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Casopis pro péstovani matematiky, ro&. 90 (1965), Praha

DIRECTED GRAPHS AND THEIR INCIDENCE MATRICES

Jiki SEDLACEK, Praha
(Received August 8, 1964)

The article presents several remarks concerning a relationship between
nonnegative matrices and directed graphs.

I. A directed graph ¥ = [U, H], where U is the vertex set and H the edge set, will
sometimes be called simply a graph. First, let us examine the primitive matrices
(in FroBeNIUS’sense). It is known that these matrices can easily be characterized by
geometrical properties of their graphs — cf. [6]. If the degree of a primitive matrix
is at least two, then the corresponding graph has at least two cycles. Let us consider
more in detail a primitive matrix with just two cycles. It is known that the lengths of
these cycles are relative prime numbers. '

Theorem 1. Let A be a primitive matrix of the n-th degree (n = 2), whose graph
contains exactly two cycles with lengths a, b, and let a < b. Let k be the least positive
integer such that A* > 0. Then we have k = n + a(b — 2).

Proof: Let 4 = [U, H] be the graph of the matrix 4 and ¥, = [U,, H,], %, =
= [Uy, Hy] its two cycles with |U,| = a, |U,| = b. Construct %, = [Uo, Ho],
where Uy = U, " Uy, Hy = H, n H, and put |Up| = c. If ¢ > 1, the vertices of the
graph %, may be denoted so that Uy = {X;, X3, ..., X}, Ho = {X,%» X;X 3, - o»
ey X IJE:}; if c = 1, H, = 0. Let the remaining vertices of ¢4 be denoted as follows:
On %, (provided ¢ * a), following its orientation, as X;, 1, Xcs2, +ees Xz ON G,
following again its orientation, as X, 41, Xc+25 -+ +> Xp-

First, we are going to show that in ¢ there is no path with length n + a(b — 2) — 1
which begins at x.,; and ends at x,. If such a path existed, it could be composed of
the cycle €, (passed r-times), of the cycle %, (passed s-times) and of a portion of the
cycle €, between x.., and x, which has the length b — ¢ — 1. Then we should have

n+alb-2)—1=ar+bs+(b—-c-1).

Since n = a + b — ¢, we can write ab — a = ar + bs, i.e. bs = 0 (mod a). As a, b
are relative prime, it follows that s = 0 (mod a). The case that s = 0 is to be rejected,
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as otherwise €, would have been passed through (b-1)-times although %, and the portion
between x..; and x, mentioned above have no common vertex. Thus put s = ta
where t is a positive integer. Consequently, we have the equation —a = ar +
+ (¢t — 1) ab the left hand side of which is negative and the right one positive which
is a contradiction.

It remains to prove that between any two vertices of the graph % there is a path
with length n + a(b — 2). However, let us prove first the following auxiliary asser-
tion: For x, and any arbitrarily chosen vertex of the graph ¥ there is a path with
length a(b — 1) joining them. It is convenient to extend the definition of x; to all
integers i by putting x; = x; exactly then if i = j (mod b). It can be easily verified
that vertices X;+nq (for m =0, 1, ..., b — 1) constitute exactly the set U,. As any
path beginning at x, can be “prolonged” by a multiple of the number a, provided
the cycle €, circuited several times is placed at the beginning, it follows that any
vertex of %, can be reached from x, by a path with length a(b — 1). If ¢ < a, such
an assertion can be verified even for every vertex x;e U, — U,. Indeed, it suffices
to step back in the preceding path from x}, first along %, and then along %, a path
with total length a, thus getting at the vertex x,.,, + X;. Consequently, there is
a path with length a(b — 1) between x, and x}. Hence the auxiliary assertion is proved.

If ¢ > 1, all paths beginning at x,, which were considered above, pass
consecutively through the vertices x, x,, ..., x.. If ¢ = 1, the assertion is trivial. From
this it follows that for the i-th vertex x;€ Uy(1 £ i < ¢) we have: For x; and any
vertex of the graph & there is a path of the length a(b — 1) — i + 1 that joins them.
Finally, consider the set U — U,. For any element x e U — U, we have: between x
and x, there is a path the length of which does not exceed the number b — ¢. Con-
sequently, to any x e U — U, a positive integer') d can be assigned such that between
x and any arbitrary vertex of U there is a path of length d. Moreover, evidently
d=(b—-c)+a(b—1)=n+ a(b—2). From this our assertion®) follows im-
mediately.3)

II. In the next paragraph we will continue to consider the primitive matrices. Let
a positive integer n be given. Denote by M(n) the set of all square nonnegative matrices A
of degree n such that 4% > 0.

