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Summary. Extremaly chaotic functions and chaotic functions with a very small scrambled sets
are studied. Stability of these types of functions with respect to small perturbations is investigated.
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Recently, some papers have appeared showing that there are extremely chaotic
functions, cf. [2], [5], [7], [8], and also papers exhibiting chaotic functions with
a very small chaos (see e.g. [1] and [6]). The main aim of this note is to show that
both the above quoted types of chaotic functions are unstable with respect to small
perturbations.

Recall that a continuous selfmapping f of a compact real interval I is chaotic
provided there is an uncountable scrambled set S < I such that for any two different
points x, y € S and any periodic point p of f

(1) im sup |1°(3) = 1°0)] > 0,

- (2) liminf |f"(x) — f"(»)| = 0,

n- o0

(3 limsup |6 - (2)] > 0

(cf. [4]), where f* denotes the n-th iterate of f.

In [2], [5], [8], examples of chaotic functions with scrambled sets of positive
Lebesgue measure are given. Now we show that there are also chaotic functions
having scrambled sets which are large from the topological point of view.

Theorem 1. Let f:[0,1] - [0,1] be defined by f(x) =1 — |2x — 1|. Then,
under the continuum hypothesis, f has a scrambled set S with the following proper-
ties: S is a second Baire category set in every subinterval J of [0, 1] and the outer
Lebesgue measure of S is 1. ' ’

Proof of Theorem 1 is a modification of the proof of a theorem from [7]. We use
the following lemma (see Lemmas 2—4 from [7]).
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Lemma. There is a G, subset A < [0, 1] with the following properties:

1. For any x € A and any periodic point p of f, (3) is true.

2. For every x€ A there is a Gy subset A(x) of A with p(A(X)) = 1 and such
that for any y € A(x), (1) and (2) are true (u denotes the Lebesgue measure).

Proof of Theorem 1. Let 2 be the first uncountable ordinal. Let {P,},<q be
a sequence of all nowhere dense perfect subsets of [0, 1] of positive Lebesgue measure,
and let {Q,},<qn be a sequence of all G, sets of the second Baire category in [0, 1].
We use transfinite induction to construct S. Choose xo € A N Py, yo € A(x) N Q.
Next, assume that {x,},<, and {¥,}.<; are defined and take

Xp € n (A(x,) N A(y,)) 0 Py

and

yeen) (A(x, ) n (N A(ya))) N Q.
Now consider S = ﬂ {x }u { y,} Ifx,ye S x % y, then either xe A(y) or y € A(x)

and hence, by Lemma, S is a scrambled set of f. Since S intersects every perfect
subset of [0, 1] of positive Lebesgue measure and each G, set of the 2-nd Baire
category in [0, 1], the set S has full outer Lebesgue measure and is a 2-nd Balre
category in every subinterval of [0, 1].

Remark 1. In addition, it is easy to see that for every x € S and every periodic
point p of f, the extremal conditions (3) and (4) from [7] are satisfied.

Remark 2. The function f from the theorem has no scrambled set S of the 2-nd
category with the Baire property. i

Assume there is a scrambled set S of the 2-nd category with the Baire property.
Let J be such an interval that J N S is residual in J. Take m > 1 such that 2™ . u(J) >
> 2. Then for some i < 2"*!, [if2"*1,(i + 2)/2”'“] c J. Put I, = [if2"*},
(i + 1))2m*1], 1y = [(i + 1)2m*, (i + 2)[2"*1]. It is easy to see that f™*1(I,) =
= f™*1(I,) = [0, 1], and since f™*! restricted to I, j = 0, 1, is linear, both S, =
= f"*Y(Sn1,) and S; = f™*Y(S N I,) are residual in [0, 1]. Consequently, there
is a point z€ Sy N Sy, i.e., for suitable xe SN I, yeSNI;, we have f/(x) =
= fJ(y) for j > m, contrary to (1).

In the sequel we shall use the following notation: C is the class of all continuous
[0, 1] - [0, 1] functions and F < C is the class of chaotic functions (i.e. functions
possessing a scrambled set). Moreover, define the following three subclasses Fy, Fa, F3
of F: - :

feF,iff f has a scrambled set of positive outer Lebesgue measure,
f e F,iff f has a scrambled set of positive Lebesgue measure,
f e Fyiff f has scrambled set of the 2-nd Baire category in [0, 1].

