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Časopis pro pěstování matematiky, roČ. 93 (1968), Praha 

STABILITY IN CONTINUOUS LOCAL SEMI-FLOWS1) 

JOZEF NAGY, Praha 

(Received July 6, 1966) 

In this paper several stability properties of subsets of a solution space of a continu
ous local semi-flow on a uniform space will be investigated. The corresponding results 
are generalizations of some known results concerning relations between several 
notions of stability in the theory of differential equations, as they are treated e.g. 
in [2]. 

1. ABSTRACT LOCAL SEMI-FLOWS 

1.1. Notation. In this paragraph P will denote an arbitrary abstract set, R the 
naturally ordered set of reals, I the set of integers, N the set of all positive integers. 
We shall investigate partial maps t:RxPxR-+P and use the following notation: 
domain t will denote the set {(9, x, a) e R x P x R : t(9, x, a) is defined}. The value 
of the map t in the point (9, x, a) e domain t will be denoted by fitax. To every a, /? e R, 
a ^ /?, there corresponds a partial map fita: P -> P : pta(x) = ptax whenever (/?, x, a) e 
e domain t. For every triple a, P,y eR such that a S P =. y the symbol ytfi © fita will 
denote the composition of the maps ytfi and fita. To every partial map t there cor
respond the following sets: 

D s {(x, a) e P x R : (a, x, a) e domain t] , 
C s {x e P : (x, a) e D for some a 6 JR} , 
B s {a e JR : (x, a) e D for some x e P} , 
D^ = {(x, y) e D : x e P, y e A c R) . 

Finally, we shall define a map 

e : D -> oR u { + oo} : e(x, a) = sup {9 € R : (9, x, a) e domain t} , 

which will play very important role in the following investigations. This notation 
will be used to define the following notion. 

J ) The main part of this paper was lectured at the 2nd EQUADIFF Symposium held in 
September 1966 in Bratislava. 



1.2. Definition. A partial map t: R x P x R~> P wiU be called an abstract local 
semi-flow on P iff the following conditions are satisfied: 

(i) atax = x holds for each (x, a)eD; 
(ii) e(x, a) > a holds for each (x, a) G D; 
(iii) ytfio ^ax = y*ax holds for each xeP and y = p = oc such that at least one 

side of this equality is defined. 
An abstract local semi-flow t on P will be called global iff e(x, a) = + oo holds for 

each (x, a) e D. 

1.3. In what foUows, al semi-flow (ag semi-flow) will be written instead of abstract 
local semi-flow (abstract global semi-flow). From 1.2. (iii) there follows directly the 
foUowing proposition: if (y, x, a) e domain t, y > a, then (0, x, a) e domain t holds 
for all 0e<a, y}. Hence, using 1.2. (ii) there foUows that corresponding to each 
(x, oc)eD there is a /? > a such that (6,x, a) e domain t for each 0 e <a, /?>. Clearly, 
if y = fi**x> then x = a*ax, y = fitfiy and for each zeP such that z ^ ^ x there 
holds z ^ y> Finally, if y = fitax, then for each 0 = p there holds (0, x, a) e domain t 
iff (0, y, p) e domain t, hence s(x, a) £ e(y, /?). 

1.4. Example. Let P = R and define r: R x R x R -> R : Qtax = x/[l + x(9 - a)] 
for x, a e R, and 0 e <a, + oo) for x = 0, 0 e <a, a — l/x) for x < 0. Clearly, f is al 
semi-flow on R, e(x, a) = + oo for x = 0, e(x, a) = a — l/x for x < 0. 

1.5. Definition. Let t be an al semi-flow on P, (x, a) e D. A partial map s : R-* P 
wiU be caUed a solution of the al semi-flow t through the point (x, a) iff the following 
conditions are satisfied: 

(i) domain s is a nondegenerate interval in R; 
(ii) 50 = $tax holds for all 0 in domain s. 

A characteristic solution s of al semi-flow t through (x, a) wiU be caUed every 
solution of t through (x, a) such that domain s = <a, e(x, a)). 

1.6. Remark. Clearly, domain s cz <a, e(x, a)) holds for every solution s through 
a point (x, a) € D. 

1.7. Definition. Let t be an al semi-flow on P, T e R. The al semi-flow t is said to 
admit the period % iff 

0-Tta-T = pta = p + tta + x 

holds whenever fita is defined. 

