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Casopis pro p&stovani matematiky, rok. 103 (1978), Praha

INHOMOGENEOUS LINEAR
DIFFERENTIAL EQUATIONS IN BANACH SPACES

MIrosLAV Sova, Praha

(Received January 21, 1976)

In the foreword to the paper [1], we stated that the well-posedness of the Duhamel
problem is sufficient for the corresponding nonhomogeneous problem to be solvable.
However, more is true and proved in the present paper, viz. that an appropriate
well-posedness of the nonhomogeneous problem, which will be introduced and
studied in the sequel, is equivalent to the well-posedness of an initial value problem,
i.e. to the correctness in the sense of [1] (see Theorems 27 nad 28).

The main technical tool in the realization of the above program is an abstract
version of the classical Duhamel integral.

In the text, we use the notation and definitions introduced in [1] In particular,
it is necessary to get acquainted with the points 1.10, 5.1—-5.3, 7.1, 7.4 and 7.7 of [1]
Moreover, we use some results of [1] and [2] which will be quoted when necessary.

1. We denote by L, (R*, E) the space of all functions fe R* — E, integrable
over every finite subinterval of R* equipped with the following system of seminorms:

|f|T=‘[ |£(@)] dz, T>o0.
Js ,

~ 2. Proposition. The space Ly, (R™, E) is a Fréchet space.

3. Let a < b and fe(a, b) = E. The function f will be called disintegrable
(in (a, b)) if there exists a function g € (a, b) — E such that forevery a < « < f < b,

g is integrable over («, ) and f(B) — f(a) = {4 g(z) d.
The function g will be' called the disintegral of the function f and denoted by f'

or d f(#)/dr. _ _
By induction, we define the disintegrability of the r-th order and denote by f
or d" f(¢)/d¢" the r-th disintegral of f.

4. Lemma. Let fe R* - E and re {0,1,...}. If the function f is (r + 1)-times
disintegrable in R*, then
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() f is r-times differentiable on R*,

(b) the functions f,f', ..., f are continuous on R.
If moreover f"*V e L (R*, E), then

() £(04),f(04), ..., fP(0,) exist.

5. Lemma. For every ke {1, 2, ...}, the set of all k-times disintegrable functions f
on R such that
(o) f®e L (R, E),
(B) 702) = £102) = ... = F4~9(0,) = 0
is dense in L, (R™, E).

6. Lemma. Let fe R* — E. If fe L,(R*, E), then
(@) Jo(t — ©)' f(z) dt exists for every te R* and 1€{0,1,...},
(b) the function [4(t — t)' f(r) dt is continuous on R* and bounded on (0, 1) for
every 1€{0,1, ...},
(c) the function [5(t — 1)' f(x)dt is (I + 1)-times disintegrable in R* for every
le{0,1,...},

@ Gle-rme) gty [

for every teR* and 1€{0,1,...}, je{0,1,..,1},
dl+1

(e) et (I—J”(t - 1) f(7) dt) = f(t) for almost all teR*
de*i\n J,

and every 1€{0,1,...},

© L '[ (- (i J (¢ = 0)* £(0) da) dr =
11)o Lo
— 1 ! _ Ii+12+1 +
= (__——_——ll LT 1)!J.o(t 7) f(r)dr for every teR
and 1;,1,€{0,1,...},
A (L L= o -
© )= (e a0 de)

d 1

= d—tmf (t—o)""*"*! f(r)dt  for almostall teR*
1 2 *Jo

and every 1y,1,€{0,1,...} .
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7. Lemma. Let fe R* > Eand re{0,1,...}. If
(o) the function f is (r + 1)-times disintegrable in R™,

(B) £(02) = (0) = ... = 9(0.) =0,
(Y) f(’+l) € Lloc(R+’ E),
then

t

— )it fer () dr = %J' (t — 0! fY9r)de

*Jd 0

1 t
® Gl

for every teR*, je{0,1,...,r} and 1€{0,1,..]},

® . %J‘(I — 1) f¢*D(z) dt = f(t) for almost every te R*.
r:Jo

8. Lemma. Let A be an open interval, fe A - E and let K be a nonnegative
constant. If
(o) the function f is integrable over A,
(B) there exists a dense subset ® in the space of Lebesgue integrable real functions
on A such that

=< K forevery pe®,

J.A(p(t) (&) de

then |f(t)| < K for almost all te R*.

9. Lemma. Let ge R* - R and Qe R* - E. If

() ge Lio(R*, R),
(B) the function Q is continuous on R* and bounded on (0, 1),
then

(a) [50(t — ) g(z) dr exists for every te R*,
(b) the function [oQ(t — t) q(t)dt is continuous on R* and bounded on (0, 1),

(© j;(r - 9(] et - ) ate)ao) e = [[e-r-oremamara-
=J:Q(t—r)J:(t—‘a)'q(a)dadr for every teR* and 1e{0,1,..}.

10. Lemma. Let ge R* - Eand Qe R* x E—~ E. If

(o) g€ L, (R*, E),
(B) for every x € E, the function Q(,, x) is continuous on R*,
() for every t e R*, the function Q(t, ) is linear,
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(8) for every Te R*, there exists a nonnegative constant K so that | Q(t, x)| =
< K“x" for every 0 <t < Tand x€E,

then

(2) [oQ(t — 7, q(7)) dr exists for every te R,

(b) the function [3Q(t — 7, q(z)) dt is continuous on R* and bounded on (0, 1),

© o= ([ ot~ o tep ac) e =

_ Jo ( J';"(z — - ) O, q(r))da) dr = J:Q (: . J:(t — o) 4(0) da) de

forevery teR* and 1€{0,1,...}.

