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112(1987) ČASOPIS PRO PĚSTOVÁNÍ MATEMATIKY No. 4. 381—389 

SECOND PHASE MATRIX OF DIFFERENTIAL SYSTEMS 
r + P(x) Y=0 

ONDREJ DOSL*, Brno 

(Received July 8, 1985) 

Summary. The concept of the second phase matrix of differential systems Y" + P(x) Y -= 0 
is introduced, where P(x) is a symmetric positive definite n X n matrix. Basic properties of this 
matrix and relationships between the first and the second phase matrix of the same differential 
system are investigated. 

Keywords: Selfadjoint differential systems, first phase matrix, second phase matrix, trigono­
metric matrices, associated system. 

AMS Classification: 34C10. 

1. INTRODUCTION 

Let u(x), v(x) be linearly independent solutions of a scalar differential equation 
of the second order 

(i.i) y" + K*)y = o, 
where p(x) is a positive continuous real function. This function is called the carrier 
of equation (1.1). It is known, see [3], that there exist real functions a(x), fi(x) with 
a'(x) =f= 0, fi(x) 4= 0, and a real constant k such that 

(1.2) «(x)-=fc.(|a'(x)|)-1/2sina(x), 

v(x) =fc.(|a'(x)|)-1 / 2cosa(x), 

(1.3) u'(x) = k. (\P'(x)\ p(x)Y^ sin fi(x) , 

v'(x)=k.(\p'(x)\p(x))-^cosP(x). 

These functions were introduced by O. Borfivka, see [3], and they are called the 
first phase function and the second phase function of (1.1), respectively. 

Introducing the concept of the first phase matrix of the matrix differential system 

(1.4) Y" + P(x)Y=09 

where P(x) is a symmetric continuous n x n matrix, it was shown in [4] that the 
formulae (1.2) can be extended to the matrix system (1.4). 
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In this paper we shall introduce the concept of the second phase matrix of system 
(1.4), and by means of this concept we shall extend the relations (1.3) to system (1.4). 
We shall also study relationships between the first and the second phase matrices 
of (1.4) and some related topics. Throughout the paper the matrix P(x) is supposed 
to be positive definite. 

2. NOTATION AND PRELIMINARY RESULTS 

The following notation is used. Cm(l) denotes the space of m-times continuously 
differentiable real functions on an interval I. If A(x) is a matrix of functions, we write 
A(x) e Cm(l) if each entry of A(x) belongs to Cm(l). If A is a matrix of any dimension, 
AT and A* denote the transpose and the conjugate transpose of A, E and 0 denote 
the identity and the zero matrix of any dimension, respectively. The system (1.4) 
is investigated on an interval I of an arbitrary kind. 

First we recall some facts concerning the properties of the phase functions of equa­
tion (1.1). Let p(x)e C2(l) and let ot(x), fi(x) be a first and a second phase functions 
of (1.1). Then 

(2.1) p(x) = ((|a'(*)|r/*)'' (|a'(x)|)^ + a'2(x) , 

P(x) = ((\nx)\)-^ 
where 

(2.2) .r • fay- P(X) + ((x*)r i / 2r(K*))1 /2 : 
is the carrier of the so called associated equation 

C2-3) ,, ... y" + P(*)y = o. r _ 
If y(x) is a solution of (1.1) fheri y'(x) is the solution of Q>_1(x) / ) ' • + y = 0 and 
(p(x))~1,z y'(x) is the solution of the associated equation (2.3). From (1.2) and (1.3) 
it follows that the first and the second phase functions of (1.1) can be defined as 
continuous functions satisfying 

/ \ w(x) . , v u'(x) 
tga(x) = -Lj, tgtf*)=.--)-'. 

v{x) v (x) 

In this case we say that the phase functions a(x), P(x) are determined by the pair of 
titiearly independent solutionsr,u(x), v(x). If ot(x), p(x) are determined by the same 
pair of solution's t*(x), v(x) then there exists an integer k such that kn < a(x) — 
i - ]8(x)-< (fc + l)n: *: *• :•: / : • - ^ : 

Now, let Q(x) be a symmetric positive definite n x n matrix and consider the 
2n-dimensional matrix differential system of the first order 

(2.4) ,S' = Q(x)C, C'=-Q(x)S - / ••"• . . : 
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with the initial condition S(a) = M, C(a) =-= N, where M, N are constant n x n 
matrices satisfying MTM + NTN = E, MTN = NTM. 

