-flow ¢ in 2.12. is stationary, one can omit there the assumption of
globality of ¢, which will be proved now.

2.13. Lemma. Let a cl semi-flow t be stationary and let there be (x, a) € D such
that the solution of t through (x, o) is bounded. Then for each pe€ R such that
(x, B) € D, the solution of t through (x, B) is bounded.

Proof. Since t is stationary, there holds 4t5X = _p+4t,% and &(x, f) = &(x, a) +
+ B — a, so that

rlpx = {ptpx : B S0 <ex,0)} = {p-pralaX 0 SO —Bt+a<e(x,f)—f—a} =
={tx:a L0 <gx,a)} = gtx,

and according to the assumption gxt,x is bounded, what proves the lemma.

2.14. Corollary. Let a cl semi-flow t be stationary and let there exists a € R
such that for each (x, «) € D, the solution of t through (x, «) is bounded. Then all
solutions of t are bounded.

Now we shall remember several further notions of boundedness.

2.15. Definition. Let ¢ be a cl semi-flow on a uniform space P.

(i) Solutions of t are said to be equi-bounded for a given o € R iff for each X e €
the set gxt,X is bounded.

(ii) Solutions of t are said to be equi-bounded iff they are equi-bounded for each
a€R.

(iii) Solutions of ¢ are said to be uniformly bounded iff for each X € € the set gt X
is bounded.

2.16. Theorem. Let a cl semi-flow t admit the period t > 0 and let g(x, o) >
hold for each (x, a)eD with0 S a < t. Then the following three propositions are
equivalent.

(i) Solutions of t are equi-bounded for o = 0. -
(ii) Solutions of t are equi-bounded.
(iii) Solutions of t are uniformly bounded.

Proof. It suffices to prove that for each X € € the set ztzX is bounded whenever
rtoX is bounded. ,

First we shall prove that gtgX < gtco,nX. Let f = ' + kteR, kel, ' €40, 7).
Then there holds

RtﬂX = {,thIXEX, 6 g ﬂ} =
= {o-retp-rX :X€X, B — k1 < 0 — kr < ¢g(x, B — kr)} =
= {,t"x :XGX, ﬂ § < s(x’ BI)} e Rtﬁ'X < Rt(O,t)X .
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Now we shall prove that gf¢o,3X is bounded. Clearly,

rE0X = 0,0t0,5X Y (r+m)tc0,0X »
where the first member of the union is compact. Let H = (0 »X. As H is compact,
the set gto,H is bounded according to the assumption and there holds
rtoH = {otoy :yeH, 0 £ 0 < e(y, 0)} =
={pst:y:yeH, 1 S0+ 1<e(y, 1)} =
={todx:xeX, 0SB 1=20<eX B)} = ¢r.4wmtco,X >

hence the second member of the union is also bounded, thus the set z#zX is bounded,
i.e. (iii) holds, what finishes the proof.

2.17. Theorem. Let t be a stationary cl semi-flow. Then the following three
propositions are equivalent:

(i) solutions of t are equi-bounded for some a € R,;
(ii) solutions of t are equi-bounded;
(iii) solutions of t are uniformly bounded.

Proof. Again we shall prove only that (i) implies (iii). Let X € €. For any xe X
and o, B € R there holds gf,x = gtzx (see proof of 2.13.) so that gt;X = gt X and
hence gtgX = gt,X. Since xt, X is bounded according to the assumption, then gtpX is
also bounded, i.e. (iii) holds and the proof is finished.

3. STABILITY

3.1. Notation. In this paragraph P will denote a complete locally compact uniform
space with a uniformity U, € the set of all its compact subsets, ¢ a cl semi-flow on P.
Given any X = P and a € R, denote X* the set {x € X : (x, &) € D}. In what follows,
very important role will be played by a partial map

1) m:R — exp P
and by a corresponding one
(2) M:R—>expP:mb=mb.

The further assumptions on the maps (1) and (2) will be given later. We shall in-
vestigate several properties of maps (1) and (2) concerning stability and we shall use
often the following simple lemma.