11. Let Ay, Ay, ..., A, e L*(E), ne{1,2,...}, and ue R* —» E. The function u
will be called a response for the operators 4,, 4,, ..., 4, if
(1) u is n-times disintegrable in R*,
(2) u"~t)e D(4;) for every te R* and i€ {1,2, ..., n},
(3) the functions A" are continuous on R* and bounded on.(0, 1) for every
ie{l,2,...,n},
4) u(0,) =u'(04) = ... = u""1(0,) = 0.

12. Let A, Ay, ..., A, € L¥(E), ne{1,2,...}, and ue R* - E. The function u
will be called a Duhamel response for the operators Ay, 4,, ..., 4, if u is a response
for the operators Ay, A4,, ..., A, such that

u® + 4,u™ Y + .+ AueLi(R",E).

13. Let Ay, Ay, ..., A,eL*(E), ne{1,2,...}, and ue R* — E. The function u
will be called a null response for the operators 4,, 4y, ..., 4, if u is a response for
the operators 4, A,, ..., 4, such that u® + A,u®" Y + ... + 4,u = 0.

14. Proposition. Let A,, A, ..., A,eL*(E), ne{1,2,...}, and ueR* > E, If
the function u is a Duhamel response for the operators Ay, A,, ..., A,, then u™ e
€ Lio(R*, E).

Proof. Immediate, from Definition 12 by means of 11(3).

15. Proposition. Let Ay, Ay, ..., A,eL*(E), ne{1,2,...}, and ueR* - E. Iy
the operators Ay, Az, ..., 4, are closed and the function u is a response for the
operators Ay, Ay ... Ay, then )
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(a) the functions u™~" are continuous on R* and bounded on (0, 1) for every i€
e{l,2,...,n},

(b) Jq(t — 1) u" O(r)dreD(4;) forevery teR*,

ie{l,2,...,n} and 1€{0,1,...}.

t t
() A‘J (t =)' u" () dre =.f (t — o) 4;u""9(r) de
0 0
forevery teR*, ie{l,2,..,n} and 1€{0,1,...}.

Proof. The statement (a) follows from 4 and 11 directly and the statements (b)
~ and (c) by means of [1] 2.4.

16. Proposition. Let A, A,, ..., 4,€ L*(E), ne{1,2,...}, and ueR* - E. If
the operators Ay, A,, ..., A, are closed and the function u is a Duhamel response
for the operators A,, A, ..., A, then for every i€ {1,2,...,n} and 1€{0, 1, ...},
() the function [o(t — 7)'** u™(z) dz is continuous on R* and bounded on (0, 1),

(b) j'(t — )" u"(t)dre D(4,) for every teR™,
0 .

© j (t = ) () dr = 'f (t = 7' A; 4 () de

(’ + i)!
Sfor every te R_+ .

Proof. The statement (a) follows from 6 (a), (b) and 14.
Since u is supposed to be a response for the operators 4,, 4,, ..., 4, we can write
by 7 and 14 for every te R*

T i i L'(t oty (n) dr = % f 0'(: — 1) U= 0(r) dr.

Now it suffices to apply 15.

17. Proposition. Let Ay, A, ..., A, L*(E), ne{1,2,..}, and ueR* - E. If
the operators Ay, A,, ..., A, are closed and the function u is a Duhamel response
for the operators Ay, A, ..., A,, then for every 1€{0, 1, ...}

(@) the function [o(t — ©)**/ u®(z) dt is continuous on R* and bounded on (0, 1)
Jorevery je{0,1,...,n},

(b) fo(t = 7)**! u™(z) dv € D(A,) for every te R* and i€ {1, 2,...,n},
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(c) the function A; [o(t — 1)'*'u™(z)dt is continuous on R* and bounded on
(0, 1) for every i€ {1,2,...,n},

@ L J ;(: — ) u(t) dr + 4,

1
(7 +2)

1
(1 + 1)!

t
J. (t=)"*2u"(r)de + ... + 4,
0

J' 0'(: gt u<~>(zj dr +

1
(I +n)

+ A,

t
-'J‘ (t = )" u"(r)dr =
'Jo
t
= %‘[ (t = O)'[u"™(z) + 4, u" " V(z) + ... + A u(r)]dt for every teR™.
'Jo

Proof. The statement (a) follows from 6 and 14. The statements (b), (c) and (d)
are easy consequences of 12 and 16.

18. Proposition. Let A, A,, ..., A,€L*(E), ne{1,2,...}, and ue R* - E. The
function u is a null response for the operators A,, A,, ..., A, if and only if it is
a null solution for these operators.

19. Let 4,, 4,,...,4,eL*(E), ne{1,2,...}, and me{0, 1,...}. The system of

operators Ay, 4,, ..., 4, will be called converse of class m if

(A) there exists a set J which is a dense subset of R* — D(4,) n D(4,) ...
... D(A4,) in the space L,, (R, E) so that for every h € J we can find a Duhamel
response u for the operators A, 4,,..., 4, for which u" + A, u®™ 1 + ...
o+ Au=h,

(B) there exist two nonnegative constants M, @ such that for every Duhamel
response u for the operators 4,, 4,, ..., 4,, for every te R* and for every
ie{l,2,...,n} '

=

“i '[ o'(t — o A u=P(5) de

t
s e [ 00 + 4,800 4+ A9
]

20. Remark. The property 19(B) can be modified in a similar way as in [1] 7.5.
These modifications are left to the reader.

