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Summary. The linear arboricity of a graph G is the minimum number of linear forests whose
union is G. In the paper the problem of determining the linear arboricity for nonregular graphs
whose maximum degree is even is studied.
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A linear forest is a graph in which each component is a path. The linear arboricity
Z(G) of a graph G is the minimum number of linear forests whose union is G.

The concept of linear arboricity was introduced by Harary [10] in 1970 but, until
now, the value of linear arboricity has been determined only for few special classes
of graphs, e.g. for trees, complete graphs and complete bipartite graphs (see [1], [2]).

The conjecture which had the main influence on the development of the theory of
linear arboricity was introduced in [2]:

Conjecture 1. The linear arboricity of an r-regular graph is [(r + 1)/2].
The topic of linear arboricity has been lately studied by many mathematicians who
verified Conjecture 1 for the cases of r = 2, 3, 4,5, 6, 8 and 10 (see [2], [3], [5],[6],

[7], [12]).

The bounds of linear arboricity depending on the maximum degree of a graph
were determined in [3] (the best possible lower bound) and in [8] (the best upper
bound at this time):

Theorem 1. Let G be a graph with maximum degree A. Then

[ﬂ < 26).

Theorem 2. Let G be a graph with maximum degree A. Then
E(G) £ E g-l if A is even, and

56) £ 1 +[§A—;l] if 4is odd .
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On the basis of the lower bound of the linear arboricity given in Theorem 1 we
can proceed as follows. If Conjecture 1 were proved in general then the linear ar-
boricity would be nearly determined for all graphs because for the graph G with
maximum degree 4 we should have 5(G) = (1 + 4)/2 for 4 odd and Z(G) = 4/2
or (1 + 4/2) for 4 even. This implies that the complementary problem to Conjecture
1 is to investigate the linear arboricity of nonregular graphs whose maximum degree
is even. The most important of these graphs for this aim are those that contain
vertices of only two degrees 4 and (4 — 1). The general problem in this matter
was expressed by Tomasta [12] in the following form:

Problem 1. Determine the maximum number of (r + 1)’s in a degree sequence
(of a given length)
r+Lr+1,..,r+1L,rr..,7)

of a graph G with the linear arboricity 2(G) = [(r + 1)/2] for odd r = 3.

The aim of this paper is to present some results concerning this problem which in
fact can be interpreted in two ways, thus, we actually have two independent problems.
The first is to determine the maximum number of (r 4+ 1)’s so that there exists
a graph G with this degree sequence and E(G) = [(r + 1)[2]. The second is to de-
termine the maximum number of (r + 1)’s so that every graph G with this degree
sequence fulfils Z(G) = [(r + 1)/2].

The solution of the first interpretation of Problem 1 will be given in Theorem 3.
Let us first introduce some necessary notations. In this paper we consider finite
undirected simple graphs. Let us denote by ¥(G) the set of vertices of degree r of
the graph G and let (M) denote the subgraph induced by the subset M of vertices.
Further, we define graphs G, U G, = (V(G,) U V(G,), E(G,) L E(G,)) and G, —
— E = (V(G,), E(G,) — E) for arbitrary graphs G,, G, and the set of edges E.

Theorem 3. Let x, y, r be nonnegative integers, r odd. Then there exists a graph G
with x vertices of degree (r + 1), with y vertices of degree r, with |[V(G)| = x + y
and 5(G) = (r + 1)2if and only if yisevenand y 2 r + 1.

Proof. I. The number of vertices of an odd degree in any graph must be even and
so it is necessary for y to be even. If the graph G can be decomposed into (r + 1)/2
linear forests then it must contain at least (r + 1) vertices which are endvertices of
some linear forest and so they are of degree r. Hence y = r + 1.

II. Let us have y even and such that y > r + 1.

A. Let us assume first that (x + y) is even, (x + y) = 2k. Consider the complete
graph K, with V(K) = {ay, ..., @, by, ..., b}. It is known (see [11]) that the
complete graph K,, can be decomposed into k hamiltonian paths Py, ..., P, and,
in addition, we can choose such a decomposition that P, = (ay, a2, -++» @k bis -, by)
and the endvertices of P, are just a;, b, for all i (see Fig. 1 for Py, P, of the case
x + y=28).
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(r+1)/2
Let us define the graph G, = U P,. Then we have |V(G,)| = x + y, |[V(Gy)| =

=r+ 12y |[V(G)=(x + y) (r + 1) 2 x. Further, let us define the
sequence of independent edges of P, in the following way: e; = (@(+1y2)+15
Ar+ 1)/2)+2), € = (b((r+ 1y/2)+ 15 b+ 1)/2)+z)» €3 = (a((H- 1)/2)+3s Q((r+ 1)/2)+4)s ...; the
last edge e,—(,+1y2 Will be either (b,—y, b,) or (a,, b,) depending on the parity of

= (rt+1))/2
(k = (r + 1)/2). Finally, we define the graph G = G, — U {e;} which has just x

vertices of degree (r + 1), y vertices of degree r, and can bed ecomposed into (r + 1)/2
linear forests.

Fig. 1

B. Now, let us assume that (x + y) is odd and let x + y = 2k + 1. Consider the
complete graph K., with V(Kji41) = {ay, ..., @y, by, ..., by, c}. It is known (see
[11]) that the complete graph K,; 4+, can be decomposed into one matching and k
hamiltonian paths P,, P,, ..., P, and, in addition, we can choose such decomposition
(very similar to case A) that Py = (aj, az, ..., G, €, by, ..., b;) and the endvertices
of P; are just a;, b, for all i (see Fig. 2 for the case x + y = 9). Let us define the

Fig. 2
graph G, and the sequence of edges e, for i = 1,..., (k — (r + 1)/2) in the same
way as in case A except for the last edge ;412 whlch will be either (b, b)or

(ax, ) depending on the parity of (k — (r + 1)/2). Finally, we define the graph
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(y=(r+1))/2

G=G;— U {e} which has just x vertices of degree (r + 1), y vertices of
i=1

degree r and can be decomposed into (r + 1)/2 linear forests.
The second part of Problem 1 which is much more difficult will be partially solved
in Theorem 4. Let us first introduce a necessary lemma.

