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Casopis pro péstovini matematiky, rok. 103 (1978), Praha

ON THE EXISTENCE OF SOLUTIONS OF THE »-TH ORDER
NON-LINEAR DIFFERENTIAL EQUATION WITH DELAY

JAN FurAk, Zilina
(Received May 25, 1976)

In paper [2], the existence theorem for a non-linear differential equation of the
fourth order with delay is proved by means of Schauder-Tychonoff fixed point
theorem.
~ In this paper several assertions from [3] are generalized to the differential equation

(1). The method from [2] is used to prove Theorem 1.

Consider a differential equation of the n-th order with delay of the form

O 590 +Z 000 = 10,500 5O HOD 3RO,

where n = 2 is a natural number. Let the following conditions be fulfilled:

(@) e C(J = [to, ©),R), k =0,1,...,n — 1,
(b) he C(J, R), h(t) < t,
() f(t, 015 +.vs Vs ug, ..., u,) € C(D = J x R*).

Let ®(7) = {®(2), D4(t), ..., ®,—1(t)} be a vector-function defined and continuous
on the initial set

E,, = (inf h(t), to] .
teJ
If inf h(t) = min h(z), t € J, then E,, = [ inf h(2), t,].
teJ

Initial Problem. Find a solution y(f) of the differential equation (1) on the
interval J which fulfils the initial conditions

) YW (to+) = Bilte) = y&°» yOLH(H] = @[A(A)], K1) < 1o,
k=0,1,..,n—1.

Let x,(t), j = 0,1,...,n — 1 be the solutions on J of the differential equation
n—-1
(3) x™(t) + Y (1) x®(6) = 0
k=0
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which fulfil the initial conditions

1, j=k,

n—1

Then every solution x(t) = Y C; x,(t) of (3) where C; are real numbers satisfies
j=o

@ 'xy)(‘O):SJk:{o, TEE k=01, -1,

x®(t))=C,, k=0,1,...,n—1.

Remark 1. The Wronskian W(t) of solutions xt), j = 0,1,...,n — 1 satisfies

wi) = o - | r(9) ds}.

to

For the sake of brevity we shall further write W(t) only.
Denote
xo(s),  x4(5), vy Xpms(S)

xo(s)h - xilsh e Xaea(s)

- : ) ’
xg;-Z)(s)’ x(ln—z)(s)’ ey xfln_—lz)(s)
PO, xP@), . x40

Evidently Wi(t, s) = 0*W,(t, s)/ot* for every t, seJ, s<t, k=1,2,..,n—1
We define

©) D) = max (W)} (WO - [Warcr )]} s,

k=0,1,...,n — 1, where Ki(s), i =0,1,...,n — 1 are determinants obtained
from W,(t, s) by omitting the i-th column and the n-th row.
We define further

G)  Wilts) = k=01,..,n—1.

n—1
C=3%|c)
ji=0
and
D ) = max (PO, PO RO e,

where x,(t), j = 0,1,...,n — 1 are the solutions of (3) fulfilling the conditions (4).
From (6) and (7) it is evident that the functions «,(t), k = 0,1, ...,n — 1 and D()
are continuous on J. _
Because a4(t,) = 1, we put ay(f) = 1 for te E, ., k =0,1,...,n — 1.
Denote .

8) Bu(?) = {max{“*(')’ wlh(O]}, ted, 0,1,....,n—1.

a()=1, tekE,,

Remark 2. If the functions o(t) are nondecreasing, then Bi(t) = o(t).
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Theorem 1. Let the conditions (a)—(c) be fulﬁlled and let there exists a constant
A > 0 such that

) |[o(t) €A, k=0,1,....,.n—1, teE

to *

Further suppose that there exists a function o(t,ry,..., 7, 2y, ..., 2,) defined
and continuous for teJ and 0 < ry, ..., 1, 24, ..., 2, < 00, which fulfils the fol-
lowing conditions:

(i) for every te J w(t, ry,..., 1y, 24, ..., 2,) is non-negative and non-decreasing
in all the other arguments;
(ii) lf(t, Uiy oo Upp Uy oy thy)| S 001, [oa]s <o [oals [uas -5 |u,|) on D;
(iii)
0 n—2
I .
(10) o W o(t, Bo() s oo Buer ()N Bo(D) N oy B () 1) dt <

to

Then every solution y(t) of the initial problem (1), (2) which fulfils the conditions