21. Let A, 4y, ..., A,€ LY(E), ne {1,2,...}. The system of operators A, A4,, ...
..., A, will be called converse if there exists an me {0, 1, } so that it is converse
of class m. o

22. Proposition. Let A,, A,, ..., A,e L*(E), ne{1,2,...}. If the system of oper-
ators Ay, A, ..., A, is converse, then it is also definite.

Proof. An immediate consequence of 18, 19 and 21.
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23. Lemma. Let A, A,,...,A,e L*(E),ne{1,2,...}, me{0,1,...} and let N, x
be two nonmnegative constants. If the operators A,, A,, ..., A, are closed and if
there exists a dense linear set H < L,,(R*, E) such that for every he H, there
exists a Duhamel response u for the operators A,, A,, ..., A, satisfying

u® + Au" Y+ . +Au=h,

t
F,J (t = )" 4;u"" () de)l < Nev' f |1@)] de
m- o O

for every te R* and i€ {1.2,...,n}, then for every ge L,,(R", E) there exists
a function ve R* — E such that

(a) v is-continuous on R* and bounded on (0, 1),
- (b) Jo(t = )" ' v(r) dr € D(4;) for every te R* and i€{1,2,...,n},

(c) the functions A, [o(t — ©)'" ! v(t)dt are continuous on R* and bounded on
(0, 1) for every ie{1,2,...,n},

@ o)+ 4 f oe) dt + .

1)' I(:—-zy 1 ofe) dr =

t
= -L'j (t — o™ g(r)dr for every teR™,
m!

(€)

S = 9 0] < e f lo()] ¢«

forevery teR* and ie{l,2,...,n}.

Proof. Let us fix a linear dense subset H < L, (R, E) for which our hypothesis
holds.

Let g € Ly(R*, E) be arbitrary but fixed.

By our hypothesis we can find a sequence u;, k € {1, 2, ...}, of Duhamel responses
for the operators Ay, 4,, ..., 4, such that

6] u® + Au" V' + ...+ Au,eH forevery ke{l, 2', ),
)] u® + Alu("‘” + ...+ A,,u,‘ =9 in Ly (R* E),

@) ”— j (t - 9" 4, u("""(t) de

Ne"‘I [u(z) + Ay u™D(z) + ... + A, up(7)] dr
0. : -
forevery teR*, ie{l,2,..,n} and ke{l1,2,..},
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@ |- ar@e - - v o] s

<N f I[u(x) + 4y uy™ (@) + ... + 4, u,(7)] —

— [u(x) + 4, u,(,';_l)(r) + ...+ 4, u,u(r)]“ dz
forevery teR*, ie{l,2,...,n} and ky,k,e{l1,2,...}.

Let us now write for te R* and ke {1,2,...}

) w() = i J (:(t (1) de.

It is clear from (6) (f) that

J (¢ = )1 oy(e) dr = J' - t)""“ u(x) de

1 1
(l—'l)! 0 (m+i)! 0
forevery teR*, ie{l,2,..,n} and ke{l,2,...}.

(6)

Using 6 and 16 we obtain from (5) and (6) that :
(7) the functions v, are continuous on R* and bounded on (0, 1) for every ke
e{l,2,...},

®) J (:(t — o) o(c) dr e D(4))

forevery teR*, ie{l,2,...,n} and ke{l,2,..},
(9) the functions 4, [o(t — 7)'"! v(r)dr are continuous on R* and bounded

on (0, 1) for every ie {1,2,...,n} and ke {1,2,...},

(10 A; i 1 Jq(t — 1) ly(r)dr = ’—nl—'J:(t — )" A ul* V(1) de

(-1

forevery teR*, ie{l,2,..,n} and ke{l,2,..}.

Moreover, using 17, we obtain from (5) and (6) that

W) ul) + 4 f o(R)dt + . + A j (t = F~ os) e =

0 ' 1)'
= —J‘ (t = )" [uP(x) + A, u” 1)('l:) + .o+ A, u(7)] dT
forevery teR* and ke{l,2,..}.
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We have by (3), (4) and (10)

(12) : ”

=<

f (t = 1)1 oe) de

1)'
Ne"'J‘ [u(z) + A; ul"V(z) + ... + A, u(7)] de
0

for every teR", ie{1,2,...,n} and ke{l,2,..},

J' (= o dr = A f (t = 91 o, (1) de

=

o b

1)' - 1)

o J' I4(2) + Ag 4l 2() + ... + Ay (] —
= [u2(r) + 4, ul7 () + ... + A, u(1)]| dr

forevery teR*, ie{l,2,...,n} and ky, k,e{l,2,...}.

Moreover, we obtain from (11) and (13) that
(14) o (8) = v ()] =
< [nNe"' + ]J- [[u2(2) + Ay uft™ () + ... + 4, u, ()] -

— [u@(x) + A, ultP() + ... + A u(7)]] de
forevery teR* and ky, k,e{1,2,...}.
In virtue of (2) and (14), there exists a function v € R* — E such that
*(15) vl(t) 55> (1) forevery teR™.

It is clear from (2), (7), (14) and (15) that
(16) the function v is continuous on R* and bounded on (0, 1),

t
(17) J. (t =)t olr)dr J‘ (t =1 to(r)de
0
forevery teR* and ie{l,2,..,n}.