1.8. Remark. If an al semi-flow t admits a period T, then it admits also the periqd kx 
for each k eI. Hence there foUows: if (x, a) € D, then (x, a + kx)eD for each kel, 
so that y = fitax implies (y, p + lx)e D for each I € J. In the case of the al semi-flow 



admitting a period T the map e has the following interesting property. 

e(x, a + kx) = sup {0 e R : (0, x, a 4- fcT) e domain r} = 
= sup {0 e JR : (0 — fcT, x, a) e domain t] = 
= sup {£ + fcT e R : (C, x, a) e domain i] = e(x, a) + fcT . 

We can characterise al semi-flows admitting a period in the following manner. 

1.9. Lemma. An al semUflow t admits the period T e R iff for every solution s of t 
the partial maps s±t: R -> P : s±t0 = s(0 ± T) are also the solutions of t. 

Proof. First we prove the necessity of this condition. 
The sets domain s± t are clearly nondegenerate intervals in R, and s±t0 = s(0 ± T) = 

== 0±t*a±Ts(a*.± *) = ^«s±t« for all 0 ^ a in domain s, hence st and s_t are also the 
solutions of t. 

Now we prove the sufficiency. 
Let pta be defined. We have to prove that the partial maps p±tta±x are also 

defined and that there holds p-xta-.x = pta = p+tta+t. Take (x, a)eDa . Let s be 
a characteristic solution of t through (x, a). Then s± t are also the solutions of t, 
domain s± t = <a -F T, e(x, a) -f T), S0 = s_t(0 + T) = st(0 - T) for all 0 e domain s, 
and x = sa = s±t(a -f T).Further, there holds j 8 ± t e domain sTt so that fi±xta±x is 
defined and there is 

fi±t*a±r* = ^±A±t^T(a ± t) = 5Tt(iS ± T) = s£ = ^ x , 

so that 0-.tfa-t = ^ta = fi+tta+t, i.e. f admits the period T. 

1.10. Definition. Let an al semi-flow t admits the period T. A pair (x, oc)eD is 
called a %-periodic pair iff there holds a+jtjfax = x. 

1.11. Remark. A T-periodic pair (x, a) e D can be characterised also in the 
following way. (x, a) is a T-periodic pair iff e+^tax = etax holds for each 0 ^ a. 
Hence there follows that every solution s of t through (x, a) is a periodic map with 
the period |T|, i.e. s(0 + |T|) = s0 for each 0 _• a. Every T-periodic pair is also 
a fct-periodic pair for each kel, hence, e(x, a) = -f oo holds for each T-periodic pair 
(x, a) with T 4= 0. If (x, a) e D is a T-periodic pair and y = ptax, then the pairs (y, p) 
and(x, a + fcT)for each kel, are also T-periodic. 

1.12. Definition. An aJ semi-flow t on P is called stationary iff it admits all the 
periods T e R. 

1.13. Remark. From 1.9. one can easily obtain the following characterisation of 
stationary al semi-flows: an al semi-flow t is stationary iff for each solution s of t 
a partial map s,, for each a e R, is a solution of t. Clearly, if (x, a) e D is a T-periodic 
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pair of a stationary al semi-flow, for some T e R, then for each p e R all the pairs 
(x, P) are also T-periodic. For stationary al semi-flows the following criterion of 
globality takes place. 

1.14. Lemma. If t is a stationary al semi-flow and there exist numbers a,reR 
such that a < r < e(x, a) for all (x, a) e Da, then t is global. 

Proof. Suppose that there is a pair (y,p)eD such that e(y, /?) < +00. Let 
y > 0 be such that p < &(y, p) + a-r + y< e(y, /?) and set z = a+-(y,/?)-r+y'/ry-
Then, corresponding to 1.3. and 1.8., there follows 

B(y, p) = B(Z, a + e(y, p) - r + y) = e(z, a) + a(y, P) - r + y, 

hence B(Z, a) = r — y < r, contradicting the assumption e(z, a) > r for (z, a) e Da. 

