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SECOND PHASE MATRIX OF DIFFERENTIAL SYSTEMS
Y + P(x)Y=0
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Summary. The concept of the second phase matrix of differential systems Y” 4 P(x) Y =0
is introduced, where P(x) is a symmetric positive definite # X n matrix. Basic properties of this
matrix and relationships between the first and the second phase matrix of the same differential
system are investigated.

Keywords: Selfadjoint differential systems, first phase matrix, second phase matrix, trigono-
metric matrices, associated system.

AMS Classification: 34C10.

1. INTRODUCTION

Let u(x), v(x) be linearly independent solutions of a scalar differential equation
of the second order

(1.1) Yy +p(x)y=0,

where p(x) is a positive continuous real function. This function is called the carrier
of equation (1.1). It is known, see [3], that there exist real functions «(x), f(x) with
a'(x) = 0, B'(x) = 0, and a real constant k such that '

(1.2) u(x) = k. (|o'(x)]) "2 sin «x),
o(x) = k. (|«'(x)]) "2 cos a(x) ,

(1.3) u'(x) = k. (|p'(x)| p(x))~"/*sin B(x),
v'(x) = k.(|B'(x)| p(x))~*/* cos B(x) .

These functions were introduced by O. Boriivka, see [3], and they are called the
first phase function and the second phase function of (1.1), respectively. _
Introducing the concept of the first phase matrix of the matrix differential system

(1.4) Y+ P(x)Y=0,

where P(x) is a symmetric continuous n X n matrix, it was shown in [4] that the
formulae (1.2) can be extended to the matrix system (1.4).
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- In this paper we shall introduce the concept of the second phase matrix of system
(1 4), and by means of this concept we shall extend the relations (1.3) to system (1.4).
We shall also study relationships between the first and the second phase matrices
of (1.4) and some related topics. Throughout the paper the matrix P(x) is supposed
to be positive definite.

2. NOTATION AND PRELIMINARY RESULTS

The following notation is used. C™(I) denotes the space of m-times continuously
differentiable real functions on an interval I. If 4(x) is a matrix of functions, we write
A(x) € C™(I) if each entry of A(x) belongs to C™(I). If A is a matrix of any dimension,
AT and A* denote the transpose and the conjugate transpose of A, E and 0 denote
the identity and the zero matrix of any dimension, respectively. The system (1. 4)
is investigated on an interval I of an arbitrary kind.

First we recall some facts concerning the properties of the phase functlons of equa-
tion’(1.1). Let p{x) e C*(I) and let «{x), f(x) be a first and a second phase functions
of (1.1). Then

(2.1) px) = ([ D) (| (D2 + (),
plx) = ((|B’(x)|)e1/2)"(|/3'(x)|)1/2 + BHx),

where

(22 o A= ) + (X)) (p(3)2
is the carrier of the so called associated equation

@) .. Y+ By =0,

If y(x) is a“solution of (1.1) then y'(x) is the solution of (p (%) y) + y=20and
(p(x))~/2 y'(x) is the solution of the associated equation (2.3). From (1.2) and (1.3)
it follows that the first and the second phase functions of (1.1) can be defined as
continuous functions satisfying

ox v
tgalx) = ( ) ﬁ\ ) ,( )

In this case we say that the phase functions ¢ of x) ﬂ(x) are determined by the pair of
finearly. independent solution§ u(x), v(x). If a(x) B(x) are ‘determined by the same
pair of solutions u(x) v\x) then there exIsts an 1nteger k such that k7r < oc(x)
= Blx)< (k4 1) o :

Now, let Q(x) be a symmetrlc positive deﬁmte n x n matrix and consider the
2n drmensronal matrrx dxﬁ'erentral system of the ﬁrst order

¥ v
H i

(2 4) . (x) C C’ _ ._Q(x) S
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with the initial condition S(a) = M, C(a) = N, where M, N are constant n x n
matrices satisfying M™ + N'N = E, MTN NTM
Then the following identities hold: "

(2.5) ST(x) S(x) + C™(x) C(x) = E, ST(x) C(x) = C(x) S(x),

(x) ST(x) + C(x) C"(x) = E, S(x) C'(x) = C(x) S"(x),
see [1] For a more detalled study of these so called trigonometric matrices see [7],
[8], [9]. At all points where the matrix C(x) is nonsingular let us define the matrix
T(x) = C~*(x) S{x). To emphasize that {S(x), C(x)} is a solution of (2.4) with the
matrix Q(x), we shall sometimes write S(x, Q), C(x, Q) instead of S(x), C(x) and also
T(x, Q) instead of T(x).

At the end of this section we shall recall some properties of solutions of (1.4).
Let U(x), ¥(x) be two solutions of (1.4). Then U™(x) V(x) — UT(x) V'(x) = K,
where K is a constant n x n matrix. A solution U{x) of (1.1) is said to be isotropic
whenever U™'(x) U(x) — U™(x) U'(x) = 0.