Since the operators A, 4,, ..., 4, are suppdscd to be closed we see easily from
(2), (8), (13) and (17) that

t
(18) f (t — ) 'v(r)dre D(4,) forevery teR* and ie{l,2,..,n},
0 )
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(15) J (t = O 0y(e) de ———> 4, I;(t—r)"‘v(t) de

forevery teR* and ie{l,2,..,n}.
Further, we see from (2), (9)? (10), (13) and (19) that

: ,
(20) the functions A,f (t = 7)""* v(r) dr are continuous on R* and bounded on
0

(0, 1) for every ie{1,2,...,n},

[e-oua-

(21) o) + Aljtv(r) dt + ... + 4, 1

0 "(n - 1)

t
= _%I (t —1)"g(r)dr forevery teR*.
mijo

Finally, by (2), (12) and (19)

(22) “ 1)' I (t = )" o(r)de| < Ne* J la(z)|| d=

forevery teR* and ie{l,2,...,n}.

The statements of our lemma are contained in (16), (18) and (20)—(22).

24. Proposition. Let Ay, 4,,..., A, € L*(E), ne{1,2,...}, and me{0,1,...}. If
() the operators Ay, A,, ..., A, are closed,
(B) the set Dy(Ay, A, .... A,) is dense in E,
(Y) the system of operators A,, A,, ..., A, is converse of class m,
then there exists an # € R* x L, (R, E) > E such that
(a) for every he L (R*, E), the function #(,, h) is continuous on R* and bounded
on (0, 1),
(b) fo(t — )‘ ' F(v,h)dre D(4;) for every he L, (R* E) teR* and ie
ce{l,2,...,n},
(c) for every he Li(R*,E) and i€ {1,2,...,n}, the function A, fo(t — 7)1t
. F(t, h)dr is continuous on R* and bounded on (0, 1),

(@ .?'(t,h)+A1J.37"(1,h)dt+A2f(t—‘;)ﬂ‘(r,h)dt+...

R .[ (- o Ry =L 'fo(z—z)m;l(z) de

for every heL,(R*, E) and teR*,
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(¢) for every te R, the function #(t,.) is a linear mapping,

(f) there exist two nonnegative constants M, w so that for every h € Li(R*, E),
teR* and’ie{1,2,...}

“A, 1 J‘ (t = 't F(x, by de

(i—-1))o

Proof. It follows from (21) and (22) that

(1) the system of operators A, 4,, ..., A, is definite.
Further, we can choose, by the assumption, a dense linear subset H € Liod(R, E)
and two nonnegative constants M, w so that
(2) for every h € H, there exists a response u for the operators A, A, ..., A, so that
u™ + Au™ Y 4+ ..+ Au = h,
(3) for every response u for the operators Ay, 4,, ..., 4, for every te R* and every
ie{l,2,...,n} :

< Me f || de .
0

=

I'_mk' f ;(t — o) A, 4 0(3) e

t
s Me [ [u00) + 4, 4700 + .+ Ay u()] .
0

Now we see easily from the assumptions and from (1)—(3) that the hypotheses
of 23 and [1] 7.10 are fulfilled and the assertion of our proposition then follows
from here.

25. Proposition. Let A,, 4,,...,A,el*(E), ne{l1,2,...}, me{0,1,...} and

FeR* x Li(R*",E)> E.If

(o) the operators A,, A,, ..., A, are closed,

(B) the properties 24 (a)—(d) are fulfilled,

then for every 1€{0,1,...}

(a) for every heLi(R*, E), the function [o(t — t)' F(r, h)dr is continuous
on R* and bounded on (0, 1),

(b) fo(t — ©)'*! F(z, h).dr € D(4,) for every he L, (R*,E), teR* and i€
e{l,2,...,n},

(c) for every he Ly (R*E) and i€{l1,2,..,n}, the function A, [o(t — 7)'*'.
. (1, h) dt is continuous on R* and bounded on (0, 1),
) L[ = o # e b L[ = o+
—-1(t-1)F(t,h+ 4, —— | (t - F(t, h)dr +
1] - oreen s atis -9 st e
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t
J.(t — )2 F(r,h)dr + ... + 4

2+ 2o

{0 :n)!J:(t — O Fe R dr =

- (_1_+_"t’+T)' J:(t () de

for every he Ly (R*,E) and teR*,

(¢) for every te R*, the function [o(t — ©)' #(z, ) dr is a linear mapping,

(f) there exist two nonnegative constants M, w so that for every he Li,(R", E),
and ie{l,2,...,n}

”A, T n T L’(z ot F(n, h)de| < Mew'(l‘:)! J:"h(t)" ar.

Proof. An easy consequence of 24 by virtue of [1] 1.8, [1] 2.4, [1] 2.7 and [1] 2.9.

26. Proposition. Let Ay, A,, ..., A,€L*(E), ne{1,2,...}, me{0,1,...} and
FeR* x L (R, E)y>E If
(ot) the operators Ay, A,, ..., A, are closed,
(B) the system of operators Ay, A, ..., 4, is definite,
(Y) the conditions 24 (a)—(d) are fulfilled,
then for every h € Ly, (R*, E) such that A\h, Ash, ..., A,he Li(R*, E) and for
every te R*

F(t, h) + f "F(z, 4,h) dr + J (t = ©) F(e, Agh)dr + ..

1)'.[ (t =1 ' F(r, 4,h)dr = —-J (t — D" h(z)dr.