1.15. Corollary. For every stationary al semi-flow t either t is global or for each 
a e R there holds inf {B(X, a) : (x, a) e Da} = 0. 

The following example indicates that lemma 1.14. need not hold for non-stationary 
semi-flows admitting the period T > 0. 

1.16. Example. Let P be a singleton {a} and let T > 0 be given. Define an al semi-
flow t such that fitaa = a iff p _ a in R and there exists fc e I such that a, p e 
€<(fc-i)T,(fc + l)T). 

1.17. Definition. Let t be an al semi-flow. A pair (x, a) e D will be called a stationary 
pair of the al semi-flow t iff0tax ^ x holds for all 6 e <a, B(X, a)). 

1.18. Remark. Finally, let us investigate in some details a structure of the set D 
for al semi-flows admitting the period T. Let <a, b} and <c, d} are intervals in R such 
that b — a: = d — c and let c = a + kx for some fc e I. According to 1.8., there holds 
(x, a )eD iff (x, a + kx)eD for each fee I. Hence one obtains (x,a)eD<(ttb> iff 
(x, a + kx)eD<c>d>, i.e. D<M> = {(x, p) : p = a + kx, (x, a) e D<a,b>}. Loosely 
spaking, D consists of "strips" obtained by shifting "the strip" D<0,T> along the 
0-axis by an integer multiple of x. Hence there follows the corollary: if an al semi-flow 
admits the period T > 0and£><O|T> = A x <0, T> for some A c P, then D = A x R. 
Especially, if an al semi-flow is stationary, then there holds D = C x R (see 1.1.). 

2. CONTINUOUS LOCAL SEMI-FLOWS AND BOUNDEDNESS OF SOLUTIONS 

2.1. Notation. In the remaining part of this paper P will denote a uniform space 
with a uniformity U, R will denote a uniform space of reals with the natural uniformity 
(induced in the natural way by the Euclidean metric on the one-dimensional Euclidean 
space) and € will denote the set of all compact subsets of the space P. For A, B cz R9 
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X c P, the set {0tax : (6, x, a) e domain t n(A x X x B)} will be denoted by AtBX. 
Finally, for X cz P and UeU let U[X] denote the set {yeP: (x, y)eU for some 
xeX}. 

2.2. Definition. A partial map t: R x P x R -+ P wiU be called a continuous 
local semi-flow (a continuous global semi-flow) on a uniform space P iff the following 
three conditions are satisfied: 

(i) t is an abstract local (global) semi-flow on P; 
(ii) t is continuous (in the corresponding uniform topologies); 
(iii) the map e is lower semi-continuous, i.e. 

e(x, a) £ lim inf e(y, /?). 
O>,0)-(*,«) 

(y,fi)*D 

2.3. Remark. We shall write cl (eg) semi-flow instead of continuous local (global) 
semi-flow. 

From 2.2. (ii) there foUows directly that, for each (x, a) e D, the partial map t': R -* 
-» P : t'(B) = 0^ is continuous, hence every solution of a cl semi-flow on a uniform 
space P is continuous. 

In what foUows, the term "a solution of a cl semi-flow through (x, a)" will denote 
"a characteristic solution of a cl semi-flow through (x, a)". 

2.4. Lemma. Let Pbea uniform space, tacl semi-flow on P, (x, a) e D. Ife(x, a) < 
< + oo and numbers Oj e <a, e(x, a)) are such that the sequence {#,} tends to e(x, a) 
for j -> +oo, fften the sequence {(ojtopc, 0j)} has no accumulation point in D. 

Proof. Suppose that (y,e(x,a))eD is an accumulation point of this sequence. 
According to 1.3. e(0jtax, 0j) = e(x, a), hence by 2.2. (iii) one obtains 

e(y, e(x, a)) <* lim inf e(9jtax, Qs) = lim inf e(x, a) = e(x, a) , 
(ejt*x*0j)-*(y*«(*,«» , 

but e(y, e(x, a)) £ e(x, a) contradicts 1.2. (ii) as (y, e(x, a)) € D, which proves the 
lemma. 

