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Casopis pro p&stovéni matematiky, ro&. 93 (1968), Praha

ON ENDOMORPHISMS OF THE DIRECT SUM OF TWO MODULES

KAReL KARTAK, Praha
(Received November 25, 1966)

1. In this note we give conditions for an endomorphism 4 : E — E of the direct
sum E of modules E,, E, to be monomorphic or/and epimorphic.

We start with the following classical theorem on the inverse of a partitioned matrix
(see [1], p. 189, for some historical comments).

2. Theorem. Let F be a field and let n, r, s be positive integers such thatn = r + s.
Let A, n x n, be a regular matrix over F partitioned in the following way:

r s

rlogy | 0
A= |
5|0 | 02

Suppose that oy, is regular and put

-1 -1 _ -1
X =ag10,, Y=o05071, Z=0,;— t;05;0,.
Then
(2.1) Z is regular

(22) at + XZ7'Y | —XZ7!
A—l = H

~z-'y |zt

Proof. Let the letter I resp. O stand for the unit resp. zero matrix of a correspond-
ing dimension. Using

(2'3) gy | O I ‘ a5y,
—og0py | I 0!z
we see immediately that (2.1) is true. Now, (2.2) is a matter of a simple computation.
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3. From (2.3) we also see that conversely the regularity of Z implies that of 4. It
is of interest to decide, whether these results may be given a more general setting; in
particular, whether they may be extended to infinite dimensional linear spaces.

Let R be a ring, det E;, E, be modules over R, and let E denote the direct sum of
E,, E,. In what follows, an element of E will be denoted by [x,, x,] or [

It is easy to see that each endomorphism A4 : E — E is described by well—determmed
homomorphisms «;; : E; - E;, i,j = 1, 2 so that

(31) A [xl] _ [“11"1 + 0‘12x2]
X2 21Xy + %z2X3
Provided oy, is isomorphic, we may define an endomorphism Z: E, — E, as

follows:

(3.2) Z =y, —- o‘210‘;110‘12 .

4. Theorem. Let
(4.1) a,, be isomorphic

Then
(4.2) A is monomorphic iff Z is monomorphic
(4.3) A is epimorphic iff Z is epimorphic

Proof. (4.2) =: Let 4 be monomorphic. Suppose that there exists &2 =+ 0 such
that Z¢, = 0. Then 4[0, &;] = [01,¢5, 0,,8,] # 0, hence evidently a;,¢; + 0. Put
& = ajfa,,&,; then & + 0, as the image of the non-zero element «;2¢, by the
isomorphism a!. Then [ —¢y, &,] = 0, but from (3.1), (3.2) we see that A[ —&;, &2] =
= [0, Z¢,] = 0; this is a contradiction.

(4.2) <=: Let Z be monomorphic and suppose that, for some [&,, &,] # 0,

(4.9) A[¢, &) =[0,0].
Then, in virtue of ay;&; + ®;,¢; = 0 and (4.1), &, is a non-zero element. Further
we see that &, = —aj;'0;,¢,. Now, from (4.4) we get that — oy 30075 012, + 03285 =

= Z¢&, = 0, which is a contradiction.

(4.3) =>: Suppose that 4 is epimorphic, and let 7 € E,. Then there exists [€1, €] €E
such that A[&, &] = [0,n], ie. & + 0128, = 0, 0518, + 25¢, = n. Thus,
& = —ajta;,8;; hence —oy a5 ey ,E, + 4y, =1, ie. ZE =1, which shows
that Z is epimorphic.

(4.3) <=: Suppose that Z is epimorphic. We show that each [¢;, &,] € E is the image
by A of an element of E. For this it is sufficient to solve successively the equations

4.5 Alx;, x,] = [£1,0], A[x1, x2] = [0,82]-
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Firstly, let us choose ¢ € E, such that Z¢& = —a,,07,'¢,. Then

A[al—llél - “1_11“125, é] = [51, 0]
as is easy to prove.

As for the second equation in (4.5), let n € E, be such that Zn = &,. Now a direct
computation shows that

A[—agioyom n] = [0, &].

This concludes the proof of the theorem.

5. Theorem. Let o, be isomorphic. Then A is isomorphic iff Z is isomorphic. If
this is the case, A~ is given by (2.2).

Proof. The first assertion is a direct consequence of theorem 4. The second one
can be verified easily, using

4-1 [“113‘1 + “123‘2] — [xl]
®21X1 + 022X X2

6. As an application, we state a result on systems of linear equations, which we
formulate for the infinite dimensional case.

Let F be a field, n a positive integer. Let E; be the linear space of all n-tuples
[*1, ... x,], and E, be the linear space of all sequences [X,41, Xp42, -..], With
x;eFfori=1,2,...

Further, let

all DR aln
oy =1: be a regular matrix, n X n
[ Gnt - A
Ain+1s Fine2s - ] .
oy = : : be a row-finite matrix, n x oo
Lan,n-f-l’ an,n+2’ ]
- -1
an+1,1a ey an+1.n
Oy = | @pia,15 ++vs Ope2,,| bea matrix, co X n
an+1.n+l’ an+l,n+2a tee
022 = | Quazpsts +vo» ... | be a row-finite matrix, 00 X oo
REE TR T TR TR

WIth d,jEFfOI‘ all i,j = 1, 2,..-

Now we have the following direct consequence of theorems 4 and 5.

119



7. Theorem. Suppose that the infinite linear system

it pn+1¥n+1 T Opirp42Xpe2 + 000 = b,+:
Gpi2mt1%n+1 T Oniznt2%n+2 + oo = bpyy

has at most one (at least one) {exactly one} solution [X,41, Xp+2, ...] € E,, for each
[ba+15 bus2s ---) € E,. Suppose further that a,yai'a,, is the zero matrix. Then the
infinite linear system

811Xy + @12%; + ... = by

azlxl + a22x2 + e = bz

.................. fvessse

has, for each [by, by, ...] € E, at most one (at least one) {exactly one} solution
[*1s X2, ...] € E.
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