(11) Zly"‘)l = |Ck| =C<2
exists on J and satisfies
(12) ly®() — x®(1)] < p(t)(A — C), k=0,1,..,n—1,
n—1
where x(f) = ¥, C; x,(t) is the solution of (3) with C; = y§” (cf. (2) and (11)).
j=o
Proof. Let Y,_, be the space of functions y(f) which have n — 1 continuous
derivatives on E,, U J. Let {I;};2; be a sequence of compact intervals such that
UI, = J, wherel, = [to,t;] and I, < I}, <= J for every L.
=1

Define in the space Y,_, a system of seminorms

R()= _max { sup [y}

n—1 eE,ou,

This system of seminorms induces a local by convex topology on Y,_, and therefore
the space Y,_, is local by convex.
Consider a subset F < Y,_, defined as follows:

={ye Yoy, |y®(O M), k=0,1,...,n — 1, te E, L J},

where f(t) are defined in (8).
Define for y € F an operator T:

(13) (TY)®(t) = ®(t), teE,, k=0,1,...,n—1,
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(T() = x9(1) + W*(z )’f(s, Y5 +vos YOI), YT s - " O[(5)]) dis

k=0,1,...,.n—-1, telJ,

where x(t) is a solution of (3).

a) It is obvious that F is a convex closed set.
b) We show that TF < F.

For t € E,, we obtain with regard to (9)
(TV)® ()] = |®(t)] S =28(t), k=0,1,...,n—1.

Since (5) implies the estimate
n—-2
(6 9 5 mt e T

we obtain for te J from (13)

()o@ 5 100+ [ B0 565,569,y
O o 7T 05 3
© nI:_IZa‘(t)
< )| C + n! 1=0 o(t, Bo() Ay -y Baci( A, Bo() A, ..., Bu—y()A)d2 | <

240}

to

< () [c - (’“;—'—C)] < w(i)) < B0

¢) We show that T'is continuous.

Let {y{}2, k=0,1,...,n — 1, y; € F be a sequence which converges to y®,
k=0,1,...,n — 1, y € F uniformly on every compact subinterval of J.

Let I; = [to, t;] be an arbitrary compact interval from J and let ¢ > 0 be given.
We show that (Ty;)® (1) = (Ty)® (1), k = 0,1,...,n — 1 provided te,.

Denote

A= max o), k=0,1,..,n—1.
te[to,t;]

As the function f is continuous and y{ =3 y®, k = 0,1, ..., n — 1 holds on every

compact interval I, there exists such M > 0 that'for j = M
n-2
“k(‘)

(14) 7 yj(t) 5 Y5700, y L, - 7T PLHET) -

W(t)
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= S0 Yoo YO, STHO, - O[O <

€

<———, k=0,1,..,n—1, tel,.
Ak(t[—to)n! !

From (13) with regard to (14) we obtain for teI;and j 2 M

t n—Za()

[(Ty)® () = (T9)® (1)] = auft) ! lv;() |7(s y1(s)s -

to

y§7(8), yi[A(S)] -0 5 PLA(S)]) — S(s5 ¥(s)s -
 30(s), [A(S)], .oy O[A(S)])] ds < —HnEE__ J' ds <

At — to) n!

< gt — to) _ &(ti — )

- (t: — to) - (t = 1)

d) We show that TF is a compact set. The assertion a) implies .

=¢&.

I(Ty)® ()] < ()L, k=0,1,...,n—1, teEUJ.

If we choose k = n — 1 in (13) and differentiate, we obtain

@) 0 =200 + [ P 160509,y 5 THG

o ()

B ([0 LTRSS LR ORY (101 T /70) B

where
xo(s)y  x1(5)y  eos Xpoe(5)
x6(s), x'l(s) ooy x,’, 1(s)
Wyt,s) =13 ...t oo b
x§72(s), x (" D(s), ..oy x,(," f’(s)

""(z) ""(t) e X2

The last equality yields for t € J the estimate

()21 5 0] + [ o g, s B

"o W(S)
vois Bama(S) M) ds + o(t, Bo(D) Xy ..oy Bacs() Ay Bo(O) A, - .y Ba—a(D) D),

153



which implies that (Ty)® (t) is bounded on I,. Thus have obtained the uniform
boundedness of (Ty)®(¢), k =0,1,...,n on E, UI, hence the equicontinuity
of (Ty)® (1), k=0, 1, ...,n — 1 on E,, U I,. Therefore TF is a compact set.

With regard to the Schauder-Tychonoff fixed point theorem, the operator. T has
at least one fixed point in F satisfying

(15) (T)® (1) = y®(), k=0,1,....n—1.

The assertion (12) follows now from (13) by virtue of (15) and (10). The proof
of Theorem 1 is compiete.