2.5. Corollary. Let (x,a)eD be such that e(x,a) < + oo, and let Ln = {0tax : 
: max (a, e(x, a) — l/n) S 0 < &(*> «)}• Then for each y e(\Ln there holds 
(y,e(x,a))$D. . neN 

2.6. Definition. Let P be a uniform space. A set I c P is said to be bounded 
iff its closure If in P (with the corresponding uniform topology) is compact. 

2.7. Lemma. Let P be a locally compact uniform space. Then to every bounded 
set X c P there corresponds a UeUsuch that U[X] is bounded. 

12 



Proof. Since P is locally compact, there exists a family {V(x)} of open relatively 
compact neighbourhoods of points xeX such that X c \J V(x). As X is compact, 

xeX 

there exists a finite subset {V(xx),..., V(xrt)} c {V(x)} such that the set V = 
n 

= U V(xy) is an open relatively compact neighbourhood of X. Hence (see e.g. [1], 

chap. II, § 4;3,1), there isaC/eU such that C/[K] c= U[X] <= V c Ve G, so that the 
set U[K] is relatively compact. 

2.8. Definition. A solution of a cl semi-flow t through (x, <x)e D is said to be 
bounded iff the set Rtax is bounded. 

2.9. Lemma. Le* t be a cl semi-flow on a uniform space P with D closed in P x R. 
If a solution of t through (x, a) e D is bounded, then e(x, a) = 4- oo. 

Proof. Let numbers Pj e <a, e(x, a)) are such that {/?,} -> e(x, a) for / -> + oo. 
According to the assumption Rtax is relatively compact, and we can assume that the 
sequence {/j/ax} converges to some y e P. Since (pjtax, pj) e D, and D is closed, there 
holds (y, e(x, a)) e D, what contradicts 2.4. and proves the lemma. 

2.10. Corollary. Let t be a cl semi-flow on a uniform space P with D closed in 
P x R. 

(i) If the solution through (x, a) is bounded for each (x, a) e D, then cl semi-flow t 
is global. 

(ii) If C (see 1.1.) is compact, then cl semi-flow t is global. 

2.11. Remark. From 2.2. (ii) there follows immediately the following simple 
proposition, which we shall use often in what follows. Let t be a cl semi-flow 
on P, X € d, a <a P S ^ reals such that e(x, a) > <5 for all (x, y) e X x <a, /?>. Then 
<a#yt<atfiyX e (L Hence there follows easily that every solution through some 
T-periodic pair, for T # 0, is bounded. Especially, a solution of t through some 
stationary pair is bounded. 

Now we shall formulate some simple propositions concerning boundedness of solu
tions of cl semi-flows admitting a period. 

2.12. Lemma. Let eg semi-flow t admits the period x =f= 0, and let the solution 
through (x, 0), for each (x, 0) e D, is bounded. Then each solution of t is bounded. 

Proof. Let (x, <x)eD and let /? = a - kT e <0, T) for some kel. Clearly, 

RtaX = <affct>taX U ^T. + oo)"** > 

where <a.*T>*ax e G according to 2.11., and from the relation 

<*t,+oo)'«* = W ° *t*a* : 0 = fcT} = {j0y : y = kttmx, a £ 0} 

there follows that <fct,+oo)*-tX is bounded, hence the lemma easily follows. 
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If the cl semi-flow t in 2.12. is stationary, one can omit there the assumption of 
globaiity of t, which will be proved now. 

*# 
2.13. Lemma. Let a cl semi-flow t be stationary and let there be (x, a) € D such 

that the solution of t through (x, a) is bounded. Then for each ft e R such that 
(x9 P) 6 D9 the solution of t through (x, p) is bounded. 

Proof. Since t is stationary, there holds 9tpx = 0„p+atax and e(x, p) = s(x9 a) -h 
4- P — a, so that 

Rtfix = {0tpx : p <* 6 < s(x9 a)} = {$-fi+atax : a ^ 0 - j S + a < s(x9 p) - jS - a} = 

= {^x : a g (T < e(x, a)} = j^ax , 

and according to the assumption Rtax is bounded, what proves the lemma. 

2.14. CoroEary. Let a cl semi-flow t be stationary and let there exists cceR 
such that for each (x, a) e Da the solution of t through (x, a) is bounded. Then all 
solutions of t are bounded. 

Now we shall remember several further notions of boundedness. 

