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Časopis pro pěstování matematiky, roČ. 103 (1978), Praha 

TRANSLATED GEOMETRIC PROGRESSIONS 
AND COVERING SYSTEMS 

ŠTEFAN PORUBSKÝ, Bratislava 

(Received February 25, 1976) 

Two types of results are proved or reproved in the paper, namely as indicated in 
the title, on the so-called translated geometric progressions and covering systems of 
congruences. The proofs are based on some mutual connections between these two 
notions. 

1. PRELIMINARIES 

It seems that the name translated geometric progression goes back to J. MAXFIELD, 
and M. LEVAN devoted a series of papers to it. 

Translated geometric progression (or TGP) is a set of integers of the form 

{arn + b:n = 1,2,3 , . . .}, 

where a, r, b are integers with a _ 1 and r > 1. Given a TGP Sf, let P#> denote the 
set of all prime factors of integers in Sf. According to Theorem 1 of [4], Py is infinite 
for every TGP &. 

For pe Py let ar"{p) + b denote the least element of Sf divisible by p and e(p) 
the exponent to which r belongs modulo p if (r, p) = 1; we put e(p) = 1 if (r, p) > L 

The next lemma gave the impetus to this paper. 

Lemma 1. Let Sp = {n : p \ ar" + b} for p in Py. Then one of the following 
alternatives holds: 

a. if p | (a, b) or p \ (r, b), then Sp = {1, 2, 3,...}, 

b- if' P XT a n d P X a> t h e n sp ~ {n:n = n(p) mod KP)}-
A subset P of P<? is said to be admissible (on TGP Sf) if each element from Sf 

has a prime factor in P. A minimal admissible set on Sf is an admissible set no proper 
subset of which is also admissible on y . It may happen that some Sf have finite 
admissible sets. Such TGP's are the subject of consideration in [ l ] (cf. also part 3 
of this paper). 
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If P is a finite minimal admissible set on Sf let 

w-{? m. [e(pi) :pteP], if (ph r) = 1 for all i 
otherwise. 

Lemma 2. (LEVAN [3]). Let P be a finite minimal admissible set on Sf, q a prime 
divisor of L(P) and a the highest power of q that divides L(P). Let A(q) = {p e P : 
: q J e(p)}. For each pe A(q) let f(p, q) be the highest power of q which divides 
e(p). Then 

(i) there are at least q distinct pt e P such that qa \ e(pt), 
(ii) the set {n(p) : pe A(q)} contains a complete residue system modulo q, 

(»0 I g"'<M> £ 1. 
peA(q) 

On a subset P = {pu p2,.••, pt} of P^(t > 1), define the following reflexive and 
symmetric relations (after LEVAN): 

piR«)pjif(e(pi),e(pj))>l9 

Pi Rin) pj if there exists a pk such that pt R( i > pk and pk R(n"1> p.. 

Lemma 3 (LeVan [3]). If P is a finite minimal admissible set on S? then there 
exists a v such that Riv) = P x P. 

Lemma 4 (LeVan [3]). Let P be a finite minimal admissible set on Sf and q any 

prime divisor of L(P). Then 

L(P) £ q.2'~« ^ 2 ' - 1 , 

where t denotes the number of elements in P. 
The following notion that we shall use was introduced by P. ERDOS. A system of 

residue classes 

(1) at mod ni9 0 < a( <£ nt for i e I 

is said to be covering if every integer belongs at least to one of these classes. Covering 
system (l) is said to be irredundant if none of its proper subsystems is also covering. 
Finally, an exactly covering system is a covering system with pairwise disjoint 
classes. 

Now consider a TGP Sf and an admissible set P on it. Obviously, the system 

(2) n(p)mode(P) for peP 

is a covering system. If in addition P is a minimal admissible set, then this covering 
system is irredundant. The converse question of finding Sf to a given covering system 
(1) we are able to answer in the affirmative only if (1) is finite (cf. also Theorem 4). 

Lemma 5- To every finite covering system (l) there exists a TGP and such an 
admissible set on it that the associated system (2) coincides with (l). 
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Proof. Fix an arbitrary integer a. Then choose a prime pt > a from the class 
1 mod nt for i e I (it is clear that pf's may be chosen distinct if necessary). For a primi­
tive root gt modulo pt (i eI) the solutions r of the system 

r = g^1)lni mod pi9 iel 

belong to the exponent nt modulo p{ (i el). Finally, if b satisfies 

— b = arai mod p; 

then the TGP {arn 4- b] and {Pi\ieI fulfil the required conditions. By the way, from 
the proof weseethatif (l)isirredundant, then the admissible sets constructed in the 
proof are minimal. 

2. APPLICATIONS TO COVERING SYSTEMS 

In this section we prove some results on covering systems. The theorems which 
now follow are immediate consequences of the lemmata above and therefore we 
omit their proofs here. 

Theorem 1. Let 

(3) a,- mod n,-, 0 < a,-^ nt- for i = l, . . . , fc, fc>l 

be an irredundant covering system. Let q be a prime divisor of the l.c.m. [nl9...9n^\ = 
= Landa. the highest power of q that divides L. Let A(q) = {i : 1 _̂  i g fc, q | nt}. 
For each i e A(q) let f(i, q) be the highest power of q which divides nt. Then 

(i) there are at least q distinct Vs such that qa | nh 

(ii) the set {at : i e A(q)} contains a complete residue system modulo q, 
(iii) £ «-'<••«> = 1. 

An analogue of part (i) is proved even for covering systems on rings in [6]. As to 
part (ii), this can be proved at least for covering systems on integral domains. 

Perhaps it is not worthless to notice that the whole Theorem is a simple con­
sequence of this — to our knowledge — unproved statement: 

If (3) is an irredundant covering system and q | L, then the system 

aimodqf(i'q) for ieA(q) 
is covering, too. 

