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ČASOPIS PRO PĚSTOVÁNÍ MATEMATIKY 
Vydává Matematický ústav ČSAV, Praha 

SVAZEK 94 * PRAHA 13. 8.1969 * ČÍSLO 3 

BRANCHING OF SOLUTION OF ALGEBRAIC INTEGRAL EQUATION 

VLASTA PEIRINOVA, Olomouc 

(Received January 27, 1967) 

In this paper we shall deal with the general algebraic integral equation for the 
function y(s) 

(i) F[M, yl^it ftf?) W • • • /'] = /(-) 
i = l a = 0 

where 

Lj[f . . . / " ] - - £ fV) fV«....J?h • • • fv) [f%) • • • A O ] dtt • • • d<v; 
(ai + ...+av=i-a) J fl J a 

L<x<Xl...av(
sti •.. tv) and/(s) are given functions and \xis a real parameter. 

The type of non-linear integral equations which are called algebraic integral 
equations was first introduced by W. SCHMEIDLER in [1]. 

For equation (1) we shall study branching of a solution which occurs for a certain 
value of the parameter u. The pair (/J0, y0(s)) which satisfies equation (l) is called the 
branch point if for every e > 0 there exists such \x that \fi — fi0\ < s and (1) has for 
this pi at least two solutions which lie in the e-neighbourhood of the solution y0(s). 

Theorem. Let LaaiaJst1... tv) be real functions continuous in all variables in the 
region (a, by x ... x <a, fc>((v 4- 1) factors)for all suitable non-negative numbers 
a, <xl9..., av and letf(s) be a real function continuous in <a, by. Let y0(s) be a solution 
of equation (1) for fi = fi0 continuous in <a, b> and let the discriminant of the 
polynomial F[jU0» y] be different from zero in <a, b} for y0(s). Then for equation 
(1) the following assertions are valid: 

a) / / number 1 is not an eigenvalue of the kernel 

(2) %') = ^ t I/4/o(s). 
p(s) i = l a = 0 

(«! 
I f (v) f {«1-.-....-.X-»! • • • K) /o1~\i) y"0%) ... f0itv) + 

+ ... + av = i -a)J f l Ja 

+ I otkLaaí.„av(stkt2 . . . t k - t t t k + t . . . % ) y0
k" '(0 yV(tk) n yao(t{)} d t z . . . dřv * = 2 Í--2 

i*k 
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where 
n j 

K*) = E E «/4/o~'(«) I-ybo1 • • • fo], 
J = l o t = 0 

fhen in a neighbourhood of the point /i0 there exists the unique solution of(i) in the 
form 

00 

(3) y(s) = Z^-^o)'y,(s). 
1 = 0 

b) If number 1 is a p-multiple eigenvalue of the kernel (2) and bl) if 

<4> [ \ T , y i ^ \ r "<s>d'-°->-~*-
J.SF\jio,yjJdy(s)\,.yo 

is valid for the associated eigenfunctions a.(s) then in a neighbourhood of fx0 there 
exist, in general, 2P solutions of (l) in the form (3); 

b2) if any of the conditions (4) is not fulfilled then in a neighbourhood of fi0 

there exist, in general, 2P solutions of(i) in the form 

(5) y(s) = i(n-n0)
ll2

yi(s). 
1 = 0 

All the solutions are continuous in <a, b} and tend to y0(s)for \i -> \x0. 

Proof. If we denote 

X = n- ii0, ij/(s) = y(s) - y0(s), 

equation (l) can be rewritten in the form 

(6) p(s) +(s) = p(s) f L(s, t) 4,(t) dt -

-i iUyi(s)L)\ihyyo-h...i f^W-,'l + 
/=1«=0( L'' = 0 \ l l / .v = 0 \ / v / J 

+ni i (*)r(s)yo-m(s)Lj\ i h)+'Yoi-h... i ("vVv°H + 
»i=i\m/ Ll- = 0 V i / iv*o\/v/ J 

