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časopis pro pěstování matematiky, roč. 103 (1978), Praha 

ON THE EXISTENCE OF SOLUTIONS OF THE H-TH ORDER 
NON-LINEAR DIFFERENTIAL EQUATION WITH DELAY 

JAN FUTAK, 2ilina 

(Received May 25, 1976) 

In paper [2], the existence theorem for a non-linear differential equation of the 
fourth order with delay is proved by means of Schauder-Tychonoff fixed point 
theorem. 

In this paper several assertions from [3] are generalized to the differential equation 
(1). The method from [2] is used to prove Theorem 1. 

Consider a differential equation of the n-th order with delay of the form 

(i) /n)(0 + 2>*(0.vw(0 =/('.K0.-.>'(B-1)(0^W0].-./',-1)W0]). 
fc = 0 

where n ^ 2 is a natural number. Let the following conditions be fulfilled: 

(a) rk e C(J = [f0, oo), R), k = 0, 1,..., n - 1, 
(b) h e C(J, R), h(t) = t, 
(c) f(t, p.,. . . , v„, uu..., u„) eC(D = Jx R2"). 

Let O(f) = {<»>o(0. $i(0» •••' *»-i(0} ^ e a vector-function defined and continuous 
on the initial set 

Eto = (Mh(t),to]. 
teJ 

If inf h(t) = min h(t), t e J, then Et0 = [ inf h(t)910~\. 
teJ 

Initial Problem. Find a solution y(t) of the differential equation (l) on the 
interval J which fulfils the initial conditions 

(2) yw(to+) = ^ o ) = yofc), y(k)ih(t)]^Ok[h(t)]9 h(t)<t09 

k = 0,1,.. ., n - 1. 

Let xj(t)9 j = 0,1, ...5 n - 1 be the solutions on J of the differential equation 

(3) x<»\t)+n;Zrk(t)x«\t) = 0 
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which fulfil the initial conditions 

(4) W o ) - « * - { J ; Jjtk

k't ^ * - o . i . - . » - i 
и - 1 

Then every solution x(t) = £ Cj */(*) of (3) where Cj are real numbers satisfies 
1=o 

xik)(t0) = Ck, k = 0 , l , . . . , n - 1. 

Remark 1. The Wronskian W(t) of solutions Xj(t), j = 0, 1,..., n — 1 satisfies 

W(f) = expj - | \_ . .(s)dsj. 

For the sake of brevity we shall further write W(t) only. 
Denote 

X0(s), Xx(s), ..., X^^S) 
x0(s), xi(s), . . . ,xiM (s) 

(5) Иi(ř, s) = 
xГ 2 )(S),M"- 2 )(S),.,xГ 1

2 )(S) 
xířЧO. *?V). •••.*í-i(0 

, k = 0, 1, ..., n — 1 

Evidently JV*(f, s) = ekW0(t, s)/etk for every f, s e J, s ^ t, k = 1, 2,. . . , n - 1 
We define 

(6) D(s) = max {|ЯЦs)|, |Wi.(s)|, ..., |Иr

ta_1(s)|} , s є J , 

k = 0,1,..., n — 1, where Kki(s), i = 0, 1,..., n — 1 are determinants obtained 
from Wi(t, s) by omitting the Mh column and the n-th row. 

We define further 
» - i 

• c = E|C,| 
1 = 0 

and 

(?) ak(i) = max {\xľ(t)\, \xf(ђ\,..., tøЭД|} , teJ, 

where xs(i), j = 0,1,.. ., n — 1 are the solutions of (3) fulfilling the conditions (4). 
From (6) and (7) it is evident that the functions ak(t), k = 0,1,.. ., n — 1 and D(t) 

are continuous on J. 
Because ak(t0) = 1, we put ock(t) = 1 for t e Et0, k = 0, 1,..., n - 1. 
Denote 

w «')-fc)-'°'-ta,!' '"• t"°'1 —• 
Remark 2. If the functions ak(t) are nondecreasing, then j}k(t) = ak(t). 
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Theorem 1. Let the conditions (a) —(c) be fulfilled and let there exists a constant 
X > 0 such that 

(9) 1*1(01 __>-, k = 0 , l , . . . , n - 1 , teEt0. 