3.2. Lemma. Let P be a uniform space with a uniformity W. Corresponding to
every U e U there is a Ve W such that for each X < P there holds V[X] = U[X].
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3.3. Definition. Let there be given a cl semi-flow ¢ on P and a partial map m : R —
— exp P. m is said to be invariant with respect to ¢ iff for each (x, ) € D such that
x € mu there holds gt,x € m6 for each 6 € <a, g(x, a)).

3.4. Lemma. Let m be invariant with respect to t and let (x, «) € D hold for each
a € domain m and x € ma. Then i is also invariant with respect to t.

Proof. Let us suppose that there is an (x, a) € D such that x € mu«, and for some
B € <a, &(x, a)) there holds 4t,x ¢ mpB. Let x, € ma, be such that the sequence {(x,, @)}
converges to (x, a), and «, £ B < &(x,, a,) (the existence of such elements follows
easily from the lower semi-continuity of ¢). Since the uniform topology of P is
completely regular, there exists U e U such that U[t,x] n U[mp] = @, and cor-
responding to the U there exist Ve U and y, such that (x,,, x) € V implies (4t,x,,,
gtaX) € U, ie. gt,x € U[pt,x, ], hence pt.x, ¢ U mp], although x, € ma,, and m is
invariant, which is a contradiction proving the lemma.

If the condition, (x, @) € D for each « € domain m and x € ma, is not satisfied,
lemma 3.4. need not take place, as will be shown in the following example.

3.5. Example. Let there be given ¢ > 0. Define a cl semi-flow # on R as follows:
dXx=x+0—-a, (x,0)eRxR, x—a2éforx—as ¢, 02a

and the map m by the relation

(6 —¢& +m) for 8e(—,0),
ml = (0 — &1 — 26), +0) for 0e<0,1),
0+ ¢& +) for 6e(l, +).

Clearly, m is invariant with respect to ¢ while 7 is not.
It is trivial that the invariantness of 7 need not necessarily imply the invariantness
of m.

3.6. Definition. Let there be given a cl semi-flow ¢ on P and a partial map m.
Then m is said to be stable iff there exists a partial map

(3) < V:RxU->U
such that

4) V=1 U), xeV[ma], 0ela ¢x,a)) implies gt,xe U[mb].

Now we shall investigate relations between stability and invariantness properties
of m and m.
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3.7. Lemma. m is stable iff m is stable.

Proof. If m is stable, then there is a map (3) such that (4) holds. According to 3.2.,
there is a We U such that W[ma] = V[ma]. Since U[m0] < U[m0] for all 0 e
edomain m, setting W = v(a, U), one obtains that xe W[ma], 0e {a, &(x, «))
implies 4t,x € U[m0], which proves the stability of .

Now, let 7 be stable. Let there be given (¢, U)e R x U and We U such that
W < U. Then W[m6] = U[m6] holds for all § € domain m. According to the assump-
tion there is a map (3) such that

V=u(a, W), xeV[ma], 0e<lae(x,a)) implies qt,xec W[mb].

Hence, setting (e, U) = V and noticing that V[mea] < V[ma] one has x € V[ma],
0 € Ca, &(x, o)) implies ot,x € W[m0] = U[ma], which denotes the stability of m and
finishes the proof.

3.8. Lemma. If m is stable, than m is invariant.

Proof. Suppose that 7 is not invariant. Then there are (z, @) € D, z € mu
and f e {a, &(x, @)) such that g,z ¢ mp. Hence there is We U such that W[t,z] n
N W[mp] = 0, ie.

(5 stz & Wmp] .

Corresponding to the assumption there is a partial map (3) such that
(6) V=u(a,W), yeV[ma], 0elx ¢x,a)) implies ,t,ye W[mp].

Since z € /v, there holds z € V[ma«] for each Ve, so that according to (6) there
holds 4,z € W[mp], which contradicts (5) and proves the lemma.

A stability of m does not imply invariantness of m, what can be seen easily. Similarly
invariantness of m or m does not imply stability of m. Notwithstanding, there holds
at least the following proposition.

