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ON A PROBLEM OF LINEAR ARBORICITY 

FILIP GULDAN, Bratislava 
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Summary. The linear arboricity of a graph G is the minimum number of linear forests whose 
union is G. In the paper the problem of determining the linear arboricity for nonregular graphs 
whose maximum degree is even is studied. 
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A linear forest is a graph in which each component is a path. The linear arboricity 
3(G) of a graph G is the minimum number of linear forests whose union is G. 

The concept of linear arboricity was introduced by Harary [10] in 1970 but, until 
now, the value of linear arboricity has been determined only for few special classes 
of graphs, e.g. for trees, complete graphs and complete bipartite graphs (see [1], [2]). 

The conjecture which had the main influence on the development of the theory of 
linear arboricity was introduced in [2]: 

Conjecture 1. The linear arboricity of an r-regular graph is \(r + l)/2]. 
The topic of linear arboricity has been lately studied by many mathematicians who 

verified Conjecture 1 for the cases of r — 2, 3, 4, 5, 6, 8 and 10 (see [2], [3], [5],[6], 
[7], [12])-

The bounds of linear arboricity depending on the maximum degree of a graph 
were determined in [3] (the best possible lower bound) and in [8] (the best upper 
bound at this time): 

Theorem 1. Let G be a graph with maximum degree A. Then 

[Í1--Я 
Theorem 2. Let G be a graph with maximum degree A. Then 

3(G) -< if A is even, and 
I 5 2 | 

3(G) £ 1 + f- ^ i ~ | if A is odd. 
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On the basis of the lower bound of the linear arboricity given in Theorem 1 we 
can proceed as follows. If Conjecture 1 were proved in general then the linear ar­
boricity would be nearly determined for all graphs because for the graph G with 
maximum degree A we should have 3(G) = (1 + A)j2 for A odd and 3(G) = A\2 
or (1 + J/2) for A even. This implies that the complementary problem to Conjecture 
1 is to investigate the linear arboricity of nonregular graphs whose maximum degree 
is even. The most important of these graphs for this aim are those that contain 
vertices of only two degrees A and (A — 1). The general problem in this matter 
was expressed by Tomasta [12] in the following form: 

Problem 1. Determine the maximum number of (r + l)'s in a degree sequence 
(of a given length) 

(r + 1, r + 1, ..., r + 1, r, r, ..., r) 

of a graph G with the linear arboricity 3(G) = [(r + l)/2] for odd r = 3. 
The aim of this paper is to present some results concerning this problem which in 

fact can be interpreted in two ways, thus, we actually have two independent problems. 
The first is to determine the maximum number of (r + l)'s so that there exists 
a graph G with this degree sequence and 3(G) = [(r + l)/2]. The second is to de­
termine the maximum number of (r + l)'s so that every graph G with this degree 
sequence fulfils S(G) = [(r + l)/2]. 

The solution of the first interpretation of Problem 1 will be given in Theorem 3. 
Let us first introduce some necessary notations. In this paper we consider finite 
undirected simple graphs. Let us denote by Vr(G) the set of vertices of degree r of 
the graph G and let <M> denote the subgraph induced by the subset M of vertices. 
Further, we define graphs Gx u G2 = (V(Gt) u V(G2)9 E(Gt) u E(G2)) and Gt -
- E = (V(GX)9 E(Gt) - E) for arbitrary graphs Gl9 G2 and the set of edges E. 

Theorem 3. Let x9 y9 r be nonnegative integers, r odd. Then there exists a graph G 
with x vertices of degree (r + 1), with y vertices of degree r, with \V(G)\ = x + y 
and 3(G) = (r + l)/2 if and only if y is even and y = r + 1. 

Proof. I. The number of vertices of an odd degree in any graph must be even and 
so it is necessary for y to be even. If the graph G can be decomposed into (r + l)/2 
linear forests then it must contain at least (r + 1) vertices which are endvertices of 
some linear forest and so they are of degree r. Hence y g; r + 1. 