2.15. Definition. Let t be a cl semi-flow on a uniform space P. 

(i) Solutions of t are said to be equi-bounded for a given <xeRiff for each I e £ 
the set RtaX is bounded. 

(ii) Solutions of t are said to be equi-bounded iff they are equi-bounded for each 
aei*. 

(iii) Solutions of t are said to be uniformly bounded iff for each X e £ the set RtRX 
is bounded. 

2.16. Theorem. Let a cl semi-flow t admit the period x > 0 and let e(x, a) > T 
hold for each (x, a) € D with 0 ^ a ^ r. Then the following three propositions are 
equivalent. 

(i) Solutions of t are equi-bounded for a = 0. 
(ii) Solutions of t are equi-bounded. 

(iii) Solutions of t are uniformly bounded. 

Proof. It suffices to prove that for each X e <£ the set RtRX is bounded whenever 
Rt0X is bounded. 

First we shall prove that RtRX c Rt<0tX>X. Let p = /?' + kx e JR, kel9 p' e <0, r). 
Then there holds 

RtfiX = {0tpx:xeX9 0 = p] = 

= {*-*t*>-*r* : x € X9 P - k% <^ 0 - k% < s(x9 p - kx)} = 

= yp,x :xeX9P£<r< s(x9 p')} = Rtp.X c Rt<0tX>X. 
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Now we shall prove that R^O^X is bounded. Clearly, 

Rt<0,xy% = <0ttyt(0ttyX u <T,+oo)^<o,t>^» 

where the first member of the union is compact. Let H = tt<0ityX. As H is compact, 
the set Rt0H is bounded according to the assumption and there holds 

Rt0H = W :yeH,0£0< e(y, 0)} -

= {0+t'ty : y e H , T ^ 0 + T < e(yy t)} = 

= {^ o t ^ :xeX, 0^P^T = O< B(X, fi)} = <tt+oo)t<0ft>X, 

hence the second member of the union is also bounded, thus the set RtRX is bounded, 
i.e. (iii) holds, what finishes the proof. 

2.17. Theorem. Let t be a stationary cl semi-flow. Then the following three 
propositions are equivalent: 

(i) solutions of t are equi-bounded for some oce R; 
(ii) solutions of t are equi-bounded; 

(iii) solutions of t are uniformly bounded. 

Proof. Again we shall prove only that (i) implies (iii). Let Xe(£. For any xeX 
and a, fieR there holds Rtax = Rtfix (see proof of 2.13.) so that RtfiX = RtaX and 
hence RtRX = RtaX. Since RtaX is bounded according to the assumption, then RtRX is 
also bounded, i.e. (iii) holds and the proof is finished. 

3. STABILITY 

3.1. Notation. In this paragraph P will denote a complete locally compact uniform 
space with a uniformity U, £ the set of all its compact subsets, t a cl semi-flow on P. 
Given any X c P and a e JR, denote X* the set {xe X : (x, a) e D}. In what follows, 
very important role will be played by a partial map 

(1) m : R -» exp P 

and by a corresponding one 

(2) m : R -> exp P : mO = m§ . 

The further assumptions on the maps (1) and (2) will be given later. We shall in
vestigate several properties of maps (1) and (2) concerning stability and we shall use 
often the following simple lemma. 

3.2. Lemma. Let P be a uniform space with a uniformity U. Corresponding to 
every UeU there is a VeU such that for each X c P there holds V[K] c £/[K]. 
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3.3. Definition. Let there be given a cl semi-flow t on P and a partial map m : R -> 
~* exp P. m is said to be invariant with respect to t iff for each (x, oc)eD such that 
x € ma there holds 9tax e mO for each 0 e <a, e(x, a)). 

3.4. Lemma. Lef m fee invariant with respect to t and let (x, a)eD hold for each 
a e domain m and x e ma. Then m is also invariant with respect to t. 

Proof. Let us suppose that there is an (x, a)eD such that x e ma, and for some 
ft e <a, e(x, a)) there holds ptax $ mj8. Let xy e may be such that the sequence {(xy, ay)} 
converges to (x, a), and ay S P < e(xy, ay) (the existence of such elements follows 
easily from the lower semi-continuity of e). Since the uniform topology of P is 
completely regular, there exists U e U such that Uf^x] n U\mff\ = 0, and cor
responding to the U there exist VeU and y0 such that (xyo, x) e V implies (fitaxyo, 
fit^x) e U, i.e. fitax e U\ptaxyo\, hence /?f(Jfxyo £ U\mfi\, although xyo e mayo and m is 
invariant, which is a contradiction proving the lemma. 