The;)rem 2. Let the assumptions from Theorem 1 hold with the condition (10)
replaced by
® D(t A— C
DO o, Bl ks - Baes() o Ba) B s B (i) N) dlt < 2=C
w0 () n
Then every solution y(t) of the initial problem (1), (2) which fulfils (11) exists
on J and satisfies (12) with x(t) from Theorem 1.

Proof proceeds as that of Theorem 1, only we use (6) to estimate W(t, s).
Lemma 1. Let (a)—(c) hold. Let [t,, T) be the maximal interval of a solution y(t)
of the initial problem (1), (2) and let the functions y®(t), k = 0,1,...,n — 1 be

bounded on [t,, T). Let moreover ®(t) be bounded on E,,. Then T = co.
The proof can be found in [3].

Lemma 2. Let (1), a(t), F(t), q(t) be functions belonging to the class C([to, b),

[0, ) and let a function w(z) e C([0, x), (0, x0)) be non-decreasing.
Denote*

(16 ae) = [ sas

Let z(t) € C([t, b), [0, 0)) satisfy the relation

17) 2(1) < »(i) + a(t) j "F(s) a(s) o[ 2(s)] ds, oSt <b.

, 2o>0, z20.

Then we have for every t € [to, b)
(18) (1) s 0 {Q[r(t)] + A() I F(s) a(s) ds},

where Q™' is the inverse function to (16), I'(t) = max 'y(s) and A(t) = max a(s)

tosss
te[to, b).
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Proof. Define a function Z(f) on the interval [t,, b) by the relation Z(f) =

= max z(s). It is evident that Z(¢) is a continuous, non-negative and non-decreasing
toSs=st

function. With respect to the properties of w(z), we obtain from (17) that
t
2(1) S I(0) + A(1) J F(s) as) @[Z(s)] ds.
to
Let # € [to, t] be a point at which z(f) assumes its maximum on [t,, f]. Then

2(0) = =) < I() + Q) j " F(s) a(s) o[ Z(s)] ds <

to
S 1)+ 40) [ 76) o) o209 05
0
If we apply the Bihari lemma (see [1]) to the last inequality, we conclude
(1) < o~ {Q[F(t)] + A1) J "F(s) a(s) ds} .
o
Since z(f) < Z(r), (18) holds.
Theorem 3. Let the assumptions (a)—(c) be fulfilled. Moreover, let

(i) v(r) e C(J, [0, ));

(ii) the function o(z)e C([0, ), (0, )) be non-decreasing and

==
to CD(S) ’

(i) [£(t, 01y s Ons gy -y )] S V(1) @(|14])

for every point (t, vy, ..., U, Uy, ..., ) € D.
Then every solution y(t) of the initial problem (1), (2) exists on J and fulfils the
inequality

(19) 0 s 2 alr@] + 40) | 29 wods}
where Q, Q™' have the meaning from Lemma 2, I'(f) = ma'.x lx(s)l, A(Y) = n;alé oo(s),

x(f) ="§C ; x,(2) is the solution of (3) with C; = y§ (cf. (2) and (11)), aq(s) is defined
=0
in (7) and D(s) in (6).
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- -Proof. The method of variation of constants yields for the solution y(f) of the
initial problem (1), (2):

y Wo(t, - -
@) 50 = 50+ [ 2D 16,50, .50, S THOL oy~ D,
where x(t) is the solution of (3) defined above and W,(t, 5) is defined in (5).
Denote I'(t) = max |x(s)| and A(t) = max ao(s) Then we obtain from (20) with
oS

respect to the assumptlons of Theorem 3 the mequahty

vl = I(1) + n f (1) D(s) ¥(s) o] y(s)]) ds <

fo W()

< (1) + n A) f D) y(s) wly(s)]) s -
W(s)
Let [t5, T) be an interval of existence of a solution y(t) of the initial problem
(1), (2). If we apply Lemma 2 to the last inequality for 1 € [to, T)), we have (19).
According to (20), the derivatives y®(t), k = 0,1, ...,n — 1 of the solution y(r)
of the initial problem (1), (2) satisfy

(1) YO(t) = x®(r) + I UAC s) ZE29) £(s, 3(5), . v )y y[H(S)], ..
, y(""”[h(s)]) ds.

Since (21) implies the inequality

) s 1)+ n [ 02y a9 as,

to W( )
k=0,1,....,n — 1, the functions y*Xf), k=0,1,...,n — 1 are bounded on

[to, T)if T < co. With regard to Lemma 1 we conclude that the solution y(r) of the
initial problem (1), (2) exists for t € J and (19) holds. The proof is complete.
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