Obviously, M(n) # 0. It can be seen that all elements of the set M(n) are
special primitive matrices. Denote further by p(A) the number of positive elements
of a matrix 4. We shall establish the minimum of the numbers p(4) for A € M(n).

1) Note that in the paper [8] the least of such positive integers was called the “Zeiger’ in
German. DULMAGE and MENDELSOHN [2] use the term “reach’ for this concept.

2y For example, the Lemma 1 in the paper [8] p. 305, may be used. Lemma 1 reads: Let the
primitive vertex x have a reach d,;,; let d = d,;;;, (d-integer). Then for every vertex y a path
joining x and y exists the length of which is d. (A vertex x is called primitive if there exists a posi-
tive integer m such that for every vertex y a path between x and y of the length m can be constructed.)

3) Ifa= n—1, b= nissetin Th. 1, an extreme case of a matrix known from [3], [5], [9] is
obtained. See also Th. 1 and 5 in [2].
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This investigation may also be formulated in terms of the graph theory. Instead of
the matrix A a finite directed graph*) ¥ = [U, I'] with U = {x,, x,, ..., X,} may be
considered such that for any two vertices of % (not necessarily distinct) there is
a path of the length 2 joining them. Then we are to find a graph with properties
already stated, which possesses the least number of edges, and to establish this
number.

Theorem 2. For any positive integer n we have min p(A) = 2n — 1.
AeM(n)

Proof. For the sake of brevity introduce the notation «(n) = min p(A).
AeM(n)

We are going to prove the theorem by induction with respsct to n. For n = 1 and
n = 2 the assertion is obvious. Thus assume that n > 2 and «(n — 1) = 2n — 3.
Choose a matrix A, € M(n) such that p(4,) = «(n) and assume that a(n) < 2n — 2.
Construct the graph of the matrix 4, and denote it by ¥, = [U,, I'y]. Obviously, the
graph %, possesses at most 2n — 2 edges. The question is whether |I'o(x)| = 2 can be
true for any x € U,,. If this were true, ¥, would have at least 2n edges. Consequently,
there is an x, in U, such that [To(x,)] < 1. The case that |T'o(x,)| = 0 is not possible
so that Ty(x;) = {x,} may be put, x; and x, being different. As there is a path with
length 2 between them, x, must be equipped by a loop. As a path of the length 2
beginning and ending at x; can be found, the edge x—zxal must exist in ¥,,.

Next, let us construct a new graph ¢, = [U,, I',] as follows®): Put U, = (U, —
— {xy, x,}) U {y}, where y non € U, and let us define the mapping T, by: a) I',(y) =
= (Ty(xy) U To(x2) U {¥}) — {x1%,}; b) for ze Uy — {y}, To(2) N {xy, x,} = 0 let
T'(z) = To(z) whereas for z€ U, — {y}, To(z) n {xy, x,} #+ 0 let T'y(z) = (To(z) v
U {y}) — {*1, x5}. It can be easily verified that by this construction at least two
edges drop away so that ¢4, has at most 2n — 4 edges. We have |U 1[ =n-—1

If A4, is the incidence matrix of the graph %,, then p(4,) < 2n — 4 so that by the
induction assumption Af > 01is not true. However, it can be ascertained that between
any pair of vertices x,, x, of ¢, there is a path of the length 2. If x, &= y % x,, such
a path S can be found in %,; if S does not contain any of vertices x,, X,, then S can
be found even in ¢,. The path § cannot contain x,; and x, simultaneously. Thus let S
pass through the vertex x, (or x,) and, consequently, have the form x,, x,x,, X;,
X, % Xy (OF X4 X,%X,, X3, X,%,, X,); then a path X, x_y, ¥, yx,, X, can be found
in ¢,. It remains to discuss the following cases for %,: a) x, = y, X, * ; b) x, * ,
X, = y; €) X, = y = X,. We shall not prove in detail that a path between x, and x,

4) The significance of the mapping I" for the graph definition is known from the book [1]

5) Theensuing construction can be visualised as follows: In the graph %, welet the vertices x,, x,
coincide into a new vertex y equipped with a loop and the both edges x;x,, xpx; Will [be
dropped; if a pair of edges beginning at y and ending at another vertex arises, only one edge of the
pair will be retained. In a similar manner any other pair of edges beginning at some vertex and
ending at y will be treated.
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of the length 2 also exists in %,. This result yields a contradiction thus proving that
a(n) = 2n — 1.1t remains to construct a square nonnegative matrix belonging to M(n)
which has exactly 2n — 1 positive elements. Such a matrix is obtained if the elements
of the first row and of the first column are equalled to one whereas the remaining
elements are zero- By this the proof is finished.