+ i (* W k i (*) ri?) f0-
m(s) Lj\ i h) *«•#-«>... i h) rro-A+ 

k=i\kj m=o\m/ IJ - = 0 Vi/ -V=O\/V/ J 

+ Hoi(CC)r(s)y'o-m(s)LJlyl'...yo4; 
m = 2\m/ J 
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Lj9 L) have the same meaning as Lf under the condition that ]£ /* # 0, £ J* # 0,1 
respectively. I=rl I = 1 

Let us look for a solution of (6) in the form 

(?) •K^Z^Ís) 
í = i 

If we substitute (7) into (6) and compare coefficients of the same powers of X we 
obtain for yt(s) a system of nonhomogeneous linear integral equations. From the 
assumption on the discriminant of the polynomial F[l/0> y] there follows that 

p{s) = ÕF ÏMc УÌ 
8y(s) 

is different from zero in <a, b>. Then the system of equations for yt(s) can be written 
in the form 

(«) = 1 , 00 

where 

(9) 

yfa) = í L(s, t) Уl(t) dř + f,(s) ,1 = 1, 

fi{s) = zlSF[n,yo] 
p(s) õџ 

f2(s) = -TT < Z Z {-[>í, * ] L j b V • • • fol + /'S/»(-)(ßfri] + «b i , j ' i l ) + 
P ( S ) j = l a = 0 

+ «Mo"1 /o"X(s) W » ) + /to yt(s)) S[y.]} + M2[y0]> , 

/ , + i ( s ) = - = ^ < Z É { í b 1 y „ j ' , ] L J | > 0 ' . . . j ^ ] + 
p(s) J = l a = 0 

+ ťo yU?) (2QbiJ>.] + "1>i, >•,])' + «/to"1 /o_1(s) (/to J-lOO + J>o(s)) s|>,] + 

+ «/to/o"'(s) .>>.(«) S[j>i]} + Af,+ 1 | > 0 , >>!,...,>•,-,]> = 

= K[yi] - -7\Mi+i[yo, yi, -., yi-i], / = 2, oo 
p\s) 

where the notation 

(10) efj^,] = Lj [£ Q) y0*-2(tk) yi(tk) y,(tkm /o'(',)] > 

*i>i,j'i] = L / I ,£ -A^'WM^i'WMon/ot'.)], 
1 = 1 
ІФfc 
iФm 
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%«] - LJLI «-* Уr%) УІҺ) П ýiW, 
*=*1 f = l 

iФfc 

-1>i. УI+I] = LJІ I E «A. #"Ҷ'-) Уi(í») /o^ЧO ЛиW П /O'(ÍI)] • 
І - І I Ц S І І = l 

mфfc iФk 
í * m 

Ф 

ЯÍУtУiì = G K / o ~ 2 ( s W s M s ) . гO,] = a ^ - ^ - Ҷ s ) ^ ) , 

s[yi> yi] « €[yi] + r [ y j , t[yij; l+1, yI + 1] = 2q[y1^ + 1] + r[j;I + 1] , I = 1, oo , 

has been introduced. 

Solving system (8) it is necessary to distinguish whether number 1 is or is not an 
eigenvalue of the kernel L(s, t). 

a) If number 1 is not the eigenvalue of L(s, t) it is possible to solve all equations of 
system (8) uniquely and to write the solutions continuous in <a, b} in the form 

= 1 , 00 (11) yjs) = j r(s, t)L(t) dt + ft(s) , 1 = 1, 

where JT(s, t) is the continuous resolving kernel of L(s, t). So it is possible to construct 
the series (7) formally. 

Now we shall prove that the constructed series converges absolutely and uniformly 
according to s and X in <a, b} for X sufficiently small. Let us choose such numbers 
A, B, C and D that for s e <a, b> 

(12) Ip(s)!-1 <A, f \r(s,t)\dt<B, jy 0 ( s ) |<C, 

pb pb 

(v) \Laai...av(
sh ••• <v)| dtt ... dty = Daai...av, max DmtmtM9 = D 

J a J a a,...,«v 

is valid and denote 

max \\//{s)\ = W , max (1, B) = L. 
s 

Then for P̂ the following equation can be obtained from (6) and (12): 