Then the following identities hold: 

(2.5) ST(x) S(x) + CT(x) C(x) = E , ST(x) C(x) = CT(x) S(x) , 

S(x) ST(x) + C(x) CT(x) = E , S(x) CT(x) = C(x) ST(x) , 

see [1], For a more detailed study of these so called trigonometric matrices see [7], 
[8], [9]. At all points where the matrix C(x) is nonsingular let us define the matrix 
T(x) = C~l(x) S(x). To emphasize that [S(x), C(x)} is a solution of (2.4) with the 
matrix Q(x), we shall sometimes write S(x, Q), C(x, Q) instead of S(x), C(x) and also 
T(x, Q) instead of T(x). 

At the end of this section we shall recall some properties of solutions of (1.4). 
Let U(x), V(x) be two solutions of (1.4). Then UT'(x) V(x) - UT(x) V'(x) = K, 
where K is a constant n x n matrix. A solution U(x) of (l . l) is said to be isotropic 
whenever UT'(x) U(x) - UT(x) U'(x) = 0. 

Let U(x), V(x) be isotropic solutions of (1.4) for which 

(2.6) ' UT'(x) V(x) - UT(x) V'(x) = E . 

There exists an n x n matrix A(x) e C3(I), A'(x) positive definite, such that U(x) 
and V(x) can be expressed in the form 

U(x) = R(x) S(x), V(x) = R(x) C(x) , 

where {S(x), C(x)} is a solution of 

5' = A'(x)C, C = -A'(x)S 

for which (2.5) holds, and R(x) is a nonsingular n x n matrix satisfying 

(2.7), K(x) RT(x) = U(x) UT(x) + V(x) VT(x) , 

(2.7)2 (RT(x)R(x))-*=A'(x), 

(2.7)3 # T , M R(x) - RT(x) R'(x) = 0 

and 
P(x) = -R»(x) R-^x) + (R(x) Rr(x))~2 ,„ 

see [4]. 
The matrix A(x) is called the first phase matrix of (1.4). Two matrices -4i(x), 

A2(x)eC3(l) such that A] (x) and -^(x) are positive definite, are the first phase 
matrices of the same system (1.4) if and only if there exist constant n x n matrices 
K, L, M, N for which 

(2.8) KTL - IJK = 0 , MTN - NTM = 0 , KTN - iJM = E , 

such that at all points where the following expression is defined we have 

(2.9) -. T(x, A'2) = (M + T(x, -40N)"1 (K + T(x, A\) L) , 

see [5]. 
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3. SECOND PHASE MATRIX 

In this section we shall introduce the concept of the second phase matrix of (1.4), 
and we shall establish some properties of this matrix. 

Theorem 1. Let U(x), V(x) be isotropic solutions of (1.4) for which (2.6) holds. 
Then there exist a symmetric positive definite n x n matrix Q(x) and a nonsingular 
n x n matrix H(x) satisfying 

(3.1), H(x) HT(x) = U'(x) UT'(x) + V'(x) VT'(x) , 

(3.1)2 (HT(X)P-1(X)H(X))-1 = Q(X), 

(3.1)3 HT'(x) P~ \x) H(x) - HT(x) P~ \x) H'(x) = 0 , 
such that 

(3.2) U'(x) = H(x) S(x) , V'(x) = H(x) C(x) , 

where {S(x), C(x)} is a solution of (2.4) satisfying (2.5). 

Proof. From the fact that U(x), V(x) are isotropic and (2.6) holds we conclude 

(3.3) U'(x) VT(x) - V'(x) UT(x) = E, 

V'(x) UT'(x) - U'(x) VT'(x) = 0, 

U(x) VT(x) - V(x) UT(x) = 0 , 

see [4]. Denote F(x) = U'(x) UT'(x) + V'(x) VT'(x). As Yt(x) = U'(x), Y2(x) = 
= V'(x) are solutions of the system 

(3.4) ( p - 1 ( x ) r y + Y=0, 

for which Yf'typ-^x) 7,(x) = Yj(x)p-\x) Y',(x), i = 1,2, and YT'(x) P~ \x) . 
. Y2(x) — Y](x) P-\x) Y'2(x) = - £ , it can be proved by the same method as in [4] 
that the matrix F(x) is positive definite. Let D(x) be the symmetric positive definite 
nxn matrix for which D2(x) = F(x). Denote K(x) = Z)'(x)P_1(x) D(x) -
- D(x) P-^X) D'(x), L(x) = K(x) (D(x) p-\x) D(x))~1 - (D(x) p-\x). 
. D(x))~1 K(x). Then the matrices L(x) and K(x) are obviously symmetric and anti­
symmetric, respectively, i.e. L(x) = LT(x) and KT(x) = —K(x). IfM(x) is the solution 
of the matrix system 