Further suppose that there exists a function co(t9 rl9..., r„9 zl9 ..., z„) defined 
and continuous for t e J and 0 _J rl9..., r„, z x , . . . , z„ < oo, which fulfils the fol­
lowing conditions: 

(i) for every £ e J co(f, r_,..., r„, z l s . . . , z„) is non-negative and non-decreasing 
in all the other arguments; 

(10 \f(*9vl9...9vn9ul9...9un)\ __ co(t9 \v1\9...9|i>„|, | u_ | , . . . , |ti„|) on I); 

(iii) 

(10) 
LЫO , r 

k=0 cD(t,ß0(t)X,...,ßn„1(tЏ,ß0(t)X,...,ß„_i(t)k)àt<A 

W(t) n\ 

J to 

Then every solution y(t) of the initial problem (l), (2) which fulfils the conditions 

(ii) i V l ="_: |c.l = c < x 
k = 0 * = o 

exists on J and satisfies 

(12) |/*>(0 - x(k\t)\ < pk(t) (X-C)9 k = 0, 1, ..., n - 1 , 

n - l 

where x(0 = £ Cj Xj(t) is the solution of (3) with C, = ^0
j) (cf (2) and ( l l)) . 

1=o 

Proof. Let Yn_x be the space of functions y(t) which have n — 1 continuous 
derivatives on EtQ u J. Let {Ij j i j be a sequence of compact intervals such that 

oo 

U Ii = J, where Ij = [t09f j] and It a Il+1 c J for every /. 
i = i 

Define in the space Yn_t & system of seminorms 

Rt(y) = max { sup |>;(fc)(0|} . 
k = 0 , l , . . . , « - 1 teEtQKjIl 

This system of seminorms induces a local by convex topology on Yn_x and therefore 
the space Yn„1 is local by convex. 

Consider a subset F c Vn_1 defined as follows: 

F = {y e / „_ , , | /k>(0| _S XMO, fc = 0 , 1 , . . . , n-l9teEtouJ}> 

where /?t(f) are defined in (8). 
Define for y e F an operator T: 

(13) ( T j ^ O = ®*(0 > teEtQ9 k - 0, l , . . . , n - 1 , 
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(Tyr\t) - x«\t) + f ^ f } f ( S , y(s),..., /"^(s), ,[*(s)] ,..., /»-»[h(s)]) ds , 
„ J to W(s) 

k = 0 ,1 , . . . , n — 1, te J , 

where x(*) is a solution of (3). 

a) It is obvious that F is a convex closed set. 
b) We show that TF <= F. 

For t e EtQ we obtain with regard to (9) 

|(T»<*> (0| = N 0 | = *. = W ) • fc =- o, i , . . . , « - i . 
Since (5) implies the estimate 

|^(( )S)Un!« t(0n4). 
i«o 

we obtain for te J from (13) 

|(7Vf > (01 s |*<«(0I + f1]^11 IA-. * ) /-1)(s). 
J»o ^ ( s ) 

^(s ) ] , . . . , / - 1 ^) ] ) !^^ 

«*(0 c + n! 

'oo n-2 

IWO 
1 = 0 

(0 
co(t,ß0(t)k,...,ßn„1(t)k,ß0(t)X,...,ßn-1(t)X)dt 

:£ ak(t) lc + n\ ^-^\ = <*(') * = MO * • 

c) We show that Fis continuous. 

Let {yjfc)}J_i> fc = 0 ,1 , . . . , n — 1, yjeF be a sequence which converges to y(k), 
fc = 0, l , . . . ,n — 1,>;GF uniformly on every compact subinterval of J. 

Let Jj = [t09 tt~] be an arbitrary compact interval from J and let £ > 0 be given. 
We show that (Tyj)w (t) zt (Ty)(h) (t), fc = 0 ,1 , . . . , n - 1 provided t e /,. 

Denote 
Ak = max (xk(t) , fc = 0 ,1 , . . . , n — 1 . 