If the condition, (x, a)eD for each a e domain m and x e ma, is not satisfied, 
lemma 3.4. need not take place, as will be shown in the following example. 

3.5. Example. Let there be given £ > 0. Define a cl semi-flow t on R as follows: 

etax = x + 0 - a , (x, a) e .R x JR , x - a ^ c f o r x - a ^ - ^ , 0 ^ a 

and the map m by the relation 

( 0 - & +oo) for 0 6 ( -oo,0) , 

m0 = (0 - {(1 - 20), +oo) for 0e <0,1> , 

(0 + £,+oo) for 0 e ( l , + o o ) . 

Clearly, m is invariant with respect to t while m is not. 
It is trivial that the invariantness of m need not necessarily imply the invariantness 

of m. 

3.6. Definition. Let there be given a cl semi-flow t on P and a partial map m. 
Then m is said to be stable iff there exists a partial map 

(3) v : R x U -> U 

such that 

(4) V = t?(a, U) , x 6 V[ma] , 0 € <a, e(x, a)) implies 9t^ e U\md\ . 

Now we shall investigate relations between stability and invariantness properties 
of m and m. 
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3.7. Lemma, m is stable iffm is stable. 

Proof. If m is stable, then there is a map (3) such that (4) holds. According to 3.2., 
there is a We U such that W\ma\ c V[ma]. Since U[m0] c C/[m0] for all 0 e 
e domain m, setting W = v(a, U), one obtains that x e JV[ma], 0 e <a, s(x, a)) 
implies 0i*ax e U[m0], which proves the stability of m. 

Now, let m be stable. Let there be given (a, <7) e R x U and We U such that 
W <= U. Then JV[m0] cz U[m0] holds for all 0 e domain m. According to the assump
tion there is a map (3) such that 

V = v(a, W) , x e V[ma] , 0 e <a, e(x, a)) implies 9tax e W[m(f] • 

Hence, setting v(a, U) = V and noticing that V[ma] c V[ma] one has x e V[ma], 
0 e <a, s(x, a)) implies etax e W[m0] <z U[ma], which denotes the stability of m and 
finishes the proof. 

3.8. Lemma. If m is stable, than m is invariant. 

Proof. Suppose that m is not invariant. Then there are (z, a) e D, z e ma 
and j8 e <a, s(x, a)) such that fitaz £ inf}. Hence there is JVe U such that JVf^z] n 
n *V[m/?] = 0, i.e. 

(5) fitaz * W[mff\ . 

Corresponding to the assumption there is a partial map (3) such that 

(6) V = v(a, W) , ye V[ma] , 0 e <a, s(x, a)) implies ptay e W[mlf\ . 

Since z e ma, there holds z e V[ma] for each VeU, so that according to (6) there 
holds ptaz e W[m/?], which contradicts (5) and proves the lemma. 

A stability of m does not imply invariantness of m, what can be seen easily. Similarly 
invariantness of m or m does not imply stability of m. Notwithstanding, there holds 
at least the following proposition. 

3.9. Lemma. Let there be given a cl semi-flow t, a partial map m and reals 
ox < <r2 such that the following conditions are satisfied: 

(i) m is invariant on the interval <<r1, <r2>; 
(ii) corresponding to each UeU there is a 8 > 0 such that |0 - 0'| < S implies 

m9 cz U[m0'], where 0, 0' e (<jt, cx2>; 
(iii) U m9 is closed; 

ffi^O^ffz 

(iv) {(0, x, a) € R x P x R : a e (au cr2>, x € Frontier ma, 0 e <a, <r2>} n 
n domain t is closed. 

Then there is a partial map 
(7) u : U -+ U 

such that V = u(U), at ^ a <; <r2, x € V[ma], a g 0 <J <x2, (0, x, a) € domain t 
implies etax e U[m0]. 
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Proof. Suppose that the lemma does not hold. Then there is U e U such that cor
responding to each Ve U there exists (BV9 xY9 av) e domain t such that there holds 

(8) or* <; av £ 0V £ <T2 , xv e V[maF] and 9vtarxv $ l/[m0K] . 

