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CASOPIS PRO PESTOVANI MATEMATIKY
Vyddvd Matematicky astav CSAY, Praha
SVAZEK 94 & PRAHA 13.8.1969 » &ISLO 3

BRANCHING OF SOLUTION OF ALGEBRAIC INTEGRAL EQUATION

VLASTA PERINOVA, Olomouc
(Received January 27, 1967)

In this paper we shall deal with the general algebraic integral equation for the
function y(s)

) Fli 1 = 3, 8wy 6) LI 51 = £6)
where

LD y] = 0 AR P R PO
(@1 +.. +¢v—1
Lia,..0(ts ... t,) and f(s) are given functions and y is a real parameter.

The type of non-linear integral equations which are called algebraic integral
equations was first introduced by W. SCHMEIDLER in [1]

For equation (1) we shall study branching of a solution which occurs for a certain
value of the parameter . The pair (uo, yo(s)) which satisfies equation (1) is called the
branch point if for every ¢ > 0 there exists such u that ly - #ol < ¢ and (1) has for
this u at least two solutions which lie in the z-neighbourhood of the solution y(s).

Theorem. Let L,,, . (st ... t,) be real functions continuous in all variables in the
region {a, by x ... x <a, b) ((v + 1) factors) for all suitable non-negative numbers
o, ay, ..., o and let f(s) be a real function continuous in {a, b). Let y,(s) be a solution
of equation (1) for p = po continuous in {a, b) and let the discriminant of the
polynomial F[p,, y] be different from zero in {a, b) for y(s). Then for equation
(1) the following assertions are valid:

a) If number 1 is not an eigenvalue of the kernel

©) L(s, f) = —(~ ,>=: Z Hoyo(s) -
By O it 1) 700 50 ) +

+k22akL,,1._',v(st,‘t2...t,‘_ltt,‘“ t,) o '(0) vo' () TT voi(t)} dt, ... dt
= i=2
i*k
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where
p(s) = _Z Zau%yé“‘(S) Liyg ... y31,
N

then in a neighbourhood of the point p, there exists the unique solution of (1) in the
form

-

® 6) = 3, (1 = 1) 7(6)

b) If number 1 is a p-multiple eigenvalue of the kernel (2) and bl) if

b 5F[ﬂ, YO]/a“|u=uo ais) ds = i=1p
) f o OF[Hos y]/a\Y(s)lmo s =0, b

is valid for the associated eigenfunctions o,(s) then in a neighbourhood of u, there
exist, in general, 2° solutions of (1) in the form (3);

b2) if any of the conditions (4) is not fulfilled then in a neighbourhood of
there exist, in general, 27 solutions of (1) in the form

® 90 = 5 (0 = )" ).

All the solutions are continuous in {a, b) and tend to y(s) for u - po.
Proof. If we denote
A=p—=po, l/’(S) = ,V(S) - )’o(s),

equation (1) can be rewritten in the form

©) HO¥) = 20 [ Lo 0 900 a1 -
+"7’,§1(:.) Vo) "'(s)L,[z‘ () 5, ()] +
w3 )lﬁ'"(S)Y“""(S)L [z( Yo g(l)w]+

#1532 s s 5}
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;» L'; have the same meaning as L; under the condition that Z I, +0, Zl * 0,1
respectxvely
Let us look for a solution of (6) in the form

) 0O = T4 6).

If we substitute (7) into (6) and compare coefficients of the same powers of 1 we
obtain for y,(s) a system of nonhomogeneous linear integral equations. From the
assumption on the discriminant of the polynomial F[p,, y] there follows that

p(S) aF[HO’ .V]

ay(s)

is different from zero in {a, b). Then the system of equations for y(s) can be written
in the form

®) ' y,(s)=j"L(s, Dyt di + £(s), 1=T,

where
s) = —1 0F[u, yo]
©) fi(s) O
fz(s) < z Z {S[J’b .)’1] L; [.V ‘e y‘(l)v] + 4o y?,(s) (Q[)’ﬂ + R[.Vu ,Vl]) +

o &2

+ oy yg_l(s) (J’O(s) + Uo }’1(3)) S[.Vl]} + Mz[)’o]) ,

Jraa(s) = <Z Z{t[)’l}’u y Lilye - ¥5] +

( ) i ,
+ 15 ¥5(s) @[y 1yl + TLyw ¥i]) + owg™" y57'(s) (o ¥1(s) + yols)) S[ye] +
+ app yz_l(s) yis) S[yl]} + M, 1[YOa Vis oo Vie1]) =

=K[y’]_ Ml+1[)’o’)’1,---,y1_1], l=2,00

1
p(s)

where the notation

0 obud =1 3 (%) 570w v [].