(D(x) P-\X) D(x))~1 M + M(D(x) p-\x) D(x))~1 = L(x) 

then Af(x) is symmetric, see [2]. Let T(x) be the fundamental matrix of 

T' = $(D(x) P-\X) D(x))~1 (K(x) + M(x)) T 

for which T(a) = E, a el. As (DP^D)-1 (K + M) + [(DP"1!))"1 (K + M)]T = 
= (DP~1D)-1K + (DP-^Y1 M + (-K + M)(DP-1D)~1 = (DP^D)-1 M + 
+ M(DP~1D)-1 - L = 0, the matrix T(x) is orthogonal on J (i.e. T-1(x) = TT(x)). 
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If we set 
H(x) = D(x) T(x) , 

we can verify by a direct computation that H(x) HT(x) = U'(x) UT'(x) + V'(x) VT'(x) 
and HT'(x) P~\x) H(x) - HT(x) P~\x) H'(x) = 0. Now, let Q(x) = (HT(x) P~\x). 
. H(x))~\ S(x) = H-\x) U'(x), C(x) = H_1(x) V'(x). Then using (3.1). and (3.3) 
we have S(x) ST(x) + C(x) CT(x) = E, S(x) CT(x) = C(x) ST(x) and this implies 
ST(x) S(x) + CT(x) C(x) = £, CT(x) S(x) = ST(x) C(x), see [1]. Further, (3.1)3 

yields HHTP~lH'HT = HH^'p-^H* and using (2.6) and (3.3) we can directly 
verify that HHT(UUT' + WT') -~ (U'UT + V'VT)HHT. Denote Xl = P(t/17T' + 
+ WT'), yt = (U'UT + VVT)P, X2 = H'HT, y2 = HHT'. Then 

HHtp-^Xi - YJ-tHH7 = 0, JT. + y. = -(HHT)', 

HHTP~1X2 - YtP-iHlP = 0 , X2 + Y2 = (HHT)', 
hence 
(3.5), Htfp-^i + Z . P - ^ H 7 = -(i?HT)' P - ^ H 7 , 

flflTp-Iy1+ y . p - ^ H 1 = -HHTP-\HHT)' , 

(3.5)2 HflTP"XX2 + X2P-^H1" = (HHT)' p-tHH1, 

HHTp-iY2 + Y2P~1HHT = HHTP~l(HHT)'. 

As both systems (3.5)x and (3.5)2 have unique solutions, we have Xt = — X2 and 
y. = -y 2 , i . e . 

(3.6) P(x) (C/(x) UT'(x) + V(x) VT'(x)) = -H'(x) HT(x) , 

(U'(x) UT(x) + V(x) VT(x)) P(x) = -H(x) HT'(x) . 

Now, using (3.6) we can verify that 

(3.7) S'(x) ST(x) + C'(x) CT(x) = 0, 

and direct computation gives 

(3.8) S'(x) CT(x) - C'(x) ST(x) = Q(x) . 

Multiplication of (3.7) and (3.8) from the right by S(x) and C(x), respectively, and 
addition of these equations gives S'(x) = Q(x) C(x). Similarly we obtain C'(x) = 
= — Q(x) S(x). It remains tp verify that if U(x) and V(x) are expressed by (3.2) then (2.6) 
really holds. 17T' V - UTV = -C7T'p-1V* + UT"P-lV = -STHTp-\HC)' + (STHT)' 
P~1HC = -ST(HTP~lH' - tf'p-iH) C + STHTP~1HQS + CTQHTP~1HC = E. 
This computation shows that the relation (3.1)3is essential and cannot be removed. 

Remark 1. Consider a more general selfadjoint system of the second order 

(3.9) (F(x)y')'+ P ( x ) y = 0 , 

where F(x) is a symmetric positive definite n x n matrix. In [6] the following trans-
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formation of systems (3.9) was investigated. Let R(x) e cJ(7) be a nonsingular 
n x n matrix for which 

RT'(x)F(x) R(x) - Rr(x)F(x)R'(x) = 0 . 

Then the transformation U(x) = R-1(x) Y(x) transforms system (3.9) into the system 

(F1(x)Ir)' + P 1 ( x ) l / - . 0 , 
where 
(3.10) Fl(x) = RT(x)F(x)R(x), 

P.(x) = R*(x) [(F(x) R'(x))' + P(x) R(x)-] . 