Theorem 2. The sets F,, F3 (and hence also F,) are dense in C.

352



Proof. We show that in any neighbourhood of a continuous function there is
a function from F,, F;. Let g: [0, 1] - [0, 1] be continuous, & > 0. By the con-
tinuity g has a fixed point p € [0, 1], and thereisa 6 > 0, < gsuch that |x — y| < &
implies |g(x) — g(y)| < e. At least one of the intervals [p — 6, p], [p, p + 6] is
a subinterval of [0, 1]. Assume it is [p — &, p]. In the other case the proof is similar.
Let f3: [0, 1] - [0, 1] be the function from Theorem 1, f,: [0, 1] - [0, 1] a chaotic
function with a scrambled set of positive measure. Let h:[0,1] - [p — 8, p] be
defined by h(x) = 6(x — 1) + p. Denote ¢; = hof;oh™", i = 2,3, where h™1 is
the inverse to h. For x € [p — 6, p] we have

lo(x) = @i(x)| < la(x) = p| + |p — @ulx)| < 2¢.
Hence there is a function g; € C, g,(x) = @{(x) for xe[p — 6, p] and |g, — g| <
< 2, i=2,3.1tis easy to see that g,e F;, i = 2, 3, q.e.d.
Theorem 3. The set F\(F, U F,) is dense in C.
Proof. Take fe C, ¢ > 0. By [3] there is a function g€ C, g with a 3-cycle

X3 = X, = X3 — x,; and hence chaotic (see [4]), | f — g|| < &. Since g is uniformly
continuous there is & > 0 such that |x — y| < & implies |g(x) — g y)| <eée. Let
0=y, <y, <..<py,=1 be such a division of [0, 1] that |y,_, — y| <&

for i=1,..,n and X1, X3, X3 € {y;}]=;. Denote I, = [y;_y, y;]. Let h-:I,- -1,
i=1,...,n, be a Cantor-type function which is continuous, non decreasing, and
there is a nowhere dense perfect set 4; < I; with u(A;) = 0 and such that h; is

constant on every interval J contiguous to A4;. Put 4 = U A; and let h: [0,1] —

- [0, 1] be defined by h(x) = hy(x) for x €I, Let f*(x) = g(h(x)) for x € [0, 1]. -
Since every y; is a fixed point of h, we have |x — h(x)| < ¢ for every x, and con-
sequently

lr=r* =1 =gl + llg = /*] < 2.

Clearly f* has a 3-cycle. On the other hand, every scrambled set S of f* contains

only a denumerable set of points lying outside of A, every interval contiguous to 4

contains at most one point from S, and consequently, S is nowhere dense and
u(S) =0, q.ed.

Remark 3. In connection with the above results recall the following problem
presented by J. Smital at the First Czechoslovak Summer School on Dynamical
systems (June 1984): Is any of the sets F,, F,, F; or F\(F,u F;) a first Baire
category set?

Remark 4. In connection with Theorem 1 the following problem seems to be
interesting: Does there exist a chaotic function [0, 1] = [0, 1] possessing a scrambled
set which is residual in a certain subinterval J < [0, 1]? Note that in [5], [6], [7]
the chaotic functions have only scrambled sets of the 1-st category in [0, 1].
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Sahrn

O STABILITE CHAOTICKYCH FUNKCIf

KATARINA JANKOVA

V préci sa uvaZuja extrémne chaotické funkcie a chaotické funkcie s veImi malou chaotickou
mnoZinou. Skima sa stabilita tychto funkcii vzhladom na malé perturbacie.

Pe3ome
OB YVCTOMYHMBOCTHU XAOTUYECKUX ®YHKLIUN

KATARINA JANKOVA

B pabote uccneAyroTcs IKCTPEMANbHO XaoTHYeCKHe QYHKLMH M (HYHKLMM C OYSHb MaJIBIM XaOTH~
YeCKMM MHOXeCTBOM. VccrmenyeTcsi YCTOMYMBOCTDL 3THX THIIOB (DYHKLMI{ OTHOCHTEIBHO MAaJBIX
BO3MYLIICHHIA. *
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