K] = LS, 3 st 0000 55 6 e T30,

i*k
i*m
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v

Sl = LY, o 5 (8) y,(rk)irjl ¥

k=1

Tlys yiea] = Lj[k; Z_lakam Yo (1) y1(1) Y5 (tm) Y14 1(t) I:[l yo(t)],
m*k i+k
i*m

alywid = Greys 2()ya(s)vis), rly] = 2ue™ W57 (swils) » -

s[yf, yi] = ‘1[)’3] + r[Yl] s YiVien Visa] = 2‘1[J’1J’x+1] + "[,Vlﬂ] , =10,

has been introduced.

Solving system (8) it is necessary to distinguish whether number 1 is or is not an
eigenvalue of the kernel L(s, t).

a) If number 1 is not the eigenvalue of L(s, t) it is possible to solve all equations of
system (8) uniquely and to write the solutions continuous in {a, b) in the form

(11) y(s) = j (s ) £ dt + 1), =T,

where I'(s, t) is the continuous resolving kernel of L(s, t). So it is possible to construct
the series (7) formally.

Now we shall prove that the constructed series converges absolutely and uniformly
according to s and A in {a, b) for A sufficiently small. Let us choose such numbers
A, B, C and D that for s € {a, b)

(12) ]p(s)l“‘ < A, J‘bll’(s, t)l dt < B, iyo(s)l <C,

b b
I(v)j |Las..c (st5 - t)|dt,...dt, £ D, ,, , maxD,, , =D

is valid and denote

max |y(s)| = ¥, max(1,B)=L.

Then for ¥ the following equation can be obtained from (6) and (12):

Jj=1a=0

(13) FlA, ¥]=% - 2LAD§; Z:Luol“ {cf H,[¥] + G,[¥] +

+ G[¥] Hi[¥] + (¥ + O) T (:)(—'1—5‘} =0

k=1 |ﬂo‘
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where

H[¥]= ¥ 5 (“‘)(Wc—‘)‘* > (7”)(%")",

(a1 +...¥ay=j-a) =0 \ I, Y

=

m=1ifY1,+0,m=2ifY 1, +0,1,
i=1 i=1

G [¥]=Y (“) PCIK m=1,2.
k=m\k
Let us look for a solution of (13) in the form of the power series expansion

(14) Y= il’k,.

i=1

Substituting (14) into (13) and comparing coefficients of the same powers of A we have
the following system of equations for k;

n J
(15) ki =2LADY, Y alug|"* C/,
j=1e=0
n j
k, = 2LA <Dz Y {[uok CcI2? [(“) +oj — a) +
j=1a=0 2
v v—1 v
r oy (z (“*) > akam)] + ajlugl? C"‘k,} + Hz[C]> :
(@1 +...+ay=j—a) \k=1 \ 2 k=1m=k+1
n j )
kl = 2LA <DZ Z {Iﬂo'a Cj—zklkl_l [2 <;) + 2a(j - a) + aj'ﬂoia—l C‘i—lkl_l +
j=1a=0

+ 0y (2}; (“k) iy Y akam)]} + M[C. ky gy o k,_2]>
(@1 +.Fay=j—a) \ k=1 \2 k=1 m:;

where M,[C, ky, ks, ..., k;—,] are upper bounds for My, ¥1,..., ¥i-2]. From
these relations and from (9), (10), (11) and (12) it is obvious that :

|v(s)] < ki for se<a,by, I=1,0.