.e[fo,t,] 

As the function f is continuous and yf} zj y(fc), fc = 0 ,1 , . . . , n — 1 holds on every 
compact interval Ih there exists such M > 0 thatfor j = M 

(14) 
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ГM0 
fc=o 

* ( 0 
|/(ř, ,-xo. - . yf'l\t\ yjWl •••> # " "WOD -



- /(., y(t),..., /-'>(.), y[h(t)l..., /-"[AW])! < 

< —-— , k -0 , l , . . . ,n - 1, te/,. 
A(ti " to) n! 

From (13) with regard to (14) we obtain for t e /, and j = M 

|(гv,fҶ0-(TyГ(t)|_Ы0«! 

ľř и - 2 

П«»(0 
W(s) 

|/(s,j,(s),... 

• •.. y(m .v,W-)]. • • •. y?-1^)]) - /(-. Ks). • • • 

...,^-i)(s),y[h(s)],...,^-1)[h(s)])|ds < . ^ W ! ; . f d s < 
MU - to)»!Jro 

g £(* - {o) ^ <*> - lo) _ £ 

(tj - to) (t/ ~ to) 

d) We show that TT is a compact set. The assertion a) implies . 

| (Ty)w(0l=M0^» fc = 0 , l , . . . , n - l , tsEt\JJ. 

If we choose k = n — 1 in (13) and differentiate, we obtain 

(T,-y> (0 = *w(0 + f ^/{>.*>).-...p-'Kbyim-•> 
J«o W{s) 

•••. / - 1 ) [ ' ' ( # ds + f(t, y(t),..., y*-»(t), y[h(t)l..., y^l\h(tj\) , 

where 

Wй(t, s) 

x0(s), xt(s), ..., xп_.(s) 
x0(s), xi(s), ..., x;_.(s) 

xГҶІ^r'2И-''.^2 )(s) 
*Ш 4Л)(0> ....*í"-_(0 

The last equality yields for f6 / the estimate 

|(_»M(0| _ |x<»>(0| + f &^o>(s, /?0 (s)X fiB.t(B)Kfi^)K... 

J t0 "(S) 

...,)?„_ ,(s) X) ds + _(f, /?0(t) », • • •, Pn- l(t) *, M O *. ' • - A-1(0 *) > 
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which implies that (Ty)(n) (t) is bounded on It. Thus have obtained the uniform 
boundedness of (Tyfk)(t), fc = 0,1, ...,n on EtQyjIh hence the equicontinuity 
of (Ty)(k) (t), fc-= 0,1,..., n - 1 on Et0 u /,. Therefore TF is a compact set. 

With regard to the Schauder-Tychonoff fixed point theorem, the operator T has 
at least one fixed point in F satisfying 

(15) (TyYk)(t) = /k)(t), fc = 0 , l , . . . , n - l . 

The assertion (12) follows now from (13) by virtue of (15) and (10). The proof 
of Theorem 1 is complete. 

Theorem 2. Let the assumptions from Theorem 1 hold with the condition (10) 
replaced by 

Í ^ - aĄt, ß0(t) X,..., ßn_ .(f) X, ß0(t) X,..., ß„_,(') X) dř < — -

Then every solution y(t) of the initial problem (l), (2) which fulfils (11) exists 
on J and satisfies (12) with x(t)from Theorem 1. 

Proof proceeds as that of Theorem 1, only we use (6) to estimate Wk(t, s). 

Lemma 1. Let (a)—(c) hold. Let [t0, T) be the maximal interval of a solution y(t) 
of the initial problem (l), (2) and let the functions y{k)(t), fc = 0,1,..., n — 1 be 
bounded on [t0, T). Let moreover O(r) be bounded on EtQ. Then T = oo. 

The proof can be found in [3]. 

Lemma 2. Let y(t), a(t), F(t), q(t) be functions belonging to the class C([t0, b), 
[0, oo)) and let a function co(z) e C([0, oo), (0, oo)) be non-decreasing. 