3.9. Lemma. Let there be given a cl semi-flow t, a partial map m and reals
6, < 0, such that the following conditions are satisfied:

(i) m is invariant on the interval {oy, 6;);

(ii) corresponding to each U e W there is a & > 0 such that |0 — 6’| < & implies
mf < U[m0'], where 6, 0’ € (o, 6,);

(iii) Um0 is closed;

0150502

(iv) {(6, x,x) e R x P x R:ae{oy, 0,), x ¢ Frontier ma, 0e<a )} N
N domain ¢ is closed.

Then there is a partial map

@) u:uU->Uu

such that V=u(U), 6, S« < a,, xeV[ma], « £ 0 < 5, (0, x,«) edomaint
implies ot,x € U[mO].
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Proof. Suppose that the lemma does not hold. Then there is U € U such that cor-
responding to each Ve U there exists (0y, Xy, %) € domain ¢ such that there holds

®) 6, Soy S0, <0,, xpeV[moy] and .1,y ¢ U[my] .

-

Denote X, = {xy Ve U} and prove that there is an o € {0y, 6,) such that X, n
N ma * Q.

Suppose Xy n( U ma) = 0. Then, since P is completely regular, there exists
o15aso2

We U such that W[X, ] n W[Uma] = 9. On the other hand, corresponding to the
definition of X, there is xy € X, and ay € {0,, 6,) such that xy € W[moy]. Hence,
xw € Xy 0 W[may] = W[Xy] n W[Um«] = @, which gives a contradiction.

Now, let (y, a) € (X n ma) x {0y, 6,). From the definition of X, and the assump-
tion (i) there follows Xy N ma = @for all a € {g,, 0, so that y must be an accumula-
tion point of Xy; hence there exists a sequence {(6y , Xy, oay,)} such that x,, € X,
and (8y, Xy, ay,) = (0, y, @), where 0, < ay, < 0y, < g, are as in (8). Correspond-
ing to (iv), (6, y, a) € domain ¢, and from the continuity of ¢ there follows (we write j
instead of V))

0,fa;Xj > oty for j— +o0.

Let U, € U be such that U, = U. According to the assumption (ii) there is a number
& > 0 such that m6 < U,[m0;] for each j such that |§ — 6, < 8. Hence, there is j,
such that for all j > j, there holds

ajtajxje Uo[otay] < Uo{me] < Uo[mgj] < U[mej] N

which contradicts (8) and proves the lemma.
The preceding lemma need not hold if the assumption (iii) does not hold, which
will be seen from the following example.

3.10. Example. Define a cl semi-flow ¢ on R as folldws:

xof

= m for (x,a)e((—o,0) U1, +)) x (0, +0),

Be<a, X ) if x>a,
X — o

fele, +o) if x=Za,

ol

and the partial map m by the relation
md = (—1,1) forall 0e(0, +o0).
Setting e.g. 0; = ¢, 6, = 1, with 0 < & < 1, one obtains the counterexample.
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3.11. Definition. Let there be given a cl semi-flow ¢ on P and a partial map m. m is
said ta be uniformly stable iff there exists a map

v, U->U
such that
© (x,@)eD with xev,(U)[ma] and 6@e<a, g(x,a)) implies
otax € U[m0] .

3.12. Theorem. Let there be given a cl semi-flow t admitting a period t > 0 and
a partial map m periodic with the period 7, satisfying the assumptions of lemma 3.9.
on the interval <0, t). Then, if m is stable, it is uniformly stable.

Proof. Since m is stable, there is a map (3) such that
(10) V=1v(t,U), (x,a)eD with xeV[mt], 0e<z, &x,1))
implies 4t,x € U[m#@] .
According to 3.9., there is a map (7) such that
(1) w=ul), ae0,7), xeW[ma], Oela, 1y, (b, x,a)edomaint
implies ot,x € V[mb] = U[mb].

Set v,(U) = u(v(r, U)) = W. If &(x, ) < ¢ for all (x,a)eD with ae(0,7), x€
€ W[ma], then, for the case « € <0, t), the relation (9) follows directly from (11).

If there is an (x, @) € D with & € €0, t), x € W[ma] and &(x, «) < 7, then from (11)
there follows ,t,x € V[mr], hence, according to (10),

(12) olX = gt 0 t,x € U[mO] forall 0e<a,e(x,a)).