This implies that the region of convergence of (14) is the region of convergence of (7).
From the implicit function theorem according to
oF[4, ¥]
ik 4

=1 for A=¥Y=0

there follows that from (13) it is possible to determine ¥ as an unambiguous and
continuous function of A so that the series (14) has a finite radius of convergence. As
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the series (14) is a majorant for (7), the series (7) converges absolutely and uniformly
according to s and 4 in {a, b) and in a neighbourhood of the point A = 0. Hence,
the series (3) represents the unique solution of (1) in the neighbourhood of u = p,
continuous in <{a, b)> which tends to yo(s) for u — po-

b) Let number 1 be a p-multiple eigenvalue of the kernel L(s, t) with continuous
eigenfunctions @(s) (i = 1, p) and with continuous associated eigenfunctions o(s)
(i = 1, p). If equations (8) are to have solutions it is necessary and sufficient that

(16) rﬂ(s)a,.(s)ds=0, l=Tw, i=1ip,

be valid. :
bl) Let us assume that (16) is valid for / = 1. Then the solution of the first equation
from (8) can be written according to the third Fredholm’s theorem

) 5 = 0.9 + 5.¢1 o)

where

b —
g(s) = J (s, t) fi(t) dt + fi(s), (I =1, oo, for | = 2, oo see further) ;
@(s, t) is the continuous resolving kernel of the kernel
S ,
L(s, 1) — ;::l‘Ps(S) ai(t) .

For the determination of constants C} (i =1_,7)) we obtain from conditions (16) by
solving the second equation from (8) after substituting (17) into f,(s) the following
system of p nonlinear equations

09 [He5: 5 6llo + S cr. o0+ S Clod LD 51+
+ 15 3509 (@L0: + 3. ChowP] + RLg: + 3 Chiom 1 + 3. Cioa]) +

+ 005155719 (o) + laa) + 3. Ci 0ul6)] Sloy + . Chowl)

+M2[y0]>ds=0, i=1,p.

From system (18) we obtain, in general, 2 systems C%(i = f,—p) So we generally
determine 2? functions y,(s)

yl;(s)—gj(s)+2C (p(s), j=1,2°.
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The solution of the I-th (I = 2) equation of system (8) can be written in the form
P
(19) vis) = gis) +.Z,1 Ciofs) .

From conditions (16) by solving the (I + 1)-st equation from (8) after substituting
(19) into f, 4(s) we obtain the nonhomogeneous system of p linear equations for C;

b 14

(20) fai(s) K[Y Chon]ds =mi, i=1,p
a m=1

where

f“(ﬂ( ()Mm(yo, Visevor Yimg) — K[g,]) ds .

Under the assumption that the determinant of system (20) is different from zero it is
possible to determine C; (i = 1, p) uniquely in the form

P J—

(21) Z lkmk ’ i = D>

and so to determine the functions y,;(s) (j = 1, 2) uniquely. -

Therefore it is possible to construct 27 series of the type (7). The convergence of
these series may be proved in the following way. Let us consider two sequences
{u;}3, {v;}¢ of such numbers u;, v, that

961 = 109 + 3,16 00 < o + v B
. seda,b), I=1, 00

i) = lare s + 21 o)) < wi + v

holds. Let us choose constants u,, v, so that the inequality mentioned above is valid
and for determination of constants u,, v, (l = 1, o0) consider the function

@) BE)= DY ¥ luf {cf [z + Gl + 5 ( )( )(z + Oyt

kol
+ Gi[z] Hy[Z] - l_“i C’}

Ho
where the notations G,[z], H,[z], G,[z] and H,[z] have the same meaning as in
(13). If we put instead of z

o]

(23) =YY u + v)

1=0
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into (22) and if we expand the expression obtained by powers of 4 then

(24) E(z) = ¥ 2'E,

where

n J v o
E,=4 <DZ > {l#ol“ C'"*(uo + 00)2[ > (Z ( ") +
j=la= (a1 +..+ay=j—a) \k=1 \ 2

+z z) + (2) fofj - a)]+ ajljtol™t O/ (uo + vo)} ¥ M:[c]> ,

Ejyy = K(u; + v)) + AM, 5[ Coup + v5, ooty +0,4], 1=1,0
where

(=]

e frorto el 5 (G500 o)

k=1

+2 (;) + 20(j — o) + ajjpo]* Cf“l}

and M, . , are upper bounds for M, . ,. From relations (9) and (12) there follows that E;
are upper bounds for the functions f(s).