Proof. Let us fix an he Li,(R", E) such that Ah, A,h, ..., A,h belong also to
L,,(R*, E) and let us put for te R*

w(t) = F(t, h) + J"ﬁ(r, A;h) + I'(t — 1) F(1, A,h)dt + ...

- j l)!J:(t — 1)~ F(z, A,h) d7 - ;t-' j:(t — )" h(r)dr.

A simple calculation using the properties 24 (a)—(d) and 25 (a)—(d) shows that
the function w has the properties [1] 7.10 (1)— (4). Hence by lemma [1] 7.10, w(t) = O
for every t € R* and this proves our proposition.
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27. Theorem. Let A, A,,...,A,eL*(E), ne{1,2,...}, and me{0,1,...}. If
(®) the operators Ay, A,, ..., A, are closed,
(B) the set Dy(Ay, A,, ..., A,) is dense in E,
(v) the system of operators Ay, A,, ..., A, is correct of class m,
then this system is also converse of class m.

Proof. We see easily that, by our assumptions, [2] 2.13 is applicable and con-
sequently we can find a function # € R* x E — E so that

(1) the conditions [2] 2.13 (a)—(f) are fulfilled.
Since, by (1), the assumptions of 10 are fulfilled, we have
t

¥)) J. #(t — 7, h(r)) dt exists for every he L, (R*, E) and te R*,
0
. t
(3) the function f #(t — 7, h(r)) dr is continuous on R* and bounded on (0, 1),
0
1 t t
@ . j (t = o) f #(x — o, h(o)) do dr =
cJdo 0
t 1 t—t
=f —f (t— - 0)#(o, h(z))do dr =
o llJo
t 1 t
=J #(t —t,— | (v — o) h(o))dodr
0 1'Jo
for every he L,OC(R", E), teR* and 1€{0,1,...},

) J = 1)' '[ (t — © — 0)~* #(o, h(x)) do de

exists for every h eL,oc(R*', E), teR* and ie{l,2,...,n},

6) the function f A; - f (t =17 - 0)"! #(o, h(r)) do dr

1)'
is countinuous on R* and bounded on (0,1) forevery he L, (R*,E) and
ie{l,2,..,n}.

Using [1] 2.4, we obtain from (2)—(6) that

% 5 J' (t — o)~ j #(x — o, o)) do dv € D(4,)

forevery heLM(R*,E), teR* and ze{1,2,...,n},

®) J (t — 2= f #(z — o, h(o)) do dt =

- 1)
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- j tAi(i—_l—l)! I ;—t(t — = o)~ #(q, h(x)) do dr.

0
forevery heL,,(R*,E), teR* and i€{l,2,...,n}.

Moreover, let us fix according to (1) [[2] 2.13 (f)] two nonnegative constants M,
so that
1

© ’ = 1)'J‘(t — ) (e, x) de

forevery xeE, teR* and ie{l,2,...,n}.

< Me|x|

Let us further denote by C™(R*, E) the set of all (m + 1)-times desintegrable func-
tions fin R* such that f™"*V e L, (R*, E)and f(0,) = f'(0,) = ... = f™(0,) = 0.

It follows from 5 that
(10) the set C™(R™, E) is dense in L, (R*, E).

Since the system of operators Ay, A4,, ..., 4, is definite by [2] 2.10 and [2] 2.12,
it is easy to see from (10) that the assertion of our theorem will follow if we prove
that
(11) for every h € C™(R*, E), there exists a Duhamel response u for the operators

Ay, A,, ..., A, such that

u™ + Au" Y+ +Au=nh
and for every te R* and i€ {1,2,...,n}

1
m

J - oo o

< M f 4] d.
0

To this aim, let us choose for the rest of the proof an arbitrary h € C™(R*, E).
With regard to 4, it has the following properties:
(12) his (m + 1)-times disintegrable in R¥,
(13) b, K, ..., k™ are continuous on R* and bounded on (0,1) and h™*Ve
€ L,(R*, E), :
(14) h(0,) = K(04) = ... = K™(0,) = 0.
Now we define for te R+

15 uli) = o 1)' f (t = ! ( I W — o, K™ D(c)) da)

Using [1] 2.8 we obtain from (2), (3), (12), (13) and (15) that
(16) the function u is a n-times disintegrable in R,

07w =t j (t — o) l( I W(c — o, Ko+ D(q) da)

forevery teR* and ie{l,2,..,n},
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t
(18) u™(t) = I #(t — 7, h"*D(t))dr forevery teR*.
0

Now we obtain from (7), (8), (12), (13) and (17) that
(19) u® Nf)e D(A4,) forevery teR* and ie{l,2,...,n},

20)  Au0(1) = L( 5 J' (t == o) #(o, h("'“)(t))da)

forevery teR* and ie{l,2,...,n}.

It follows easily from (6), (12), (13) and (20) that
(21) the functions Au"~? are continuous on R* and bounded on (0, 1) for every
ie{l,2,...,n}.
Further, by means of 8, we get from (12)—(14) that
t
(22) i'J‘ (t = )"A™* V(1) dv = h(t) forevery teR™.
mijo
Now it follows from (1), (12), (13), (14), (18), (19), (20) and (22) that
t
(23)  u™(t) + A, u" V() + ... + A, u(t) = i'J. (t = )" h"* Y (1) dr = h(t)
miJo
for every te R*.