Theorem 1 shows that the transformation «S(x) = H~x(x) Z(x) transforms the system 
(P_1(x) Z')' + Z = 0 into the system (Q~l(x) S')' + Q(x) S = 0. 

If n = 1 it is easy to see that in this case Q(x) = jS'(x), where j5(x) is a second phase 
function of this scalar equation. Consequently, if a el, we call the matrix J5(x) = 
= J* Q(s)ds the second phase matrix of (1.4) determined by the pair of solutions 
U(x), V(x). It follows from (3.1)2 that B(x) e Cl(l). 

4. THE ASSOCIATED SYSTEM 

In this section we shall suppose that P(x) e C2(I). Hence, according to (3.1)2, we 
have B(x) e C3(l) for any second phase matrix of (1.4). 

Denote by G(x) a nonsingular n x n matrix for which 

(4.1) GT(x)P"1(x)G(x) = £ , 

GT,(x) P~ l(x) G(x) = GT(x) P~ x(x) G'(x) . 

Note that if G(x) is a matrix satisfying (4.1) (the existence of such a matrix was 
proved in [6]) then G(x) G0, where G0 is a constant orthogonal n x n matrix, also 
satisfies (4.1). We can prove similarly as in [10, Lemma 3:1] that G(x)e C2(I). Let 

(4.2) : P(x)=GT(x)G(x)-GT(x)(GT-1(x))". 
The system 
(4.3) Y" + P(x)Y= 0 . ' 

is called the associated system to (1.4). In the case n = 1, G(x) = (P(x))~1/2 and 
hence the associated system (4.3) is identical with the asociated equation (2.3). 

Remark 2. Unlike in the scalar case the associated system to (1.4) is not deter­
mined uniquely. If P(x) is the carrier of the associated system and G0 is a constant 
orthogonal n x n matrix then P0(x) = Gj P(x) G0 is also the carrier of the associated 
system to (1.4), see [6]. 
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Theorem 2. An n x n matrix Y(x) is the solution 0/(1.4) */ and only if the matrix 
U(x) = G_1(x) Y'(x) is the solution of the associated system (4.3). 

Proof. If y(x) is a solution of (1.4) then Z(x) = Y'(x) is the solution of (3.4) 
and hence 0 = (P'XZ')' + Z = G^p-'Z')' + Z] = G^p-'G'U + p-'GU')' + 
+ GTGU = (GTP~1G'U + G^-'GU')' - GT'p-1G'U - GT'p-1Gt7/ + GTGC7 = 
= GTtp-xG'U + GT(P'1G')' U + GTP~1G'U' + U" - GT'p-1G'U - GT'P-1GU' + 
+ GTGU = Un + (GTG + G^P-'GJ) U = U" + (GTG - G^G7"1)')') U = U" + 
+ P(x) U, which was to be proved. 

Theorem 3. A matrix B(x) e C3(I) is a second phase matrix of (1.4) if and only 
if it is a first phase matrix of (43). 

Proof. Let B(x) be a second phase matrix of (1.4) determined by a pair of isotropic 
solutions y-(x), y2(x) for which yT'(x) Y2(x) - YT(x) Y2(x) = £. According to 
Theorem 1 there exists a nonsingular n x n matrix H(x) satisfying (3.1)2, (3.1)3 and 
such that y;(x) = H(x) S(x), Y2(x) = H(x) C(x), where (S(x), C(x)} is a solution 
of S' = B'(x) C, C = -B'(x) S satifying (2.5). By Theorem 2, V(x) = G_1(x) Y\(x), 
U(x) = G_1(x) y2(x) are isotropic solutions of (4.3) for which (2.6) holds. Set 
R(x) = G_1(x) H(x). Then V(x) = R(x) S(x), U(x) = R(x) C(x), R(x) RT(x) = 
= U(x)UT(x) + V(x)VT(x)5JR

T'R - RTR' = (HTGT-1)'G-1H- HW-^-'Hy = 
= HT'GT-1G~1H - HTGT-1GT'GT-1G'1H - HTGT~1G-1H' + 

+ tfG1-^-^^-^ = tf'p-'H - tfp-'H' - HTGT-1(GT'P~1G -
- GTP-1G')G~1H = 0 and (RTR)~1 = ( ^ G 7 - 1 ^ 1 ^ ) - 1 = (tfp-'H)-1 = £'. 
Consequently, by (2.7)i_3, 5(x) is the first phase matrix of (1.4). As all arguments 
can be reversed, the proof is complete. 