Further, let us choose such numbers N, @, § and f, that

(25) max |[Fy| =N,
ik

b
j |&(s, 7)] dt < @,

se{a, b)
max Iq),-(s)l < B,

max Jb|ai(s)| ds = B,

is valid and designate max (1, #) = K. Then we determine u; (I < 1, o0) from the
equation

(26) u' = 2KE1+1 .
If we take into account that
N b
|g1+1(s)] < max [f,H(s)] (1 +J |@(s, 0)| dt) <2KE,
then |g,44(s)| < u;. '
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The constants v, (I = 1, o) can be determined from the equation

(27) (1 + dK) v' = dE'+2
where

d= Pzﬂﬂ1N .
As there is

p 14
|C§+l| = JV"=Z1|5H£+II < Nﬁpo s '=ZIIC:+1' |(P,(S)| < dQ

where
Q = K“l + AM[+2[C, Ug + Ugy ooy Up—q + U‘_l]

and v, = dQ according to equation (27), we have Z |Ci* | |ois)| < v; and so

Iyl"'l(s/l < u + ;.

If we introduce the notation

(28) u=y A, v=Y Ay

1=1 1=1
then z = Muo + vo) + u + v and the determination of u,, v, from (26) and (27) is
equivalent to solving the following system for u, v:
(29) u = 2KE(Muo + vo) + u + v),

(1 + dK) v = d(E(Muo + vo) + u + v) — A’E,)
in the form (28). If we perform the substitution
u=AU, v=AV

in (29) and devide the first equation by A and the second one by A* we obtain for U, V
the system

(30) ¢1-U—2—I—<—E(/1(uo+vo+U+V))—-0

1

For system (30) we use the implicit function theorem. If system (30) is to determine
unambiguous continuous functions U(2), V(%) in a neighbourhood of the point A = 0
it is necessary and sufficient that

(31) — D(¢l’ ¢2)

$0 for A=U=V=0.
DU, V)
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Asfor A=U=V=0,
00y _ | 00y 00, _p 0

= =1
ou av ou ov

holds and so 4 = 1, the assumptions of the theorem mentioned above are fulfilled
and system (30) has only one continuous solution U, V in the form of the series

U = ).‘u, N V = Z }.‘D,

Nk

which have a finite radius of convergence in a neighbourhood of the point 2 = 0.
The same is valid for series (23). As this series is a majorant for (7), series (7) con-
verges absolutely and uniformly according to s and / in {a, b) and in a neighbourhood
of the point y, and because of the continuity of its terms the limit functions ¥/ (s) are
continuous in {a, b). Hence, in the neighbourhood of the point u = y, there exist,
in general, 27 solutions of equation (1) in the form (3) which tend to y(s) for
B’ = Ho.

b2) If any of conditions (16) for / = 1 is not fulfilled it is not possible to solve
equations (8) and the problem of determination of the number of solutions of equa-
tion (6) for u from a neighbourhood of p, becomes more complicated. Such solutions
can be sought in the form

(32 WO = % (0 = 1) 70

where k is a positive integer. The functions y,(s) can be determined from a system of
linear integral equations obtained with the aid of substitution (32) in (6) and by
comparison of coefficients of the same powers of (u — po)'/*. For example, for
k=2ie.

(33) ¥(s) =,§1V' yls), v=(r— )"

we obtain the system

(34) yis) — J bL(s, ) y()dt = h(s), =100
where
(35) hy(s) =0,

-1 2
hz(S) = R; <j=1 K-

+ a1 LDy . 8] + D] S} + Ma[yo]>,

 (465%(5) (QDIT + ROy »i]) +
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h(s) = T <z ag {875 () 200y, + Thyw i) +

+ 29[y ] LG ... 8] + r’[yl] Sy + vy Shyil} +

+ M1+1[J’0a YVis oo Vi- 1]> = G[}’z] - —= t+1[)’o, Vis ooy yl—l] , 1=12,

()
rlv] = g ya () yls), I=1 0

and other notations have the same meaning as in (10).
The solution of the first equation from (34) can’ be written in the form

(36) »(s) = ZD i(s) -

If other equations from (34) are to have solutions it is necessary and sufficient to
fulfil the conditions

b —_—
(37) fh,(s)ai(s)ds=0, i=Tp, I=Z.