Lemma 1. Let x, y, r be nonnegative integers, r odd, y even, and let x + y =
2 r + 2. Then there exists a graph G with |V(G)| =x + y, |Vi(G)| =y and
IVr+ 1(G)l = X.

Proof. Take (r + 1)/2 cycles of the decomposition of the complete graph K.,
into hamiltonian cycles (and 1 matching if x + y is even) and delete y/2 independent
edges of the first cycle to obtain G.

Theorem 4. Let x, y,r be nonnegative integers, r odd, y even, and let x = 3,
x + y 2 2r + 3. Then there exists a graph G with |V(G)| = x + y, |[V(G)| = »,
[V,+1(G)| = x and E(G) 2 1 + (r + 1)/2.

Proof. I. First,let x + y = 2r + 3 and y < r + 1. According to Lemma 1 there
exists a graph G with |V(G)| = x + y, |V(G)| = y and |V,,(G)| = x which ac-
cording to Theorem 3 has 5(G) = 1 + (r + 1)/2.

Il Let x+ y=2r+ 3 and y =2 r + 1. Then according to Lemma 1 there
exists a graph G, with |[V(Gy)| = r + 2, |[V,44(G,)| = xand |[V(Gy)| = r + 2 — x £
Sr—1<r+1 Hence 5(G,) 2 1 + (r + 1)/2. Let us define G = G, U K,,,
which fulfils the conditions of Theorem 4.

III. Now, let x + y > 2r + 3 and let x, = min {(2|(x — 1)/2] + 1), r + 2},
Y1 =r+ 2 — x,. Hence 3 < x; < xand y, is even, and then there exists a graph G,
with [V(G,)| = x; + yy = r + 2, |V;44(Gy)| = x4, |V(Gy)| = y1, which according
to Theorem 3 has Z(G,) 2 1 + (r + 1)/2. According to Lemma 1 there exists
a graph G, with |[V(G)l=(x+y)—(r+2)2r+2, |[V1:iG)|=x—x
|Vi(G,)| = y — yy. Finally, we define the graph G = G, U G,, which fulfils the con-
ditions of Theorem 4.

Remark. If x = 4 then it is not difficult to construct a graph G fulfilling the
conditions of Theorem 4 which, moreover, is connected.

Now, let us summarize the results concerning the graphs with vertices of only
two degrees r, r + 1, for r odd.

I. Every graph G with |V(G)| = |V(G)| — |V,44(G)| < r + 1 has 5(G) = 1 +
+(r + 1))2.

II. For arbitrary integers x, y,r such that x + y 2 2r +3, x> 3, y=>r + 1,
r odd, y even there exists graphs Gy, G, such that |V(G,)| = IV(Gz)I =x+y,
V(G| = [V(G2)| = ¥, [Ve+1(G)| = |Vi+1(G2)| = x and 2(G,) = (r + 1)/2,
E(G)) 21+ (r +1)2 ' :
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III. For arbitrary nonnegative integers x, Y, r; y even, r odd such that y = r + 1
and :

(i) x=<2or

(i) x+y<2r+3
there exists a graph G such that [V(G)| = x + y, |V,44(G)| = x, |V,(G)| = y and
E(G) = (r + 1)/2; however we do not know any such graph with the linear arboricity
greater than (r + 1)/2.

On the basis of the preceding considerations let us propose an open problem and
a conjecture which is a little stronger than Conjecture 1.

Problem 2. Let G be a graph with an odd minimum degree r and an even maximum
degree r + 1. Let 3 < |[V,44(G)| £ |V(G)| — (r + 1). Determine the linear arbo-
ricity of G depending on the structure of the graph G.

Conjecture 2. Let G be a graph with all vertices of degree r except of at most two
vertices of degree r + 1. Then E(G) = [(r + 1)/2].

This conjecture was verified up to now for the cases of r = 1, 2, 3, 4. The case
r = 1 is trivial, the cases r = 2, 4 follow from the verification of Conjecture 1 for
r = 3 and 5 and the case r = 3 follows from the nice result due to Enomoto [5], [6]:

Theorem 5. Let G be a graph with A(G) = 4. Let A({V,(G))) < 1. Then Z(G) = 2.
Another result on this topic was published in [7]:

Theorem 6. Let G be a graph with the degree sequence (6, 5, ..., 5). Then 2(G) = 3.
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SGhrn

O JEDNOM PROBLEME LINEARNEJ LESNATOSTI
FiLiP GULDAN
Linearna lesnatost grafu je minimalny pod&et linedrnych lesov, na ktoré sa da rozloZif dany

graf. V &lanku sa analyzuje problém ur&enia line4rnej lesnatosti nepravidelnych grafov s parnym
maximilnym stupifiom. ‘

Peslome
O INPOBJIEME JIMHEMHEBIX JIECOB
FiLip GULDAN
JInneiinas apesecHoCcTh rpada G — 3TO MHHHMANIBHOE YHCIO JIMHEHHBIX JI€COB, 0OBbeaueHHE

KOTOPHIX paBHEe G. B craThe H3y4aeTca OpobieMa Onpe/ieieHHs JTAHEHHORK APEBECHOCTH HEIPaBMIh=
HEIX rpad)oB ¢ YeTHOX MaKCHMAJILHOM CTEHEHBIO.
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