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Časopis pro pěstování matematiky, roč. 93 (1968), Praha 

ON ENDOMORPHISMS OF THE DIRECT SUM OF TWO MODULES 

KAREL KARTAK, Praha 
(Received November 25, 1966) 

1. In this note we give conditions for an endomorphism A : E -• E of the direct 
sum E of modules El9 E2 to be monomorphic or/and epimorphic. 

We start with the following classical theorem on the inverse of a partitioned matrix 
(see [1], p. 189, for some historical comments). 

2. Theorem. Let F be afield and let w, r, s be positive integers such that n = r + s. 
Let A, n x n, be a regular matrix over F partitioned in the following way: 

A = 
41 42 

a 2 1 í a 2 2 

Suppose that ocn is regular and put 

X = a["i «!2 , Y = ^ix^xx J Z -= a22 — a 2 i a u ai2 

Then 

(2.1) Z is regular 

(2.2) 
A-1** 

aГ,1 + XZ~XY 

-Z~lY 

-xz - 1 

Proof. Let the letter J resp. O stand for the unit resp. zero matrix of a correspond* 
ing dimension. Using 

(2.3) í " 1 

~ a 2 1 a l l 

o" 
A = 

I a ľ l a 12 

I 
A = 

0 z 
we see immediately that (2.1) is true. Now, (2.2) is a matter of a simple computation. 
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3, From (2.3) we also see that conversely the regularity of Z implies that of A. It 
is of interest to decide, whether these results may be given a more general setting; in 
particular, whether they may be extended to infinite dimensional linear spaces. 

Let R be a ring, 4et Ei9 E2 be modules over JR, and let E denote the direct sum of 
Ei9 E2. In what follows, an element of E will be denoted by [xi9 x2"\ or [£]. 

It is easy to see that each endomorphism A : E -> E is described by well-determined 
homomorphisms a f /: Ej -> Ei9 i,j = 1, 2 so that 

(31) A \XЛ = Г a u X i + a i 2 * 2 l 
Ы d La21*l + a22*2j 

Provided aii is isomorphic, we may define an endomorphism Z : E2 -• E2 as 
follows: 

(3.2) Z = a 2 2 — cc2iait oci2 . 

4. Theorem. Let 

(4.1) a n be isomorphic 

Then 

(4.2) A is monomorphic iffZ is monomorphic 
(4.3) A is epimorphic iffZ is epimorphic 

Proof. (4.2) =>: Let A be monomorphic. Suppose that there exists £2 # 0 such 
that Z£2 = 0. Then Ai[0, (2} = [a12£2, a22£2] # 0, hence evidently a12£2 =f= 0. Put 
£1 = ar/ai2^2j then Eli + 0, as the image of the non-zero element cci2^2 by the 
isomorphisma^1. Then [ -{1 , £2] * 0,butfrom(3A),(3.2)weseethatAl[--f1,<!;2] = 
= [0, Z£2] = 0; this is a contradiction. 

(4.2) <=: Let Z be monomorphic and suppose that, for some [£l5 £2] =f= 0, 

(4.4) 4 ^ 2 ] = [0 ,0] . 

Then, in virtue of otnfi + ai2^2 = 0 and (4.1), £2 is a non-zero element. Further 
we see that ti = -aua 1 2 f 2 . Now, from (4.4) we get that - a ^ a ^ a ^ ; - . + a22£2 = 
= Z£2 = 0, which is a contradiction. 

(4.3) =>: Suppose that A is epimorphic, and let rj e E2. Then there exists [£i9 £2] 6 E 
such that A[t»t2] = [0, if], i.e. a u d + a12£2 = 0, a21£t + a22£2 = Y\. Thus, 
£1 * - a i i a i 2^2 ; ^nce - o ^ a ^ / a ^ + a22^2 = */> i.e. Z£2 = rj9 which shows 
that Z is epimorphic. 

(4.3) <=; Suppose that Z is epimorphic. We show that each [£i9 £2] e E is the image 
by A of an element of JE. For this it is sufficient to solve successively the equations 

(4.5) A[xi9 *J - fo, 0] , 4*!, x2] - [0, &] . 
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Firstly, let us choose £ e E2 such that Z£ = — a21a7i
1^1. Then 

^ [ « U « l - « U « 1 2 € > < ] - K l . O ] 

as is easy to prove. 

As for the second equation in (4.5), let r\ e E2 be such that Zr\ -= £2. Now a direct 
computation shows that 

4[-«n«i2*».j] = [0 , ^ 2 ] . 

This concludes the proof of the theorem. 

5. Theorem. Let a u be isomorphic. Then A is isomorphic iffZ is isomorphic. If 
this is the case, A"1 is given by (2.2). 

Proof. The first assertion is a direct consequence of theorem 4. The second one 
can be verified easily, using 

A-i Г a . Л + <*i2X2~| = ГxЛ 
L 2̂1̂ 1 "Ь Я22X2J L*2J 

6. As an application, we state a result on systems of linear equations, which we 
formulate for the infinite dimensional case. 

Let F be a field, n a positive integer. Let Ex be the linear space of all n-tuples 
[xx,..., x„], and E2 be the linear space of all sequences [x„+1, x n + 2 , . . . ] , with 
xt€F for i = 1,2,... 

Further, let 

a ц = 

a i î = 

ł u a ln 
be a regular matrix, n x n 

42 

a5, = 

a 2 2 = 

aní . . . an 

a l , n + l > a i , n + 2 > • • • 

a n , n + l > a n,n + 2> • • • 

a n + l Д > • • •> a n + l , n 

a n + 2Д> • • •> a n + 2,n 

a n + l , n + l> a n + l t n + 2> 

a n + 2,n+l> •••> 

be a row-finite matrix, n x 00 

be a matrix, 00 x n 

be a row-finite matrix, 00 x 00 

with tfjj G F for all 1, j == 1, 2, ... 

Now we have the following direct consequence of theorems 4 and 5. 
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7. Theorem. Suppose that the infinite linear system 

an+l,n+lxn+l + an+i,n + 2xn + 2 + ••• = &«+l 

*an+2,n+lxn+X + an + 2,n + 2xn + 2 + ••• = &« + 2 

has at most one (at least one) {exactly one} solution [xn+i9 xn+2i...] e E2,for each 
[b„+l9 bn+29...] e £ 2 . Suppose further that oc21<xlla12 *

s the zero matrix. Then the 
infinite linear system 

a l l * l + 012*2 + . . . = *>! 

#21*1 + #22*2 + ••• = b2 

has, for each [bi9 b29...] e £ , at most one (at least one) {exactly one} solution 
[xl9 xl9 . . . ] e £ . 

Reference 

[1J E. Bodewig: Matrix calculus, Amsterdam 1956. 

Author's address: Technická 1905, Praha 6 - Dejvice (Vysoká škola chemicko-technologická). 

120 


		webmaster@dml.cz
	2012-05-11T23:55:52+0200
	CZ
	DML-CZ attests to the accuracy and integrity of this document