If we substitute (36) into (37) when / = 2 we obtain the following system of p non-
linear equations for D} (i = 1, 1, p)

69 [H<3, 3 04550 (OL( PhonT+ RLE. Dl E lon) +

j=1a=0

+al( ¥ DhoaV 1L L% 98] + PT 3, Dheoal ST Y Dhoal) +
+ My[yo]pds =0.

From (38) we obtain, in general, 2° systems Dj (i = T,_;) and so we have 2” functions

»4(s)

y1(s) = ZD ois), Jj=1,2".
The solution of the I-th (I 2 3) equation from (34) can be written

(39) yds) = gis) +:=i1 D; ¢s)

where

a:(s) = J’ bzp(s, ) hi(f) dt + hys) ;
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(s, 1) has the same meaning as in the section bl). For D} (i = 1, p) we obtain from
conditions (37) after substituting (39) into h,. ,(s) the system of p linear equations

(40) Z::ID,',, Ibai(s) Glon]ds =di, i=1p

where -

_[“(S)( ()Mm[yo, Yiseoo Vie1] — G[g,]) ds..

Under the assumption that the determinant of the system (40) is different from zero
it is possible to determine D} uniquely in the form

p
(41) Dz = Z Hikdllc
k=1

and so to determine the functions y,;(s) (j = 1, 2° uniquely.

Therefore it is possible to construct, in general, 2 series of the type (33). The
proof of convergence of these series in a neighbourhood of the point v = 0 will be
carried out analogically as that in the section bl). Let us choose such a constant v,
that

4
!yl(s)| é-; |D}| ](p,-(s)l < v, for se<a,b)

is valid. Further, let us consider the function
(42)
o
S(z) = ADZI Zo|”°|a {cf H,[z] + G,[z] + Z ( )<' l) (z+cy+
ji=la= Ho

+ G[z]H [z]}

where the symbols G,[z], G,[z]. H 1[z] H,[z] have the same meaning as in (13). If
we put instead of z

(43) z = v, +IZ1VHI(ul + vy)
in S(z) and expand the expression obtained in powers of v, we obtain
(44) : S(z) = 3, v's,

=2

where S, are upper bounds for the functions h(s) if (u;~; + v,_,) are upper bounds
for y(s) (I = 2, ).
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Let us choose such a number H that

max |Hy| = H
ik

holds. Then we determine u; and v, (I = 1, o0) from the equations
(45) u‘ = 2KS1+1 > (1 + eG) U, = eSl+2
where e = p?BB,H and

n J v v v
G=szzw¢aﬂ%{ y @z(ﬂ+22ﬁm)+
j (@ +..tay=j—a) m=

m¥*

2 (;)  2(j - a)}.

IYIH(S)I <u;+v.

We can easily see that

If we introduce the notation
(46) U=Y v, V=3,
1=1

then z = v(vp + U + V) and the determination of u,,.v, from equations (45) is
equivalent to the solution of the system for U, V

(47) = U-.Z_f-s(v(vo U+ V) =0

= (1 +eG')V~e<;1—2—S(v(vo+U+V))—Sz) ~ 0

in the form (46). As for v =U = V =0, there is 4 = 1, the assumption (31) is
fulfilled and from system (47) it is possible to determine U and V as unambiguous and
continuous functions of v. From analogical considerations as in the section b1) there
follows that the series (33) converges absolutely and uniformly according to s and v
in {a, b) and in a neighbourhood of the point v = 0 to functions (y;(s) — yo(s))

(j = 1, 27) which are continuous in {a, b).
Hence, the assertions of the theorem are proved.
Reference
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