Denote' 
Cz 1 

(16) Q(z) = ds , z0 > 0, z = 0 . 
Jzo^C5) 

Let z(t) 6 C([t0, b), [0, oo)) satisfy the relation 

(17) z(t) = y(t) + a(t) f F(s) q(s) co[z(s)] ds , t0 = t < b . 
J to 

Then we have for every te[t0, b) 

(18) z(t) £ Q~x $Q[r(t)] + A(t) (fF(s) q(s)ds\ , 

where Q~x is the inverse function to (16), r(t) = maxy(s) and A(t) = max a(s), 
t0_is__t t0__s_it 

te[t0,b). 
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Proof. Define a function Z(t) on the interval [t09 b) by the relation Z(t) = 
= max z(s). It is evident that Z(t) is a continuous, non-negative and non-decreasing 

toSs^t 

function. With respect to the properties of co(z)9 we obtain from (17) that 

z(t) ^ r(t) + A(t) f F(s) q(s) co\Z(s)\ As. 
J to 

Let I e [t09 r] be a point at which z(t) assumes its maximum on [t09 i]. Then 

Z(t) =- z(f) = r(i) + A(l) ! F(s) q(s) co\Z(s)\ As S 
J t0 

^ r(t) + A(t) f F(s) q(s) co[Z(s)\ As . 
J*o 

If we apply the Bihari lemma (see [l]) to the last inequality, we conclude 

Z(t) ^ Q-1 WF(0] + -4(0 rF(s)^(s)ds|. 
Since z(t) = Z(t)9 (18) holds. 

Theorem 3. Let the assumptions (a) —(c) be fulfilled. Moreover, let 

(i) <K0eC(/,[O,c*0); 
(ii) the function co(z) e C([0, oo), (0, oo)) be non-decreasing and 

/•0O 

J ř 0 
co(s) 

(iii) \f(t9 vl9..., vn9 ut9..., utt)\ ^ \l/(t) cofal), 

for every point (t9 vi9..., i?w, ul9 ...»un)e D. 
Then every solution y(t) of the initial problem (l), (2) exists on J and fulfils the 

inequality 

(19) Ml g a-* {a[r(0] + 4')£^<A(s)ds}, 

where O, Q"*1 hat;e the meaning from Lemma 2, F(f) = max |x(s)|, .4(f) = max a0(s), 

x(t) = £ Cy x/f) is rhe solution 0/(3) vwfh C, = y0
J) (cf. (2) and (ll)), a0(s) is defined 

1=o 
in (7) and D(s) in (6). 
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Proof. The method of variation of constants yields for the solution y(t) of the 
initial problem (l)> (2): 

(20) y(t) = x(t)+ f J ^ / ( * f j < » ) . ^ 
J to W(s) 

where x(t) is the solution of (3) defined above and W0(t, s) is defined in (5). 
Denote T(t) = max |x(s)| and A(t) = max a0(s). Then we obtain from (20) with 

to£s£t -ogs^f 
respect to the assumptions of Theorem 3 the inequality 

\y(t)\ ^ r(t) + n P a i M t(s) co(\y(s)\) ds 1 
J t0 W\S) 

^F(r) + nA(0f^^5)a>(KS)|)dS. 
JtoW(s) 

Let [f0, T) be an interval of existence of a solution y(t) of the initial problem 
(1), (2). If we apply Lemma 2 to the last inequality for t e [t09 T), we have (19). 

According to (20), the derivatives yik)(t), k = 0 ,1 , . . . , n - 1 of the solution y(t) 
of the initial problem (l), (2) satisfy 

(2i) jw(0 = ^X0 + J'^/(S,K4---./n-1H)'Ws)]>---

• • • ^ ( H _ 1 W ] ) d s -

Since (21) implies the inequality 

| ^ ( 0 I ^ 1^(01 + n f! ?&^±t(s)co(\y(s)\)ds, 
J to rr[S) 

k = 0 ,1 , . . . , n - 1, the functions y(fc)(f), k = 0 ,1 , . . . , n - 1 are bounded on 
[r0, T) if T < co. With regard to Lemma 1 we conclude that the solution y(t) of the 
initial problem (1), (2) exists for t e J and (19) holds. The proof is complete. 
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