Denote Xv = {xv : Ve U} and prove that there is an a e <<T1? <T2} such that Hv n 
n ma + 0. 

Suppose Xv n ( (J ma) = 0. Then, since P is completely regular, there exists 

We U such that ^ [K r ] n ^[Uma] = 0. On the other hand, corresponding to the 
definition of Xv there is xw e Xv and aw e <a1, <x2> such that xwe W\maw~\. Hence, 
xweXv n W[maw"] <z W\XV~\ n JV[Uma] = 0, which gives a contradiction. 

Now, let (y, a) e (Xv n ma) x <cr1, <x2>. From the definition of Xv and the assump
tion (i) there follows Xv n ma = 0 for all a e <[ax, <T2} SO that y must be an accumula
tion point of Xv; hence there exists a sequence {(0Vj, xVj, aVj)} such that xVj e Xv 

and (9Vj, xVj9 aVj) -» (9, y, a), where ax £ ^vs S 9Vj £ <r2 are as in (8). Correspond
ing to (iv), (09 y, a) e domain t9 and from the continuity of t there follows (we write j 
instead of Vj) 

efaxj-* e*«y f<>r J-> + 0 0 -

Let U0 e U be such that U0 c U. According to the assumption (ii) there is a number 
5 > 0 such that md c Cfo[m0/J for each; such that \9 - 0,| < 5. Hence, there isj0 

such that for all j > j0 there holds 

$Jtajxse Uoyay] <= J70[me] c= tfo[m0j c tf[ro0j , 

which contradicts (8) and proves the lemma. 
The preceding lemma need not hold if the assumption (iii) does not hold, which 

will be seen from the following example. 

3-10. Example. Define a cl semi-flow t on JR as follows: 

etgPC « for (x> a) € ^ _ 00j Q> u <l, + QO)) x (0, + oo) , 
x(a — 9) -f* a0 

0 e / a, j if x > a , 
\ * - a / 

0 e <a, 4- oo) if x £ a, 

and the partial map m by the relation 

m 0 - = < - l , 1) for all 9e(0, +oo). 

Setting e.g. crj = e, <T2 = 1, with 0 < e < 1, one obtains the counterexample. 
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3.11. Definition. Let there be given a cl semi-flow t on P and a partial map m. m is 
said to be uniformly stable iff there exists a map 

vx : U -» U 

such that 

(9) (x, a)eD with x e vx(U) [ma] and 0 e <a, e(x, a)) implies 

9tax e U[m0]. 

3.12. Theorem. Let there be given a cl semi-flow t admitting a period x > 0 and 
a partial map m periodic with the period T, satisfying the assumptions of lemma 3.9. 
on the interval <0, T>. Then, if m is stable, it is uniformly stable. 

Proof. Since m is stable, there is a map (3) such that 

(10) V = v(x, U) , (x, a )eD with xe V[mT] , 6G <T, S(X, T)) 

implies rf^x e £/[m0] . 

According to 3.9., there is a map (7) such that 

(11) JV=w(V), ae<0, T>, xeW[ma], 0G<a, T>, (9, x, a) € domain t 

implies 0tax e V[m9] c U[m0] . 

Set vx(U) = u(v(x, U)) = W. If s(x, a) <: T for all (x, a) G D with a € <0, T>, X e 
e W[ma], then, for the case a e <0, T>, the relation (9) follows directly from (11). 

If there is an (x, a) e D with a e <0, T>, X e JV[ma] and e(x, a) g T, then from (11) 
there follows xtax e V[mT], hence, according to (10), 

(12) 9tax = 0tx o xtax e U[m0] for all 9 e <a, s(x, a)) . 

Now, let (x, a) e D with a e R, x e PV[ma], and let /? e <0, T) and integer k be such 
that a = kx 4- j8. Then, corresponding to the assumptions on the periodicity and 
relations (11), (12) there holds 

$tax = Q~kxtpX e U\m(9 — kx)"\ = C/[m0] for each 9 e <a, s(x, a)) , 

which finishes the proof. 