(13) F[X9 ¥] = ¥- 2LAD £ f ^ f \c* H2[P] + G2[!P] + 
j = i « = o ( 

+ C i m » i m + (y + cyi(;)(A.)'} = o 
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where 

HJL*] = I I h)(¥C~J>... £ ("'Vc"1)'*, 
(ai + ...+«v = i - a ) *!=0 \ ( i / .v = 0 \ / v / 

V V 

m = 1 if £ 1, #= 0, m = 2 if J /. * 0, 1, 
i = l i = l 

Gmm = £ ( " W ' - * > m = 1,2. 
* = m \ f c / 

Let us look for a solution of (13) in the form of the power series expansion 

(14) V = fx%. 1=1 

Substituting (14) into (13) and comparing coefficients of the same powers of X we have 
the following system of equations for kt 

(15) kt=2LADt Eahr 1 ^ , 
/ - l a = 0 

k2 - 2LA(j>i Io{KI"C'-2fc? [ Q + «(j -«) + 

+ 1 f t (?) + 11 i: <-A,)1 + "/N-1 ej-jfci} + ^2[c] \ , 
(ai+... + av = i - a ) \ k = l \ 2 / fc=lm = k+l / J J / 

*, = 2LA/l)J: tjl/iohc^^ifc,-. [2 Q + 2a(; - a) + a^of"1 c^-i + 

Z (21 (?) + £ £ «*amYll + A?,[C, fc., fc2,..., k,-2]
N 

ai + ...+av = j - a ) \ fc=l \ 2 / * = l m = l / J J j 
(« 

where Mt[C, kl9 k2,..., ^1-2] a r e upper bounds for Mj[y0, y1?..., yi-2]» From 
these relations and from (9), (10), (11) and (12) it is obvious that 

|yi(s)j < kx for se(a,b) , / = 1, 00 . 

This implies that the region of convergence of (14) is the region of convergence of (7). 
From the implicit function theorem according to 

^ E _ _ J 3 = l for A = S> = 0 

there follows that from (13) it is possible to determine !P as an unambiguous and 
continuous function of X so that the series (14) has a finite radius of convergence. As 
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the series (14) is a majorant for (7), the series (7) converges absolutely and uniformly 
according to s and X in <a, b} and in a neighbourhood of the point X = 0. Hence, 
the series (3) represents the unique solution of (l) in the neighbourhood of \i = \i0 

continuous in <a, b} which tends to y0(s) for \x -• \i0. 

b) Let number 1 be a p-multiple eigenvalue of the kernel L(s, t) with continuous 

eigenfunctions (p((s) (i = 1, p) and with continuous associated eigenfunctions af(s) 

(i = 1, p). If equations (8) are to have solutions it is necessary and sufficient that 

(16) І /,(s) ař(s) ds = 0 , / = 1, oo , i = 1, p , 

be valid. 
bl) Let us assume that (16) is valid for / = 1. Then the solution of the first equation 

from (8) can be written according to the third Fredholm's theorem 

(17) Ms) =- gt(s) + ic\ Vi(s) 
1 = 1 

where 

gt(s) = #(s, i)fi(i) dt + ft(s), (/ = 1, oo, for / = 2, oo see further) ; 

<P(s91) is the continuous resolving kernel of the kernel 

L(s, *) - £ <pj(s) oc^t) . 
i = l 

For the determination of constants C\ (i = 1, p) we obtain from conditions (16) by 
solving the second equation from (8) after substituting (17) into /2(s) the following 
system of p nonlinear equations 

(18) f ^ < i i {'[(0x + i CM2 , 0i + i O J LlyV ... yf] + 
J a P\s) i = l * = 0 m = l m=l 

+ /*o /o(s) (Q[(9i + i c
m<PmYl + R\_9i + i Cm(pm, gl + i Cm(Pm\) + 

m= 1 m = 1 m = 1 

+ a/Jo'Vo-1^) [yo(s) + /to(ffi(s) + i Cm cpm(s))] S[gi + £ C>m]} 
m = 1 m = 1 

+ M2[y0]> ds = 0, i = I 7 p . 