Theorem 2. Let (3) be an irredundant covering system. Then there exists a v such 
that for every pair of indices i,j = 1, ...,kwe can find a sequence nt = ntl, nt2,... 
.... ntv = nj of moduli of (3) with 

("r,,>0> 1 
for each s = 1, 2 , . . . , v — 1. 
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Corollary ([6]). Given a modulus nt of an irredundant covering system (3) there 
exists an ni (j 4= i) in (3) with (ni9 nj) > 1. 

Theorem 3. Tn every irredundant covering system (3) we have 

ni^[n1,n2,...,nk]^q.2k-«^2k-1 

for any prime divisor q of a modulus in (3). 
This theorem answers the following question: Given a fc, what is the largest 

possible value of the greatest modulus in an irredundant covering system consisting 
of k classes! It is quite obvious that the adjective "irredundant" cannot be removed 
from the question. The bound 2*"1 is the best possible for every fc, and it is attained 
for exactly covering systems described by S. K. STEIN in [7]. 

3. SOME REMARKS ON LEVAN'S RESULTS 

In the following two last sections we turn our attention back to the translated 
geometric progressions. 

Theorem 4. Let (3) be a covering system and {mj}jer the set of all distinct moduli 
in it each of them appearing exactly Sj times in (3). Let a positive integer r possess 
the property that for each j el\ rmj — 1 has at least Sj primitive prime factors. 
Then for any a (or b) there is a b (or a) such that TGP {arn + b] has an admissible 
set of cardinality fc. 

Proof. Assign to each i el a primitive prime factor pt of rni - 1 (i.e. pt \ r
ni - 1 

but Pi J( f* — 1 for m < n,). According to our hypotheses all pt
9s are distinct and 

it is evident that e(pt) = nt. Then for any a (or b) we can solve the system 

a . rai + b = 0 mod Pi for * = 1, ...,fc 

in b (or a). The rest of the proof is now straightforward. 

Corollary 1. If (3) is irredundant then under the hypotheses of Theorem 4 there 
is a TGP with a minimal admissible set of cardinality fc. 

Our Theorem 4 and its proof was motivated by ideas used in LeVan's proof of 
Theorem 2 in [1]. If we consider an exactly covering system 

2'~1mod2 l for i -= 1,..., fc - 1, and 

2*-1mod2*-1 

then our reasoning coincides in essence with that of LEVAN'S proof in [1]. The 
following corollaries are rewriten from [1] in this spirit. 
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Corollary 2. Under the hypotheses of Theorem 4 for any b there exists an a such 
that every member of TGP {arn + b] is composite. 

Corollary 3. Let nl9..., nk9 r be integers greater than 1. Let for each i = 1,..., k 
there exist a primitive prime factor p{ of rHi — 1 in such a way that all the p\s 
are distinct. If f = f(nl9 ...9nk) denotes the number of distinct covering systems 
with moduli nl9..., nk9 then for any b (or a) there exist at least f afs (or b's) in-
congruent mod p1 ... pk which satisfy the conclusion of Theorem 4. 

4. COPRIME ELEMENTS IN TGP'S 

Theorem 5. For every N ^ 0 there is a TGP containing at most N primes. 

Proof. Let (l) be a covering system.Define the so-called covering function of (1) 
in the following way: 

m(n) = card {i e I : n == at mod nJ . 

Now, if $f is a TGP and Py the set of all prime divisors of its elements, then $f 
contains a prime if and only if m(n) = 1 for at least one n, where m(n) is the covering 
function of the covering system (2) assigned to Py. 

The remaining part of the proof is now easy to foresee. A covering function of 
a finite covering system is obviously periodic. Therefore, let (3) be a finite covering 
system whose covering function takes the value 1 at at most N points in every interval 
of length equal to its period n0 (e.g., take an exactly covering system and add to it 
several suitable residue classes). A TGP $f constructed for this system (3) in the way 
described in Lemma 5 contains at most N primes, since only l's in the interval [0, n0] 
can represent prime numbers. 

Theorem 6. For every M ^ 1 there is a TGP $? whose every element has at least M 
distinct prime factors. 

The proof parallels the previous one. Consider a finite covering system (3) with 
a covering function m(n) ^ M for every n. 

Theorem 7. Let $f be a TGP and x = min{cardP:P is admissible on $?}. 
Then the cardinality of the set of all distinct prime diviors of elements in a maximal 
subprogression of coprime elements from $f is at least x. 

Proof. Let A be a set of coprime elements from Sf and P the set of their all prime 
divisors. If card P g x9 then the system 

n(p) mod e(p) for peP 
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cajmot be covering and therefore we can find an element ar" + b in S? whose 
exponent n belongs to none of these classes. But then this element is certainly coprime 
with each element in A. 

Corollary. TGP Sf contains an infinite subprogression of coprime elements if 
and only if there is no finite admissible set on SS. 

The idea of the previous proof can be used to strengthen the last Corollary. 
Namely, in the next theorem we answer a question posed by LeVan in [5] whether 
in such an Sf there exists an infinite subprogression having the property that each 
its element is coprime with all preceding elements of Sf. 

Theorem 8. A TGP Sf contains an infinite subprogression having the property 
that each of its elements is coprime to all the preceding elements of Sf if and only 
if Sf has no finite admissible set. 

Proof. Let A be a finite subprogression of the above mentioned character and x 
an element of Sf greater than the elements of A. If Px now denotes the set of all prime 
divisors of elements in Sf less than x, then the system 

n(p) mod e(p) for p e Px 

is not covering. If xt is the least element of Sf not covered by this system, then xt 

is obviously coprime to all the preceding elements in Sf. Induction completes the 
proof. 
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