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Casopis pro péstovini matematiky, ro¥. 103 (1978), Praha

DETERMINATION OF A SURFACE BY ITS MEAN CURVATURE

Avors Svec, Olomouc
(Received August 17, 1976)

M. MaTtsumoTo [2] and T. Y. THOMAS [3] have shown how to reconstruct a surface
of the Euclidean 3-space from its metric form and its mean curvature; see also [l]
In what follows, a simpler and more complete solution of the same problem is
presented.

1. Let be given a domain D = R? and a metric
(1) ds? = A(x, y) dx* + 2 B(x, y) dx dy + C(x, y) dy*
on it. Let us choose the forms o' = I'} dx + I'i dy, * = I'} dx + I'3 dy such that
2 . ds* = (0')* + ().

Then there is exactly one form w? such that

€)) do' = —0? A 0?, do? =o' A 0l.
If

4 do! = ro' A ®?*, do? = so! A 0?,
we have

) 0? = ro' + so?.

The Gauss curvature K of the metric (1) is defined by the formula
(6) do} = —Ko' A ?.

Let f: D - R be a function. Its covariant derivatives f;, fi; = f; with respect
to the chosen coframe (w', ?) let be defined by the equations

(7 df = fi@' + fr0%;
(8) df; — f,0% = f1,0' + f1,0%, df, + f10} = f120" + f,07.
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Letf, g : D — R be functions. Let us introduce the following differential operators:

) - V(f,9) =191 + 292, Y =V(/.f),
(10) Af = f11 + f225 Tf=(f1;—f22)2+4f122,

(11)  &(f, 9) = (f11 — f22) (191 — 1292) + 2 f12(f192 + f291), Of = 9(f.f).
Let

(12) ds? = (') + (?)?

be another expression of the form (2). Then

(13) . ' =0w'.cosp — w?.sing, t*=¢w'.sing + w®.cosy);
e= *1.

From

(14) di' = —12 A g(w] — do), di? =1' A g(w] — do),

we see that

(15) 17 = g(w} — do).

Denote by f7,f}j the covariant derivatives of the function f with respect to the
coframe (z*, t2). Then

(16) fi=cose.ff +esing.fy, f,=—sing.ff +ecosop.f;;
(17) fii= cos?o.ff +2esingcoso.f, +sin2o.f),,
fi2 = —singcos @ . ff; + g(cos® ¢ — sin ) f}, + singcos . f3,,
faz= sin?o.ffy —2esingpcosq.fiy +cos?o.f],.
This implies

(18)  V*(f,9) =V(f,9), A* =4f, ¥ =¥f, *(f,9) =9}, 9).

2. Let M : D — E?® be a surface. The frame (wy, w,) on D being dual to (o', ?),
let the orthonormal frame (v,, v,, v;) associated with M be v, = (dM)w,, v, =
= (dM)w, and v, the unit normal vector. Then the fundamental equations of M are

(19) dM =  o'v, + &?v,, dv, = o, + oo,
dv, = —wlv, + wlv;, dv; = —0dv, — wlv,

with the integrability conditions (3),

(20) A+ AR}=0
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and

(21) do? = -0} A 0}, dod=0w?Ao0), do}= -0} Ao}
From (20), we get the existence of functions x, y : D — R such that

(22) o} =(H + x) o' + yo?, o) =yo! + (H - x) 0?,

H being the mean curvature of M. From (21,) and (6),

(23) K=(H+x)(H=-x)—y.

Let us introduce the functions

(24) I=J(H*-K), L=1=H?-K.
Then
(25) x2+yt =1,

and we are in the position to write
(26) wi =(H + lcosa) @' + Isinx. 0?,
w3 =Isina.w! + (H — I cos a) w?.

Our task is to produce, the forms o', w? and the function H being given, a func-
tion a such that the forms (26) satisfy (21, ).

By direct calculation, we get
(27) lay = —H,sina + Hycosa + I, — 2rl,
ley = Hycosa + Hysino — I, — 2sl,
the indices denoting the above introduced covariant derivatives. Let us write
(28) do = g0 + a,0?,
(29)  doy — w,0? = a0 + 4,07, do, + 4,07 = 00" + 0,07 ;
the equation
(30$) Ayp = Oay
is then the integrability condition of (28). The differentiation of (27) yields
(31) Iy = —(I; + Hycosa + H,sina)o; — rl&z — (Hyy + rHy)sina +
+ (Hy, — rHy)cosa + Iy, — 3rly — 2r41,

