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Časopis pro pěstování matematiky, roč. 94 (1969), Praha 

AN .^-CONVERGENCE IN DIFFERENTIAL EQUATIONS 

KAREL KARTAK, Praha 

(Received January 29, 1968) 

0. In what follows, notations introduced in [1] are used. Especially,^ = {1,2,...}; 
J = <T, T -f a>, a > 0, denotes a fixed compact interval, and G is a region in 0tn

9 

for some fixed n e Jf. Further, all measurability notions refer to the Lebesgue measure 
on 0t = 0tl. A function having a constant value £ on a domain considered will be 
denoted by | . The symbol C(I; G) denotes the set of all continuous mappings from J 
to G, equipped with the uniform convergence on I; the set of all Lebesgue integrable 
functions on J will be denoted by L(I). 

The set of all Caratheodory operators T on C(I; G) (see [1] for this notion) such 
that the equation 

(0.1) x(t) = { + pjx 

has, for each ^ e G, exactly one solution cp(.; £) defined over J, will be denoted by F. 
For completness, let us state here the Lebesgue-Vitali convergence theorem in the 

form used in this note: Let 

1° feL(I)9iejr9 

2°/i = 0, iejr9 

3° there exists f such that fx converge to f asymptotically on I. 

Thenfe L(I) and lim ///*=jTf iff the system {/*/*}, * e ^> *5 equi-AC on /, i.e., 
given e > 0, there exists 8 > 0 such that % = ax < bt = a2 < b2 S ••• -S #r < br .= 

r r 

= T + a> Z iPs ~ a1) < ^ ^ -E IJflj/fl < 8 ' independently of i e Jf. 

For the proof, see e.g. [4]. 

1. This investigation starts from the following theorem on a necessary and sufficient 
condition for continuous dependence on a parameter, which solves a problem posed 
in [2]. 

(1,1) Theorem. Let At(n x n), bt{n x 1), i e Jf, be Lebesgue integrable matrices 
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on I such that 
1° At -> 0, bi -» 0 asymptotically on I, 
2° A( = 0, bi = 0, ieJf. 

Let £ = [£ \ ..., <f] e J " be positive, i.e. £* > 0, k = 1,..., /*, a/id /<?* <?,(.;<!;) be 
fhe solution of 

x(t) = { + fr(Ax + b) 
defined over I. 

Then 
3° (Pi(. l £>) -* I uniformly on I 

iff 
4° {f'tAt}, {jl bt} are equi-AC on I. 

Proof. Let At = (a)1), bt = (bi), fc, / = 1,..., n. Let 3° be fulfilled. Then, denoting 
(Pi = [<pj,..., <p"], we have evidently 

<p*(0 = e* + juia^- + b)) >? + ew + w *e, 
1=i 

hence Jx a
k
t
l -» 0, Jj b* -* 0. The assertion 4° now follows from the Lebesgue-Vitali 

theorem. 
The step 4° => 3° follows immediately from a more general Theorem 8,4 of [1]. 
Theorem (1,1) may also be stated as follows. 

(2,1) Theorem. Let 2° be fulfilled. Then 3° holds iff 
5° / / ^ - O j ^ - O . 

Proof. From the proof of Theorem (1,1) we see that 2° & 3° => 5°. On the other 
hand, it is known that 2° & 5° => 1°. 

Remark. The positivity of £ is substantial in the first part of the proof; for, on taking 
n = 1, we have for £ S 0 that 0 = <f = a(t) f + ( -£) a(t) for each a e L(l). 

2. The above theorem may be given another form, using some more abstract 
notions. 

Recall that a set $ is called an ££ *-space (see [3]) iff there are distinguished 
sequences {pt} e $* called convergent such that the following is fulfilled: 

1° if {p^ converges to pes', limp,- = p in symbol, and if kt < k2 < ..., then 
lim pki = p, 

2° if Pi = P, then lim pt = p, 
3° if lim Pi + p9 then there exist kx < k2 < ... such that no subsequence of {pki} 

converges to p. 
Clearly, each subset of $ is an j£?*-space, too. 
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Let us show a procedure for introducing an ££*-space structure onto a set £ =f= 0. 
Let ^ be an ££*-space; for each peg, let £ p -1= 0 be a set of mappings S : <̂  -» # . 
When {pf} 6 <f*̂ , we write lim pt = p iff lim S(p,) = S(p), for each S e ]Tp. It is 
easy to show that 1°, 2°, 3° of the definition are fulfilled. 

3. Let £ be an JSf *-space, peS. We say that Q : & -> ^ is an almostmetric at p 
iff lim p. =-*p o l img(p , ) = 0. We say that <f is almostmetrical iff for each peS 
there exists an almostmetric at p. 

Evidently, when <f is a metrizable topological space with a corresponding metric d, 
then x -> d(x, p), x 6 <?, is an almostmetric at p for the induced J£?*-structure. 

In general, it seems difficult to give necessary and sufficient conditions for an 
JS?*-space to be almostmetrical. In section 5, we give an example pertinent to linear 
differential equations. 

4. Let T € F. For each £ e G, let S^(T) = cp(.; £) be the solution of (0.1) over I. To 
introduce a natural »Sf *-structure onto F, we apply the construction of section 2. 
Let T,T;eF , xeJf. We ptit « = C(I; G) and £ T = {S^; ^ G } ; i.e., we write 
lim Tf -= T iff lim S^(Tf) = S^(T) uniformly on I, for each £ e G. It would be of interest 
to decide whether this structure is almostmetrical. In the next section we define an 
almostmetric at a point of a subset of F. 

5. Let G = Mn. Let A+ = {Te F; l<p = [A<p + 6], with A, b e L(l) and non-
negative a.e. on I}. Using Corollary 8,2 of [ I ] , we see easily that T e A+ iff 

1° \Jq> = l(p — 10 is linear, 
2° q> = 0 => lq> = 0. 

For each T e A+, put Q(1) = £ £ J, a*< + £ Jf b
fe. ki 

k=l1=1 k=l 

(5,1) Theorem, Q is an almostmetric at 0 of A+ . 

Proof. This follows from Theorem (2,1) and Theorem 8,4 of [1]. 
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