Now, let (x, @) € D with @ € R, x € W[ma], and let € <0, t) and integer k be such
that « = kt 4+ B. Then, corresponding to the assumptions on the periodicity and
relations (11), (12) there holds

otX = g-iitpx € U[m(0 — k)] = U[mO] for each 0 e <a, &(x, a)),
which finishes the proof.

3.13. Definition. Let there be given a cl semi-flow ¢ and a partial map m.
(i) m is said to be quasi-asymptotically stable iff there are maps
w:R->U, s:RxU->R*
such that ‘
« + s(a, U) < &(x,«) holds foreach UelU and (x,a)eD

with x e w(a) [ma],
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and :
(x,@)eD, xew()[ma], a+ s(aU)<0<e(x,a) implies o,xe U[mO].

(if) m is said to be asymptotically stable iff it is stable and quasi-asymptotically
stable. °

3.14. Lemma. m is quasi-asymptotically stable (asymptotically stable) iff m is
quasi-asymptotically stable (asymptotically stable respectively).

Proof is nearly the same as in 3.7.

3.15. Theorem. Let there be given a cl semi-flow t and a partial map m satisfying
conditions of lemma 3.9. on each compact interval in R. If m is quasi-asymptotically
stable, it is asymptotically stable.

Proof. Let there be given (o, U) € R x . Since m is quasi-asymptotically stable,
there are maps w and s such that V, = w(a), S = s(a, U), x € Vo[ma], € (x + S,
g(x, o)) implies ot,x € U[mB]. According to 3.9., corresponding to the interval
{a, o + S), there is a map u such that V, = u(U), xe V;[ma], 6, a + S)
implies ¢t,x € U[ m0]. Now, setting v(a, U) = V' = V¥, n V;, there holds

otx € U[mO] whenever xeV[ma], « =0 <e(x,q),

which proves the stability of m and finishes the proof.

3.16. Definition. Let there be given a cl semi-flow ¢t and a partial map m.

(i) m is said to be quasi-uniform-asymptotically stable iff there exist

Vel and s,:U->R*
such that

a+ 5;(Uy < e(x,x) holdsforeach Uel and (x,x)eD with xe V[mqo],
and
(x,0)eD, xeV[ma], Oe<la+ 5,(U),e(x, ) implies ot,x e U[mb].

(ii) m is said to be uniform-asymptotically stable iff it is uniform stable and quasi-
uniform-asymptotically stable.

3.17. Lemma. m is quasi-uniform-asymptotically stable (uniform-asymptotically
stable) iff W is quasi-uniform-asymptotically stable (uniform-asymptotically
stable respectively).

3.18. Theorem. Let there be given a cg semi-flow t admitting a period T > 0 and
a partial map m periodic with the period t, satisfying the assumptions of 3.9. on
{0, t). If m is quasi-asymptotically stable, then it is quasi-uniform-asymptotically
stable.
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Proof. According to the assumption there are maps w and s such that
(x,9)eD with xew(x)[ma], 62 a+ s(o U) implies qt,x € U[mb].
Set ¥; = w(z). Then
0=1+s(t,U), yeV[mt] implies tye U[mb].

Now, let 0 < « < 7. According to 3.9., there is a map u such that V = u(V;), x €
e V[ma], o £ 0 < t implies 4¢,x € V[m6]. Especially,

(x,x)eD with xeV[ma], 0=<a <t implies .t,xeV[mr].
Defining s,(U) = t + s(t, U), we have
(13) otex € U[mf] whenever 0L a=<t, xeV[ma], (x,a)eD,
02 a+s,(U).

Now, let x € R be arbitrary, « = f < ke, k integer, B € 0, 7). Then, according to
(13) and the assumptions on the periodicity, we have gt,x = g_ytsx € U[m(0 — kt)] =
= U[m0] for each (x, a) € D with x € ¥[ma] and 0 2 a + s,(U), which finishes the
proof.

3.19. Theorem. Let there be given a cg semi-flow t admitting a period T > 0,
and a partial map m periodic with the period t, satisfying the assumptions of lemma

3.9. on the interval 0, ©). Then, if m is asymptotically stable, it is uniform-asympto-
tically stable.

Proof follows directly from 3.12. and 3.18.
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