From Theorem 3 and (2.9) the following statement immediately follows. 

Theorem 4. Two matrices B((x), i = 1,2, for which B'^x) are positive definite, 
are second phase matrices of the same differential system (1.4) if and only if there 
exist constant n x n matrices K, L, M, N satisfying (2.8) such that 

T(x, B2) = (T(x, Bt) N + M)-1 (T(x, B,) L+K) 

at all points where this expression is defined. 

5. RELATIONSHIPS BETWEEN FIRST AND SECOND PHASE MATRICES 

Let U(x), V(x) be isotropic solutions of (1.4) for which (2.6) holds, and let A(x), 
B(x) be the first and the second phase matrix of (1.4), respectively, determined by 
this pair of solutions, i.e. 

(5.1) U(x) = R(x) S(x, A') , V(x) = R(x) C(x, A') , 

L7'(x) = H(x) S(x, B') , V'(x) = H(x) C(x, B') , 
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where R(x) and H(x) are determined by (2.7) and (3.1), respectively, and {S(x, A'), 
C(x, A')}, {S(x, B'), C(x, B')} satisfy (2.5). Then (5.1) implies 

H(x) S(x, B') = R'(x) S(x, A') + R(x) A'(x) C(x, A') , 

H(x) C(x, B') = R'(x) C(x, A') - R(x) A'(x) S(x, A') . 

Multiplication of the first and the second equation from the right by CT(x, A') 
and — ST(x, A'), respectively, and addition of these equations gives 

(5.2) S(x, Bf) CT(x, A') - C(x, B') ST(x, A') = H' l(x) RT'x(x) . 

Before we state the main result of this section we give one auxiliary statement. 

Lemma 1; Let {St(x), C^x)}, i = 1, 2, be solutions of 

(5.3) S; = Qtx)Ci9 S((a) = Mt, 

C;= - Q ^ S , , C,(a) = N,, 

where Qi(x) are symmetric positive definite n x n matrices and Mt, N{ are constant 
n x n matrices satisfying MjMt + NjNt = E, MjN( = NjMt = 0. If the matrix 
Si(x)Cl(x) — Cx(x)Sl(x) is nonsingular on I then for every a el there exist 
a real c e [0, njn) and an integer k such that 

1 Cx 

c + kn < - tr (Qt(s) - Q2(s)) ds < c + (k + l)it 
"J« 

for every xel. 

Proof. See [7, Theorem 4]. 

Theorem 5. Let A(x), B(x) be the first and the second phase matrices of (lA) 
determined by the same pair of isotropic linearly independent solutions. Then 
there exist a real c e [0, njn) and an integer k such that 

c + kn < - tr (A(x) - B(x)) < c + (k + 1) тu 
n 

for every xel. 

Proof. Since the matrices H(x), R(x) are nonsingular, it is seen from (5.2) that the 
matrix S(x, B') CT(x, A') —. C(x, B') ST(x, A') is nonsingular on / and the statement 
follows from Lemma 1. 
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Souhrn 

DRUHÁ FÁZOVÁ MATICE DIFERENCIÁLNÍHO SYSTÉMU 7 " + P(*) Y= 0 

ONDŘEJ DOŠLÝ 

V práci je zaveden pojem druhé fázové matice diferenciálního systému Y" + P(x) = 0, kde 
P(x) je symetrická positivně definitní matice typu nX n. Jsou vyšetřovány základní vlastnosti 
této matice a vztahy mezi první a druhou fázovou maticí téhož diferenciálního systému. 

Pe3K>Me 

BTOPAJI <DA3OBA [̂ MATPímA flHa>OEPEH^HAJII>HOň CHCTEMbl Y" + P(x) Y=- 0 

ONDŘEJ DOŠLÝ 

B pa6oTe BBeAeHO noiwTHe BTopoá <J)a30BOH MaTpHUj»i AH44>epeHujHajri>Hoň CHCTCMM Y" + 
+ P(x) = 0 , r^e P(x)—CHMMeTpHHecKaa nojio»CHTejn>Ho onpefleneHHafl MaTpH â pa3Mepa nX n. 
PaccMaTpHBaiOTCí! ocHOBHwe CBoňcTBa 3Toá MaTpHHBi H OTHomemifl Me»yry nepBoň H BTOPOH 
<J)a30BOH MaTpHneň OAHOH H TOH 5Ke CHCTCMKI. 
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