3.13. Definition. Let there be given a cl semi-flow t and a partial map m. 

(i) m is said to be quasi-asymptotically stable iff there are maps 

w:R-»U, s:R x U -» R+ 

such that 

a + s(a, U) < e(x, a) holds for each UeU and (x, a )eD 

with x e w(a) [ma] , 
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and 
(x, a) 6 D , x € w(a) [ma] , a + s(a, U) jg 0 < e(x, a) implies <,fax e U[m0] . 

(ii) m is said to be asymptotically stable iff it is stable and quasi-asymptotically 
stable. 

3.14. Lemma, m is quasi-asymptotically stable (asymptotically stable) iff in is 
quasi-asymptotically stable (asymptotically stable respectively). 

Proof is nearly the same as in 3.7. 

3.15. Theorem. Let there be given a cl semi-flow t and a partial map m satisfying 
conditions of lemma 3.9. on each compact interval in R. Ifm is quasi-asymptotically 
stable, it is asymptotically stable. 

Proof. Let there be given (a, U)eR x U. Since m is quasi-asymptotically stable, 
there are maps w and s such that V0 = w(a), S = s(a, LI), x e V0[ma], 0 e <a + S, 
B(X, a)) implies Qtax e £J[m0]. According to 3.9., corresponding to the interval 
<a, a + S>, there is a map u such that Vt = u(U), x e Vi[ma], 0 e <a, a + S> 
implies Qtax e U\md\ Now, setting v(a, U) = V-= V0 n V1? there holds 

0fax G U[m0] whenever x e V[ma] , a ^ 0 < e(x, a), 

which proves the stability of m and finishes the proof. 

3.16. Definition. Let there be given a cl semi-flow t and a partial map m. 

(i) m is said to be quasi-uniform-asymptotically stable iff there exist 

Ve 11 and sx\U-> R+ 

such that 

a + s1(U) < e(x, a) holds for each U eU and (x, a) e 2) with x e V[ma] , 

and 
(x, a) e JD , x e V[ma] , 0 e <a + sx(U) , e(x, a)) implies etax e U[m0] . 

(ii) m is said to be uniform-asymptotically stable iff it is uniform stable and quasi-
uniform-asymptotically stable. 

3.17. Lemma, m is quasi-uniform-asymptotically stable (uniform-asymptotically 
stable) iff m is quasi-uniform-asymptotically stable (uniform-asymptotically 
stable respectively). 

3.18. Theorem. Let there be given a eg semi-flow t admitting a period T > 0 and 
a partial map m periodic with the period T, satisfying the assumptions of 3.9. on 
<0, T>. If m is quasi-asymptotically stable, then it is quasi-uniform-asymptotically 
stable. 
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Proof. According to the assumption there are maps w and s such that 

(x, a) e D with x e w(a) [ma] , 0 _• a + s(a, U) implies etax e U[m0] . 

Set V! = W(T). Then 

0 _• T + S(T, U) , j ; 6 Vx[mi] implies ^ e U\mff] . 

Now, let 0 ^ a g T. According to 3.9., there is a map u such that V= t<(Vi), % e 
e V[ma], a g 0 g T implies 0*ax e V[m0]. Especially, 

(x, a) e D with x e V[ma] , O ^ a ^ t implies xtax e V[mT] . 

Defining sx(U) = T + S(T, U)9 we have 

(13) $tax e U[m0] whenever 0 g a ^ T , x € V[ma] , (x, a) € D , 

0 = a + Si(tf). 

Now, let a 6 JR be arbitrary, a = /? :g /cr, fc integer, /? e <0, T). Then, according to 
(13) and the assumptions on the periodicity, we have etax = B~kxhx e ^ [ m (^ "* ^T)] = 

= U[m0] for each (x, a) e D with x e V[ma] and 0 = a + s1([7), which finishes the 
proof. 

3.19. Theorem. Let there be given a eg semi-flow t admitting a period % > 0, 
and a partial map m periodic with the periodx, satisfying the assumptions of lemma 
3.9. on the interval <0, T>. Then, ifm is asymptotically stable, it is uniform-asympto
tically stable. 

Proof follows directly from 3.12. and 3.18. 
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