Let us examine again the considered extremal matrix from M(n). We shall show that
this matrix is determined uniquely with respect to its graph by the relation p(4) =
=2n—1.

Theorem 3. Let A, € M(n), A, € M(n), p(4,) = p(4,) =2n — 1 and let 9,9,
be the graphs of the matrices A, and A,, respectively. Then the graphs 9, and 2,
are isomorph.

Proof: The cases that n = 1 and n = 2 are trivial. Thus, let n > 2. Choosing
a matrix A € M(n) with p(4) = 2n — 1 construct the graph 2 = [U, I'] of A.
As |I'(x)| = 2 cannot be true for any x € U, a vertex x, € U can be found such that
I(x,) = {x,}, x; + x,. As a path of the length 2 must exist between x, and x,, the
vertex x, is provided with a loop; for the same reason we find that the edge SC;C_:
exists in 9. Next, put Uy = U — {x, X,} = {X3,..., X,}. For any x,€ U, there is
a path of the length 2 between x,; and x; so that there are edges x";)?, in 9 for i =
= 3,4, ..., n. In 2 we have so far described n + 1 edges so that n — 2 edges remain
each of which begins at some vertex belonging to U,. Since |Uy| = n — 2, we have
|l"(x,~)| = 1 for any x; € U,. Obviously, none of the vertices x; is provided with a loop
and moreover, the edge x_lx_; cannot exist since a path of the length 2 between x;
and x, should exist. For similar reasons the existence of the edge Zx—; with x; € U,,
x;€ Uy, x; + x; must be rejected. Thus, for every x;€ U, we have I'(x;) = {x,}.
Thereby all edges have been considered and the uniqueness of the construction of 2
is obvious. Hence the proof.

Hitherto only the second power of matrices has been considered and in the ex-
treme case the unicity has been proved. However, for the third power the unicity
of a similar problem is no more true. For example, in Fig. 1 four distinct graphs
are sketched each of which has three vertices and five edges. If 4,, A,, 43, A, are the
corresponding incidence matrices, then obviously 47 > 0 (1 £ i < 4); it is also
evident that for any matrix 4 = 0 of the third degree with 43> > 0 the inequality
p(A4) < 5 is not fulfilled.

Now we can formulate a more general problem. Let be given positive integers n,
k with k > 1. Denote M(n, k) the set of all square nonnegative matrices 4 of degree n

such that 4* > 0. We are looking for min p(A). The problem of establishing it
. AeM(n,k)
in its full generality is still open; it seems, however, that the following conjecture

is true:®)

6) The author is aware of the fact that the given formulae present an upper bound for the
required minimum.
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If k is even, then the considered minimum equals to

2n — 27 .

III. Let us consider a relationship between primitive matrices and a certain
concept from the “pure” graph theory. O. ORE [4] has considered nondirected graphs
such that each pair of distinct vertices can be joined by a “way”” which passes through
each vertex of the graph exactly once. Let us extend these problems to directed graphs.

Let a finite graph 4 = [U, '] be given. A path passing through each vertex of ¥
exactly once will be called the Hamilton arc. If for any pair xe€ U, ye U, x + y
there is a Hamilton arc in ¢ beginning at x and ending at y, then ¢ will be called
simply an H-graph. A trivial case of an H-graph is obtained if a complete graph is
taken for 4. In the following theorem we shall consider nontrivial H-graphs which
have only simple edges’).

Theorem 4. Let an integer n = 7 be given. Then there is always an H-graph
% = [U, T'] with ]Ul = n which has only simple edges.

Proof. We shall construct one of the possible H-graphs. Putting U = {x, ..., x,,}
define the mapping I as follows: For i € {1, 2, ..., n} put I(x;) = {X;4+1, X;42, Xi+3}>
Xpt1 = X1» Xpt2 = X5 Xpi3 = x3.8) Obviously, it suffices to prove that for any
index j € {2, 3, ..., n} there is a Hamilton arc H,; which begins at x, and ends at x;.
For the sake of brevity construct first the cycle € = [U, I'q] where T'y(x;) = {X;4+1}
for ie{1,2,...,n}. If j = n, then H,; will be constructed directly on €. Thus, let
1<j<n

7) If for two distinct vertices x and y there is an edge xy but the edge yx does not exist, then X
will be called a simple edge.