From system (18) we obtain, in general, 2" systems C\(i = 1, p). So we generally 
determine 2P functions y%(s) 

yii{s) = gi(s) + ic\l(Pl{s), }=TV. 
1 = 1 
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The solution of the /-th (/ _ 2) equation of system (8) can be written in the form 

(19) y.(s) = 0.(s) + £C:<P,(s). 

From conditions (16) by solving the (/ + l)-st equation from (8) after substituting 
(19) into/j+1(s) we obtain the nonhomogeneous system of p linear equations for C\ 

(20) f *fc)K[i C^>Jds = mj, i=T,~p 

where 

m\ = «*(*)( y r - W i + i O W i * . - ^ ^ 

Under the assumption that the determinant of system (20) is different from zero it is 
possible to determine C\ (i = 1, p) uniquely in the form 

(21) C\ = iFikm[, i = T7p, 
k=l 

and so to determine the functions yij(s) (j = 1, 2P) uniquely. 
Therefore it is possible to construct 2P series of the type (7). The convergence of 

these series may be proved in the following way. Let us consider two sequences 
{ut}0, {vi}0 of such numbers ui9 v( that 

\yt(s)\ £ \gx(s)\ + i \C]\ \q>t(s)\ <u0 + v0 
» = i 

\y,+i(s)\ = \gl+1(s)\ + i |C!+1| Hs)\ <ul + Vl 
i= 1 

holds. Let us choose constants u0, v0 so that the inequality mentioned above is valid 

sє(a,by , / = 1, oo 

and for determination of constants uh vt (I = 1, oo) consider the function 

(22) E(z) = ADi iy0\" jc'H2[z] + G2[z] + t (*) (±-\\z + C)> + 

+ G 1 [ z ] H 1 [ z ] - r

a A C A 

where the notations Gj[z], f^fz], G2[z] and H2[z] have the same meaning as in 
(13). If we put instead of z 

(23) z = | A , + 1 ( u 1 + t;i) 
1=0 
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into (22) and if we expand the expression obtained by powers of X then 

(24) E(z) = f,X% 
1 = 2 

where 

*2-'A(DH {hi*c^(Uo + Voy\ i (i (?) + 
\ j = i « = o ( l_(«1+...+«v=i-«)\t=i \ 2 / 

{£ Jj+.«-"") + (") + °0 - «)]+ « W _ 1 C'_1("o + v0)\ + M2[C]\ 
I > - 1 

+ 

£,+ 2 = K(u, + v,) + ,4M, + 2[C, w0 + v0,..., w,_! + (;,_!] , / = 1, oo 

where 

n j 

K = ADtz | W " C*-\u0 + v0)\ £ f 2 £ ( * ) + £ £«fc«m) + 
/ = l a = 0 ( L(ai + ...+av = j - a ) \ fc=l\2/ fc=lro=l / 

m-l-fc 

+ 2 ^ + 2a(j - a) + aj]^1 a~x\ 

and Mi+2 are upper bounds for M,+2. From relations (9) and (12) there follows that E% 

are upper bounds for the functions /,(s). 
Further, let us choose such numbers N, #, J? and pt that 

(25) max \Fik\ = N , 

i |<f>(s, í)| dí < <ř , 

max |ÍP,(S)| < p , 

s є <a, b> 

max I |af(s)| ds = pt 

is valid and designate max (1, #) = K. Then we determine M, (J ==. T^oo) from the 
equation 

(26) ti, = 2KE I + 1 . 

If we take irito account that 

\gl+1(s)\ < max |/,+ 1(s)| ( l + P|#(s, t)\ dt) < 2X£J+i 

then|0,+1(s)| < «,. 
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The constants vt(l = 1, oo) can be determined from the equation 

(27) (l + dK)vt~dEl+2 

where 

d-pipw. ; 

As there is 

|C<+1| = N i |mj+ , | < NplPQ , i \C\+i\ \cpt(s)\ < dQ 
*=1 i = l 

where 

Q = Rut + AMl+2[C, u0 + v09..., w,-! + f^i-!] 