We conclude from (16), (19), (21) and (23) that
(24) the function u is a Duhamel response for the operators A4, 4,, ..., 4, such that
u® + 4wV + .+ Au=h
Using [1] 2.9, we obtain from (4), (17) and (22) that

@) L [le- oruergan =

= _j(: [ 1)’j(t - o)~ l(f W (o — o, h™*1(g)) dg)da]d
e R T A (KR U M
e KRR At KR L B

- _11)! J:(t - 1)"‘[ J:"Il"(r — o, h(o)) da] de

forevery teR* and ie{1,2,..,n}.
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On the other hand, we get from (16), (19) and (21) by means of [1] 2.4 that

t
(26) —I—'J (t=1)"u" 9t)eD(4,) forevery teR* and ie{l,2,..,n},
m! J,

t t
27) 4L j (t — o uO(z) de = L J (t = o A, 5 (c) de
m! 0 m! )
forevery teR* and ie{l,2,...,n}.
Using [1] 2.9, we obtain from (2)—(4), (17) and (22) that

(28) —"ll—' J"(t — )" u" () dr =

e e oo

I (t — oy j’ #(x — 0, K"* () do dr =

(m + i)!

1)' J‘ (t-1)" ‘j #(t — o, h(a))dadr
forevery teR* and ie{l,2,...,n}.
Now it follows from (7), (8) and (26)—(28) that

(29) ;’1“, Jq(' — )" 4, 4" I (7)dr = 4 —1-; J‘t(t — )" u"N(7)dr =

- - 1)! _[ (=97 lj # (v — o, k(o)) dodr =
B I;A‘ (i —1 1):J: (t = = 0)~' #(o, h(x)) do dv

forevery teR* and ie{l,2,...,n}.
Finally, by (9) and (29),

(30) ";‘-' f'(z O A0y e

t
<[
0

dr £

J. (t—t=0)"t#(, h(t))da

1)'
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s [0l e < e [ o) a

forevery teR* and ie{l,2,...,n}.

Since h was an arbitrary element from C™(R*, E) as follows from (12)—(14)
by means of 4, it is obvious that the desired assertion (11) was proved in (24) and (30).
The proof is complete.

28. Theorem. Let Ay, A,, ..., A, € L+(E), ne {1, 2, }, and me {0, 1, } If
(o) the operators Ay, A4,, ..., A, are closed,
(B) the set D,y p4s(Ay, A,, ..., A,) is dense in E,
(Y) the system of operators Ay, A,, ..., A, is converse of class m,
- then this system is also correct of class m.

Pro of We see easily that, by our assumptions, 24 is apphcable and consequently
we can find a function # € R* x Li,(R*, E) > E so that
(1) the conditions 24 (a)—(f) are fulfilled.

According to (1) we can fix nonnegatlvc constants M, o so that

r’

)] | '”A( _1)"[0 1)~ 1.97(1' h) dz <Mew'j||h(r)|[ dr

forevery heL,(R*,E), te R* and ie {1,2,...,n}.

For x € E denote by
(3) o(x) the constant function from R* — E identically equal to x.
Put for x€ E and te R*

@ 1 (1, x) F(t, «(x)) .

From (1)—(4), we 1nfer easﬂy that
(5) for every x € E, the function ¥7(,, x) is continuous on R* and bounded on (0, 1),

(6) I(t-—r)' 1 ¥(z, x) e D(4,) forevery xeE, teR* and i€{l,2,...,n},
(7) for every xe Eand i€ {1, 2, ..., n}, the function
t

A; | (t — )~ ' ¥(z, x) dz is continuous on R* and bounded on (0, 1),
0 :

(8) ¥ (t,x) + 4, J""V(-r, x)dt + AZJ"(t - r) ¥ (r, x)dr + ...

ot A LA
(m +1)'

l)'f(t~r)" L9 (xr,x)dt =
forevery xeE and teR™t,
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(9) for every te R™, the function ¥#7(t, ) is a linear mapping,

(10) A, 7 _1 1)!J:(t - 7)1 Y (x, x)de

forevery xe€E, teR* and ie{l,2,...,n}.

< Me™ t]x

On the other hand, using 25, we obtain from (1), (3), (9) and (10) that
(11) for every x € E and 1 € {0, 1, ...}, the function
t

J. (t = ©)' #(x, x) dr is continuous on R* and bounded on (0, 1),
0

t
(12) j. (t — )" ¥ (x, x)dve D(4;) for every xeE, teR*, ie{l1,2,...,n} and
0 :
1e{0,1,...}, ,
t
(13) for every xe E, i€ {1,2,...,n} and l€ {0, 1, ...}, the function A,J (t— o).
0

. ¥(r, x) dt is continuous on R* and bounded on (0, 1), -

L ! ‘—~———-—1 t -—.’tHl 7, x)dt

(14) I—!J-o(t—'c) V(T,x)dHAl(l“)!L(t 9 ) e +
1 ‘ 142 9 (z x) dt + ...
+A2(l+2)!L(t_z) ¥ (e x)de + .

tl+m+2

1 y L+n = x
e A,mJ’o(t_-— YAl = et T

forevery xeE, teR* and l€{0,1,...}.

Similarly, by 26

(15) ¥Y(t,x)= - J""V(r, A,x)dt — J:(t — 1) f(t, A,x)dr — ...