8) In Fig. 2 the case with n = 7 is plotted; this case will be referred to later on.
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If j is even, let H,; be constructed as follows; we pass consecutively through the
vertices Xy, X3, X5, ..., X;_q, X;4+, With odd indices. then along % we pass all vertices
up to x, across the edge 3:7;2, we enter x, and (provided j does not equal 2) pass
vertices x4, X, ..., X;_,, X; With even indices.

If j is odd, thep the construction of H,;, for example, runs as follows: Leaving x,
we enter x, and then through vertices x,, x4, xg, ... with even indices we get to x;,,;
we continue along % to x,, then along the edge x,x,, to x; and (if j does not equal 3)
through vertices xs, x5, ... with odd indices up to x;.

x5 Thereby H
proof is given.

Let us remain a little more at the intro-
duced concept of an H-graph. Leaving
aside the case of [U, I'] with U = {x,, x,},
I(x;) = {x,}, I(x,) = {x,}, we can easily
verify that the following assertion is true:

1j is constructed and the

Theorem 5. Let ¥ = [U,T] be an
H-graph with |U| = 3. Then the incidence
matrix of the graph % is primitive.

Proof. It suffices to prove that there is

a positive integer d with the following

X X property: For any pair (x,y)eU x U

Fig. 2. there is a path of the length d in . Verify

this property for d = |U|. The equality

[T~*(y)| = 1 cannot be true, since otherwise a Hamilton arc beginning at the vertex
zeT"*(y) and ending at y would not exist. Consequently, |T'~*(y)| 2 2 so that
a vertex ¢ # x can be found in I'"!(y). Now it suffices to complete the Hamilton
arc between x and t by the edge ¢y and by the vertex y, which completes the proof.

In conclusion let us add several remarks. We did not try to establish the least
positive integer d which can be assigned to an H-graph (or to the corresponding
incidence matrix). For example, denoting the incidence matrix of the graph in Fig. 2
by A, we have A7 > 0 as it has been shown above. However, it can be verified that
even A* > 0 whereas 43 is not a positive matrix.
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Vytah
ORIENTOVANE GRAFY A JEJICH INCIDENCNI MATICE

Jiki SEDLACEK, Praha

I. Necht A4 je primitivni matice n-tého stupn& (n = 2), jejiz diagram obsahuje
pravé dva cykly. Necht a, b jsou délky téchto cyklu, pfi€emZ a < b. Necht k je
nejmensi pfirozené Cislo, pro né* plati 4* > 0. Dokazuje se, e plati k = n +
+ a(b — 2).

II. Ddle se ukazuje, Ze minimalni pocCet kladnych prvkl nezdporné matice A
stupné n-tého, pro niZ je 4> > 0, je 2n — 1. Diagram této extrémni matice je uréen
jednoznacné.

III. Posledni &dst souvisici s praci [4] zavddi pojem tzv. H-grafu. Tim se proble-
matika ze [4] pfend3i na orientované grafy a ukazuje se souvislost s primitivnimi
maticemi.

Pe3romMme
OPUEHTHUPOBAHHBIE T'PA®BI U UX MATPULIBI MHIIUIAEHTHOCTU

HNWPXU CENJIAYEK (Jiti Sedlacek), Ilpara

I. Tlycts A — npuMuTHBHAS MaTpuL@ crenedu n(n = 2), IMarpaMma KoTopoii co-
IEPXUT TOYHO aBa mukia. Ilycte a, b — MIMHBI 3THX OHKIOB, NMpuUYeM a < b.
IMycTe kK — HauMeHblIEe HATYPAILHOE YMCIIO, 1T koToporo A% > 0. JlokasbiBaercs,
uro k = n + a(b — 2).

II. Janee moka3aHO, YTO MHMHUMAJIBHOE YHCJIO IIOJOXHMTEIbHBIX 3JIEMEHTOB
HEOTPHIATEIbHOW MaTpullbl A CTemeHW n, s kKoTopoi A% > 0, pasHo 2n — 1.
JuarpaMma 3TOi 3KCTpeMaJIbHOW MaTPUIIBI ONpeesieHa OJHO3HAYHO.

III. TocnenHsist YacTh, MpUMBIKArOIas kK paborte [4], mocBsLIeHA TIOHATHIO T. HA3.
H-rpaga. TaxuMm o6pa3om, npobiemaTuka u3 [4] pacnmpocTpaHseTcs Ha OPMEHTUPO-
BaHHBIE Tpadbl, U YKa3bIBaeTCs CBA3b C MPUMUTHBHBIMU MaTpPHIIAMH.
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