II. Let us have y even and such that y = r + 1. 
A. Let us assume first that (x + y) is even, (x + y) = 2k. Consider the complete 

graph K2k with V(K2k) = {al9..., ak9 bl9..., bk}. It is known (see [11]) that the 
complete graph K2k can be decomposed into k hamiltonian paths Pl9..., Pk and, 
in addition, we can choose such a decomposition that Pt = (al9 a29..., ak9 bk9..., bt) 
and the endvertices of P, are just ai9 bt for all i (see Fig. 1 for Pl9 P2 of the case 
x + y = 8). 
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(r+l)/2 
Let us define the graph G1 = U -?*• Then we have \V(G^)\ = x + y9 \Vr(GJ[ = 

i=-l 
= r + 1 = y9 |Vr+i(C?i)| = (x + y) - (r + 1) = x. Further, let us define the 
sequence of independent edges of Px in the following way: et = (a((r+1)/2)+l9 
tf((r+l)/2) + 2), e2 = (&((r+l)/2)+l, ^((r+l)/2) + 21, e3 ^ (a((r+l)/2) + 3> a((r+ l)/2) + 4)> •••> the 
last edge ek-(r+1)/2 will be either (fr^-i, bk) or (ak, 6fc) depending on the parity of 

0>-(r+l))/2 
(fc — (r + l)/2). Finally, we define the graph G == G1 — U {ej which has just x 

i = i 

vertices of degree (r + 1), .y vertices of degree r, and can bed ecomposed into (r + l)/2 
linear forests. 

Fig.l 

B. Now, let us assume that (x + y) is odd and let x + y = 2fc + 1. Consider the 
complete graph K2k+1 with V(K2k+1) = {a1?..., ak9 bl9..., bfc, c}. It is known (see 
[11]) that the complete graph K2k+1 can be decomposed into one matching and fc 
hamiltonian paths Pl9 P2,..., Pk and, in addition, we can choose such decomposition 
(very similar to case A) that Px = (al9 al9..., ak9 c, bk,..., bt) and the endvertices 
of Pt are just ai9 bt for all i (see Fig. 2 for the case x + y = 9). Let us define the 

Fig.2 

graph Gx and the sequence of edges e( for i = 1,..., (fc — (r + l;/2) in the same 
way as in case A except for the last edge 0k-.(r+1)/2 which will be either (bk-u bk)ot 
(ak, c) depending on the parity of (fc — (r + l)/2). Finally, we define the graph 
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(y-(r+l))/2 

G = Gt — (J {et} which has just x vertices of degree (r + l), y vertices of 
i = i 

degree r and can be decomposed into (r + l)/2 linear forests. 
The second part of Problem 1 which is much more difficult will be partially solved 

in Theorem 4. Let us first introduce a necessary lemma. 

Lemma 1. Let x, y, r be nonnegative integers, r odd, y even, and let x + y ^ 
= r + 2. Then there exists a graph G with \V(G)\ = x + y, \Vr(G)\ = y and 
\K+1(G)\ = x. 

Proof. Take (r + l)/2 cycles of the decomposition of the complete graph Kx+y 

into hamiltonian cycles (and 1 matching if x + y is even) and delete y\2 independent 
edges of the first cycle to obtain G. 

Theorem 4. Let x, y, r be nonnegative integers, r odd, y even, and let x ^ 3, 
* + y = 2r + 3. Then there exists a graph G with \V(G)\ == x + y, \Vr(G)\ = y, 
\Vr+1(G)\ = x and 3(G) = 1 + (r + l)/2. 

Proof. I. First, let x + y = 2r + 3 and y < r + 1. According to Lemma 1 there 
exists a graph G with |V(G)| = x + y, \Vr(G)\ = y and |Vr+1(G)| = x which ac­
cording to Theorem 3 has 3(G) = 1 + (r + l)/2. 

II. Let x + y = 2r + 3 and }> = r + 1. Then according to Lemma 1 there 
exists a graph Gx with \V(G±)\ = r + 2, IVr+^G^I = xand |Vr(Gx)| = r + 2 - x = 

=r-l<r+L Hence 3(Gt) = 1 + (r + l)/2. Let us define G = Gt u Kr+1, 
which fulfils the conditions of Theorem 4. 