+1

1 J‘t(t — Pt y(T, Ax) + x

AT (m + 1)!
for every xeD,(4;, 4;,...,4,) and teR™.
Using 10, we obtain from (5)—(7)
(16) Jq"// (t = 7, h(z)) dt exists for every he Liw(R"s E) and te R*,
0 .

t
(17) for every h e Lioo(R*, E), the functionI ¥(t — 7, h(x)) dz is continuous on R*
0 . '
and bounded on (0, 1),
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(18) J:(t - 'r)"’-‘:"l"(r — 0, h(0))do dt = L Jqo_'(t -1 —0)"" 1 ¥(0, h(r))do dr
forevery heL,(R*,E), teR* and ie{1,2,...,n},
(19) J' ‘A (== o) (o, We) do de

0
exists for every he L, (R*,E), teR* and ie{l,2,..,n},

(20) for every he L, (R*, E) and i€ {1,2, ..., n}, the function

t t—t
j A;| (t =t = 06)""t ¥ (o, h(r)) do dz is continuous on R*
o Jo

and bounded on (0, 1).
By means of [1] 2.4, we get from (16)—(20) that

t pt—t
(21) j .f (t — = — 0)""* ¥ (0, h(z)) do dv € D(4,)
0JO
forevery he L, (R*,E), teR* and ie{l,2,..,n},

(22) A,J" ‘-'(t -1 —0)"1¥(o, h(r)) do dt =

040

t t—t
= j‘ A;J' (t =1 —0)"" ¥ (o, h(r))do dz
o Jo
for every heL,(R*, E), teR* and ie{l,2,...,n}.
By (18), (21) and (22)

(23) j'(t 91 #(x — o, K(o)) do dr € D(4,)
0o
for every he L, (R*,;E), teR* and ie{l,2,...,n},
(24) A;J"(t - 1)~ (¢t — 0, h(¢))do dr =
t ’ t—t
= J‘OA,J'o (t—=t—=0)"1¥(o, h(r))dodr,
for every heL,(R*,E), teR* and ie{l,2,...,n}.

By (20) and (24)
. t
(25) for every he L, (R*,E) and i€ {l,2,..., n}, the function A,J‘ (-1}t
0

t .
J ¥(t — o, h(0)) do dr is continuous on R* and bounded on (0, 1).
0
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Finally, by (8) and (24)
(26) I‘V(t — 7, h(r))dt + 4, J‘tJ“V(r — 0, h(c))do dt +
+ AZJ.‘(t - r)jtV(r — 0, h(o))do dt + ...

A _11)! J:(t - f)n-lﬂr(r _ 0, k(o)) do d =
- i 1)!J:(z — (e de
for every he L, (R*,E) and teR™.
By 6 and 7
@7) o h 5 _[ (=) de = L J (=P HE)de

for every heR* — E such that h is disintegrable in R* ,
h0,) =0 and k' €L,(R", E).

Now we see easily from (1), (16), (17), (23), (25) and (26) that
(28) for every he R* — E such that h is disintegrable in R*, h(0,) = 0 and
t
h € Li,(R*, E), the function w(t) = #(t, h) — J. ¥(t — v, k'(z))dr has the
0o
properties [1] 7.10 (1)—(4).
Since by our assumptions and by 22, Lemma [1] 7.10 is applicable, we obtain from
(28) that

t
(29) F(1, h) = J' 7t - =, K(©)dr
0o
for every he R* — E such that h is disintegrable in R* ,

h(0,) =0 and K eL,(R",E).
Let us denote

(30) ® = {p:9peR* - R, ¢isintegrable in R*, ¢(0,) =0
and ¢'e L, (R*, R)}.
As a particular case of (29) we can write with regard to (30)
t
(31) F(t, ox) = J‘ Yt —1,x)¢(r)dr forevery 9ped,
0

xeE and teR*.
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By virtue of [1] 2.8, it follows from (5) and (15) that
(32) _7(04,x) =0 forevery xeD,(Ay,A,,...,4,),

(33) for every x € Dy(4, 4, ..., 4,), the function ¥, x) is differentiable on R¥,

(34) S p0) = —7 (0 41%) - f Ve, Agx) de — ..

n_z)"[(t—r)" 2V(rAx)+—x

for every xeDy(A4;,4,,...,4,) and te R+ .
Denote

(35) Wt x) = d-(l"//(t, x) for xeDy(A;, Ay .. 4,) and teR*.
t

It is clear from (9) and (35) that
(36) for every te R* the function # 4(t,.) is a linear mapping.
By [1] 2.7 we obtain from (5), (34) and (35) that
(37) for every x e Dy(Ay, 4,, ..., 4,), the function #7(,, x) is continuous on R*
and bounded on (0, 1).
By (32), (33), (35) and (37)

t
(38) 7(,x) = f #o(t, x)dr for every xeD,(A4y, 4s,...,4,) and teR™.
0

By (34) and (35)
. t
(39) Wo(t,x) = —¥(1, 4;x) dr — J ¥ (1, A;x)dt — ...
1
-2)!
for every xeD,(4,...,4,) and teR™.
It follows from (6), (12) and (39) by virtue of [1] 2.9 that

J-(t—r)" 2“/f(t,Ax)d1:+—x

(40) ft(t — 1)1 W o(r, x) dr e D(4;)
Jo
for every xeD,(4,,A4,,...,4,), teR* and ie{l,2,...,n},
J.(t-—t)”'#’o(t x)——-A, 1)'I(t—1:)‘11/(1: Alx)
- At L(: — ), Azx) de— ..