and t?j = dg according to equation (27), we have £ |CJ+ 1 | |<l>,-(s)| < vt and so 
|.y/+1(s)| < ut + tv l = 1 

If we introduce the notation 
00 00 

(28) M = X ^ + 1 « / , i; = £ A ' + V 
1=1 1=1 

then z = X(u0 + v0) + u + v and the determination of uh vx from (26) and (27) is 
equivalent to solving the following system for u, v: 

(29) u = 2KE(X(u0 + v0) + u + v) , 

(1 + dK) Xv = d(E(X(u0 + v0) + u + v) - X2E2) 

in the form (28). If we perform the substitution 

u = XU , v = XV 

in (29) and devide the first equation by X and the second one by X2 we obtain for U, V 
the system 

2K 
(30) <?! = U E(k(u0 + t>0 + U + V)) = 0, 

A 

$2~(l + dK)V- d (\ E(X(u0 + v0 + U + V)) - E2\ = 0 . 

For system (30) we use the implicit function theorem. If system (30) is to determine 
unambiguous continuous functions U(X), V(X) in a neighbourhood of the point X = 0 
it is necessary and sufficient that 

(31) A = ° ^ ' *-> + 0 for A = U=V=0. v ' D(U,V) 
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As for k = U = V = 0, 

* * i « l , ^ = 0, °*2—dR9 - ^ = 1 
dU dV dU dV 

holds and so zl = 1, the assumptions of the theorem mentioned above are fulfilled 
and system (30} has only one continuous solution U, Vin the form of the series 

oo oo 

U = £A'u ( , V=£A 
1=1 1=1 

which have a finite radius of convergence in a neighbourhood of the point k = 0. 
The same is valid for series (23). As this series is a majorant for (7), series (7) con­
verges absolutely and uniformly according to s and / in <a, b} and in a neighbourhood 
of the point fi0 and because of the continuity of its terms the limit functions &/s) are 
continuous in <a, b>. Hence, in the neighbourhood of the point \i = \i0 there exist, 
in general, 2P solutions of equation (1) in the form (3) which tend to y0(s) for 
ju-» ju0. 

b2) If any of conditions (16) for / = 1 is not fulfilled it is not possible to solve 
equations (8) and the problem of determination of the number of solutions of equa­
tion (6) for pi from a neighbourhood of n0 becomes more complicated. Such solutions 
can be sought in the form 

(32) Hs) = i(n-Co),lkyls) 
1=1 

where k is a positive integer. The functions yt(s) can be determined from a system of 
linear integral equations obtained with the aid of substitution (32) in (6) and by 
comparison of coefficients of the same powers of (fx — ju0)

1/fe. For example, for 
k = 2, i.e. 

00 

(33) # ) = £v'j , ((s), v = (/i - ^ 
1=1 

we obtain the system 

(34) >-,(*)- FL(S, t)yjt)dt = h](s).. 

where 
(35) *,.(-) = 0, 

*-(-) = ^A < I t K/oW (Qbfi + K|>i, *]) + 
p(s) ;=i«=o 

+ q[y2i] Lj[yV -fo] + r'[yt] $[>.]} + M2[>0]>, 

262 
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hl+1(s) = -r\<Í Í{^yl(s)(2Q[yiyi] + T[yi,y,]) + 
P[S) j = l a = 0 

+ 2g[yiyi] L ;[/0 ' ... >#] + r'[yi] S[y,] + r'[y,] S[yi]} + 

+ Ml+1[Уo,Уl, ...,>>,_!]> = G[yt] - — Ml+1[y0,y1,...,Уl_1], l = 2, oo , 
P(s) 

rflyi-} = aulyl-l(s)yi(s)9 I = 1, co 

and other notations have the same meaning as in (10). 
The solution of the first equation from (34) can be written in the form 

(36) Уí(s) = £ D\ cpfc) 
P 

í 
í = l 

If other equations from (34) are to have solutions it is necessary and sufficient to 
fulfil the conditions 

00 . 
f* 

(37) ht(s) oc^s) ds = 0 , i = 1, p , / = 2, oo 

If we substitute (36) into (37) when / = 2 we obtain the following system of p non­

linear equations for D\ (i = 1, p) 

(38) f" - ^ < i i {.«o/o(s) (Q[( i Dm9mf] + R[i Dm9m, t Dmcpm]) 
Jfl P\s) i = l a = 0 m - l m=l m = l 

+ q[( i K<Pm)2] Lj[yV ... # ] + r'[ f D^J S[ £ 2)>m]} + 

+ 

+ M2[y0]> ds = 0 . 