III. Now, let x + y > 2r + 3 and let xt = min {(2[(x - l)/2j + 1), r + 2}, 
yx = r + 2 — Xj. Hence 3 ^ xt S x and y± is even, and then there exists a graph Gx 

with \V(Gt)\ = x, + yx = r + 2, IV.+ ̂ GOI = xl9 \Vr(Gx)\ = yl9 which according 
to Theorem 3 has 3(Gt) = 1 + (r + l)/2. According to Lemma 1 there exists 
a graph G2 with |V(G2)| = (x + y) - (r + 2) = r + 2, |Vr+1(G2)| = x - xlf 

|^r(G2)| = y - yi- Finally, we define the graph G = Gxu G2, which fulfils the con­
ditions of Theorem 4. 

Remark. If x ^ 4 then it is not difficult to construct a graph G fulfilling the 
conditions of Theorem 4 which, moreover, is connected. 

Now, let us summarize the results concerning the graphs with vertices of only 
two degrees r,r+ 1, for r odd. 

I. Every graph G with |Vr(G)| = |V(G)| - |Vr+1(G)| < r + 1 has 3(G) = 1 + 
+ (r + l)/2. 

II. For arbitrary integers x, y, r such that x + ,'_2r + 3, x _ 3 , >>_r + l, 
r odd, y even there exists graphs G., G2 such that |V(GX)| = |V(G2)| = x + y, 
IV^GOI = |V,(G2)| = y, |Vr+1(G.)| = |Vr+1(G2)| = x and 3(0,) = (r + l)/2. 
S(G2) = 1 + (r + l)/2. 
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III. For arbitrary nonnegative integers x, y, r; y even, r odd such that y ^ r + 1 
and 

(i) x = 2 or 

(ii) x + y < 2r + 3 
there exists a graph G such that |V(G)| == x + y9 |Vr+1(G)j = x, |Vr(G)| = y and 
E(G) = (r + l)/2; however we do not know any such graph with the linear arboricity 
greater than (r + l)/2. 

On the basis of the preceding considerations let us propose an open problem and 
a conjecture which is a little stronger than Conjecture 1. 

Problem 2. Let Gbea graph with an odd minimum degree r and an even maximum 
degree r + 1. Let 3 = |Vr+1(G)| = \V(G)\ - (r + 1). Determine the linear arbo­
ricity of G depending on the structure of the graph G. 

Conjecture 2. Let G be a graph with all vertices of degree r except of at most two 
vertices of degree r + 1. Then 3(G) = \(r + 1)/2"|. 

This conjecture was verified up to now for the cases of r = 1, 2, 3, 4. The case 
r = 1 is trivial, the cases r = 2, 4 follow from the verification of Conjecture 1 for 
r = 3 and 5 and the case r = 3 follows from the nice result due to Enomoto [5], [6]: 

Theorem 5. Let Gbea graph with A(G) = 4. Let A(<V4(G)» <L 1. Then 3(G) = 2. 
Another result on this topic was published in [7]: 

Theorem 6. Let Gbea graph with the degree sequence (6, 5,..., 5). Then 3(G) = 3. 
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Súhrn 

O JEDNOM PROBLÉME LINEÁRNEJ LESNATOSTI 

FILIP GULDAN 

Lineárna lesnatosť grafu je minimálny počet lineárnych lesov, na ktoré sa dá rozložiť daný 
graf. V článku sa analyzuje problém urcenia lineárnej lesnatosti nepravidelných grafov s párnym 
maximálnym stupňom. 

Резюме 

О ПРОБЛЕМЕ ЛИНЕЙНЫХ ЛЕСОВ 

Р11ЛР С ^ О А И 

Линейная древесность графа О — это минимальное число линейных лесов, объедиение 
которых равне О. В статье изучается проблема определения линейной древесности неправиль­
ных графов с четной максимальной степенью. 

Аигког'з аййгем: ТЗ&Х&У ар1̂ коVапе̂  куЬегпеику, Напила 5а, 844 16 ВгаН$1ауа. 
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