@) 4
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tm+i

1 ¢ i
m Ay —— =t y(r, A%) +
i(n+i—2)!fo( ) ( ) (m + i)

for every xeDy(A,, 4,,...,4,), teR* and ie{l,2,...,n}.

Ax

By (7), (13) and (41)
(42) for every x € Dy(A,, A, ..., A,) and i € {1, 2, ..., n}, the function
) :

AiJ. (t — 1)1 #o(t, x) dr is continuous on R* and bounded on (0, 1).
0

Finally, after some suitable regroupings of sums, we get from (8), (39) and (41) that

(43) Wo(t, x) + Ay tho(r, x)dt + A, J.‘(t — 1) Wo(t,x)dt + ...
1

(n— 1)

for every xe Dy(4,, 4,,...,4,) and teR*.

t m
..+ A4, J(t—t)"" Wo(r,x)dr=—t—x
0 m!

On the other hand, using (9) we obtain from (37) and (42) that
t
(44) J' Wo(t — 7, x) ¢(r)dr exists for every ¢ e L, (R*, R),
0
xe€Dy(Ay, 4,,...,4,) and teR*,

(45) for every ¢ € Lo (R*, R) and x € D,(4y, 45, ..., 4,), the function
t

W o(t — 7, x) ¢(7) dr is continuous on R* and bounded on (0, 1),
0

(46) ﬁ(x - j ;"llfo(‘r — 6, %) (o) dr =

t pt—t
=J‘ J‘ (t—1=0)"'#o x)dodr
oJo
for every @ € Li,(R*,R), xe€D,(4;,4,,...,4,), teR* and ‘ie{l,2,...,n},
t t—t
47) J A,-J‘ (t =1 = 0) "' #oo, x) ¢(r) do dt
o Jo

exists for every @€ L, (R*,R), xeE, teR* and ie{l,2,...,n},
(48) for every ¢ € L,o(R*, R), x€ E and i€ {1,2,..., n}, the function

j'A ,jt—t(t — 1 — 0)'! # (0, x) ¢(7) do dr is continuous on R* and bounded

o: (o, (1,)
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By means of [1] 2.4, we get from (44)—(48) that

(49) : J: ;_’(t -1 —06)'" ! # (0, x) ¢(t) do dz € D(4,)

for every ¢ e L,,(R*, R), xeDy(4,,4,,...,4,), teR* and ie{1,2,..,n},

(50) A,J“ t—‘(t —1—0)"' W0, x) ¢p(t)dodr =

0JO
t t—t
=J' A,j (t—1—0)"' #o,x) ¢(r)do dr
V] 1]
for every @€ Li(R*, R), xeD(A4,,4;,..,4,), teR* and ie{l,2,...,n].
It follows from (46), (49) and (50) that
t t
(51) f (t- T)‘_l‘[ Wo(t — 0, x) ¢(¢) do dt € D(4,)
V] 0

for every @ € L, (R*,R). xeD,(4,, 4,,...,4,), teR* and ie{l,2,...,n},
‘ t T
(52) Aij(t—t"‘fwo(t—a,x)qo(a)dadt=
0 0

t t—t
= J. A,I (t—1=0)"' W0, x) o(r)do dz
0 0
for every ¢ €L, (R*,R), x€Dy(4y,A4,,...,4,), teR* and ie{l,2,..,n}.
* On the other hand, integration by parts together with (30), (37) and (38) yields
t i t
(53) J. Wo(t — 7, x) o(r)dr = J Yt — 1, x)¢'(r) dr
0 0
forevery @pe®, xeDy(A4, A4,,...,4,) and teR*.
Now by (31) and (53)
t
(54) I Wolt — 1, %) o(t) dr = F(1, o)
]
forevery ¢e®, xeD,(4,, A4 ...4,) and teR*.
It follows immediately from (2), (51), (52) and (54) that

(55) L [,4 5 J (t -t o) 1'#’0(0,x)da] o(i)dt] <
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t
< Me[<] | Jo(o) o<
V]

forevery pe®, xeD(A;, A4z ..,4,), teR* and ie{l,2,..,n}.

Using 5, we see from (30) that
(56) the set @ is dense in Lio(R ™, R)-
Taking into account (48) and (56) and applying 8 to (55) we get immediately

(57) “A, (z——lﬁ'_ J O'(t — 1)L Wo(r, x) d|| < Me®|x]|

for every xeD,(Ay, Ay, .., 4,), t€R and ie{l,2,..,n}.

Further, it follows from (43) and (57) that

tm
(9 .91 5 [+ 1o
for every xeD,(4;, A5,...,4,) and teR™.

Since by the assumption the operators Ay, A, ..., 4, are closed and the set
D,(Ay, A,, ..., A,) is dense in E, it is an easy matter to show by means of (36), (37),
(40), (42), (43), (57) and (58) that there exists an extension # € R* x E — E such
that

(59) W(t, x) = Wt x) forevery xeDy(A, 4z .. A,) and teR*,
(60) the function %" possesses the properties 2.13 (a)—(f) .

We see from our assumptions, from Proposition 22 and from the just proved
property (60) that Theorem [2] 2.17 is applicable and according to it, the system of
operators Ay, 4,, ..., A, is correct of class m.

The proof is complete.

29. Remark. The only difference in apriori assumptions of Theorems 27 and 28
is in the density of certain domains of the operators A4,, 4,, ..., 4,. It is clear that
under the assumptions 28 () —(Y), the system of operators A,, A, ..., 4, is con-
verse of class m if and only if it is correct of class m.
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