lag, = —lay — (sl + Hycosa + Hysina)a; — (Hy, + sHy)sina +
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+ (sz - sHl)Cosa + 122 - Sll - 2rlz - 2)‘21,
layy = (rl — Hysina + Hycosa)ay — Lo, + (Hy, — rHy)sina +
+ (H11 + er)COSa e 111 - 2511 e rlz - 2311,
loy, = slay — (I, + Hysina — Hycosa) o, + (Hy, — sHy)sina +
+ (le + SHZ)COS(Z - 112 - 35’2 + 2521.
Let us recall that (5) and (6) imply
(32) - K=r,—s —1r*—s%.
From (31, ,) and (27), we get
(33) L(a12 - a“) = - 2(H121 - Hzll - HIIZ) Sina +
+ (szl - Hlll + 2H111 - 2H212) cos o —
— VH + 141 — VI — 2KL.

Further,
(34) L, =2, L,=2I,,
Ly, =213 +21l;,, Ly, =21, +2ll,, L, =23%+2ll,
and
(35) VL=2LVI, AL=2VI+2l4l.

The equation (33) may be rewritten as
(36) 2Layp — apy) = —4L(Hy,l — Hyly — Hyly)sina +
+ 2L(H,,l — Hy,l + 2H,l; —2H,l,)cos o« — 2LVH + LAL — VL — 4KI? .
Further,
(37 L, =2HH, - K,, L,=2HH, —K,,
Ly, =2H? + 2HH,, — K,,, L,, =2HH, + 2HH,, — K,,,

© Ly = 2H3 + 2HH,; — K;;,
which implies

(38) VL=4H?>VH —4HV(H,K) + VK, AL=2VH + 2H AH — 4K .
Because of this, the integrability condition (28) may be written as

(39) , —4LP, sina + 2LP,cosa + P =0
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with
(40) P, = Hy,l — Hyly — H,l,, P, =(Hy, — Hy,) 1 + 2H,l, — 2H,1,,
(41) = —4KH* + 24H . H? + (8K? — 4K — 4 VH) H* +
+2{2V(H,K) - K AH} H + K 4K — VK — 4K3.
Further, it is easy to see that
(42) (4P? + P3) L= (H*> — K)* YH + 4H}(VH)* +
+ VH.{VK — 4H V(H,K)} + 2(H* — K) {®(H, K) — 2H ®H} .

3. ILet us recall that the second fundamental form of M is given by
(43) II = 0'o] + 0o =
= (H + Icosa)(w')* + 2lsinaw'w? + (H — Icos a) (0?)? ;
the vectors v,, v, are principal at p € D if sin a(p) =0.

Now, it is easy to see the validity of the following

Theorem. In a domain D = R?, let a metric ds* be given. Let K be its Gauss
curvature, and let H : D — R be a function satisfying H> > K. Let p € D be a fixed
point, and let the vectors wy(p), w,(p) be orthonormal with respect to ds®.

1° Let VH = 0. If there is a surface M : D — E? with its first form equal to ds*
and the mean curvature H, H is a solution of the equation

(44) 4KH* + (4K — 8K*)H? + VK — K 4K + 4K® = 0.

Let ds? be such that there exists a constant solution H of (44) satisfying H> > K.
Then there is a neighborhood U < D of p and a unique surface M : U — E3
having ds* for its first form and H for its mean curvature, the vectors dM, w,(p),
dM, wy(p) being principal.

2° Let
(45) (H* - K)? YH + 4H*(VH) + VH . {VK — 4H V(H, K)} +
+ 2(H? — K) {®(H,K) — 2H ®H} = 0.

If there is a surface M : D — E® with its first form equal to ds® and the mean
curvature H, we have '

(46) 4KH* — 2 AH . H® + (4K + 4 VH — 8K*) H? +
+2{K AH — 2V(H,K)} H + VK — K 4K + 4K* = 0.
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Let ds? be such that, in a suitable neighborhood U, < D of p, there exists a solution
H of (45) and (46) satisfying H* > K. Then there is a neighborhood U = U, of p
and a unique surface M : U — E3 having ds? for its first form and H for its mean
curvature, the vectors dM wl(p) dM, w,(p) being principal.

It remains to discuss the case in whlch the function H does not satisfy (45) at any
point of p € D. In this case 4P? + P + 0, and (39) may be written as

P

47 cos fsina + sin fcoso = — ——o—o,
#7) A g 2L./(4P} + P3)

the angle f being determined by

—2P, P

48) . cosf=—1 _ sinf=—-—-2 .
“) b= Jar ey P Jar e
Thus

(49) P? < 4I}(4P} + P3).

Let H satisfy (49). Then we produce B from (48) and « from (47); if this « satisfies
(27), the local existence of our surface is ensured. Its second form is given by (43).
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