From (38) we obtain, in general, 2P systems D\ (i = 1, p) and so we have 2P functions 

*(») 

^ ) = Z4^)- j = L2". 
i = l 

The solution of the /-th (/ = 3) equation from (34) can be written 

(39) y((s) = 0.(s) + £l>!<P.(s) 
i = l 

where 
a,(s) = J _>(s, t) h,(t) df + ht(s) ; 
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4>(s91) has the same meaning as in the section bl). For D\ (i = 1, p) we obtain from 
conditions (37) after substituting (39) into ht+1(s) the system of p linear equations 

(40) i^fV(s)G[(pm]ds = ^ , i=JTp 
m=l Jfl 

where 

d\ = ^ ( - y r ^ + ^ ^ y i , . . . ^ ^ ! ] - G ^ j j d s . 

Under the assumption that the determinant of the system (40) is different from zero 
it is possible to determine D\ uniquely in the form 

(41) D] = _ . / /„„! 

and so to determine the functions ytj(s) (j = 1, 2P uniquely. 
Therefore it is possible to construct, in general, 2P series of the type (33). The 

proof of convergence of these series in a neighbourhood of the point v = 0 will be 
carried out analogically as that in the section bl). Let us choose such a constant v0 

that 

|_>.(s)| = £ |->í| M s ) | < fo for s e <a, ř>> 
P 

1 
1 = 1 

is valid. Further, let us consider the function 

(42) 
S(z) = ADYÍ 1^1- ÍC> Jí2[z] + G2[z] + Y ( " ) (f-\\z + Cy 

1=i «=o ( k=i\kj \\n0\I + 

+ G^z] H^z] 

where the symbols Gj[Z], G2[Z], Hi[Z], H2[z] have the same meaning as in (13). If 
we put instead of Z 

(43) z = v.0 + _ > ' + 1(«, + .,) 
1 = 1 

in S(z) and expand the expression obtained in powers of v, we obtain 

(44) , S(2) = Jv'S, 
1 = 2 

where S, are upper bounds for the functions ht(s) if (u,_. + f,_i) are upper bounds 
for y,(s) (/ = _7w). 
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Let us choose such a number H that 

max \Hik\ = H 

holds. Then we determine ul and vt (I = 1, oo) from the equations 

(45) ut = 2KS I+1 , (1 + eG) vt = eSi + 2 

where e = p2PPxH and 

G-ADH K|« C'-',„ { £ (2 £(«<<) + £ £ -w.) + 
j = l a = 0 Uai + ... + av = j - a ) \ fc=l \ 2 / fc-lm=l / 

m*fc 

|y l + l(s)| < u| + t>|. 

+ 2 

We can easily see that 

If we introduce the notation 
OC 00 

(46) U = Zv '« , , V=£v't>,, 
1 = 1 1 = 1 

then z = v(v0 + U + V) and the determination of uhvt from equations (45) is 
equivalent to the solution of the system for U, V 

IK 
(47) <Pt = U - — S(v(v0 + U + V)) = 0 

v 

<£2 = (1 + eG) V- * ^ S ( v ( v 0 + U + V)) - S2) = 0 

in the form (46). As for v = U = V = 0, there is A = 1, the assumption (31) is 
fulfilled and from system (47) it is possible to determine U and Vas unambiguous and 
continuous functions of v. From analogical considerations as in the section bl) there 
follows that the series (33) converges absolutely and uniformly according to 5 and v 
in <a, b> and in a neighbourhood of the point v = 0 to functions (y/(s) — yo(s)) 
(j = 1, 2P) which are continuous in <a, b>. 

Hence, the assertions of the theorem are proved. 
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