Let U(x) V(x) be isotropic solutions of (1.4) for which

26) - - CUT(x) V(x) = U(x) V'(x) =
There exists an n x n matrix A(x) e C*(I), A'(x) positive definite, such that U(x)
and V(x) can be expressed in the form .
U(x) = Rx) S(x), V(x) = R(x) C(x),
where {S(x), C(x)} is a solution of
S'=A4A'(x)C, C' =-A(x)S

for which (2.5) holds, and R(x) is a nonsingular n X n matrix satisfying

27, - R(x) R"(x) = U{x) UT(x) + V(x) V'(x),
(2.7)2 | | (RT(x) R(x))™" = A'(x),

(2.7)s . R"(x) R(x) — R"(x) R'(x) = 0

and

P{x) = —R"(x) R"(x)_ + (R(x) RT(x))"2,.
see [4].

The matrix A(x) is called the first phase matrix of (1 4). Two matrices Ay(x),
Ay(x) € C(I) such that 4j(x) and Aj(x) are positive definite, are the first phase
matrices of the same system (1. 4) if and only if there exist constant n X n matrices
K,L, M, N for which . ...

(2.8) K'L-IK =0, M'N-NM = 0, K'N—IM-=E,

such that at all points where the following expression is defined we have
(2.9) © T(x, A5) = (M + T\x, A)) N)"* (K + T(x, 4)) L),
see [5]. : : -
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3. SECOND PHASE MATRIX

In this section we shall introduce the concept of the second phase matrix of (1.4),
and we shall establish some properties of this matrix.

Theorem 1. Let U(x), V(x) be isotropic solutions of (1.4) for which (2.6) holds.
Then there exist a symmetric positive definite n x n matrix Q(x) and a nonsingular
n X n matrix H(x) satisfying

(3.1), H(x) H'(x) = U'(x) U™(x) + V'(x) V"'(x),
(3-1)2 (H™(x) P™}(x) Hx))™" = 0(x),

(3.1), '~ H"(x)P"'(x)H(x) — H'(x) P~Y(x) H'(x) = 0,
such that

(32) U'(x) = H(x) S(x), V'(x) = H(x) C(x),

where {S(x), C(x)} is a solution of (2.4) satisfying (2.5).
Proof. From the fact that U(x), ¥(x) are isotropic and (2.6) holds we conclude

(3.3) U'(x) VT(x) — V'(x)U'(x) = E,

V'(x) UT(x) — U'(x) V™'(x) = 0,

U(x) VT(x) — V(x)UT(x) =0,
see [4]. Denote F(x) = U'(x) UT(x) + V'(x) ¥™'(x). As Yy(x) = U'(x), Y,(x) =
= V’(x) are solutions of the system
(3.4 (P Y(x)Y) +Y=0,
for which Y (x) P~Y(x) Y(x) = Y[(x) P7*(x) Y{(x), i = 1,2, and Y] (x) P™(x).
. Yy(x) — Y](x) P7Y(x) Y5(x) = —E,itcan be proved by the same method as in [4]
that the matrix F(x) is positive definite. Let D(x) be the symmetric positive definite
n x n matrix for which D*(x) = F(x). Denote K(x)= D’(x) P~!(x) D(x) —
— D(x) P~(x) D'(x), L(x) = K(x) (P(x) P~}(x) D(x))™* — (D(x) P~*(x).
. D(x))~! K(x). Then the matrices L(x) and K(x) are obviously symmetric and anti-
symmetric, respectively, i.e. L(x) = L"(x) and K"(x) = —K(x). If M(x) is the solution
of the matrix system

(D(x) ™) D()~* M + M(D(x) P~(3) D))" = L(3)
then M(x) is symmetric, see [2]. Let T(x) be the fundamental matrix of
T’ = ¥(D(x) P~*(x) D(x))~* (K(x) + M(x)) T

for which T(a) = E, ael. As (DP™'D)"*(K + M) + [(DP™'D)"' (K + M)]" =
= (DP™'D)~'K + (DP™'D)"* M + (=K + M)(DP™'D)"! = (DP™'D)"* M +
+ M(DP™'D)~! — L = 0, the matrix T(x) is orthogonal on I (i.e. T~*(x) = T™(x)).
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If we set
H(x) = D(x) T(x),

we can verify by a direct computation that H(x) H'(x) = U'(x) U"(x) + V'(x) V"'(x)
and H"(x) P~*(x) H(x) — H"(x) P~*(x) H'(x) = 0. Now, let Q(x) = (H"(x) P~!(x).
.H(x))™%, S(x) = H"'(x) U'(x), C(x) = H™*(x) V'(x). Then using (3.1), and (3.3)
we have S(x)S™(x) + C(x) C"(x) = E, S(x) C"(x) = C(x) S™(x) and this implies
ST(x) S(x) + C™(x) C(x) = E, C'(x)S(x) = 8"(x) C(x), see [1]. Further, (3.1);
yields HH"P~'H'H" = HH"P~'HH" and using (2.6) and (3.3) we can directly
verify that HH'(UU" + VV") = (U'UT + V'VT) HH". Denote X, = PUU™ +
+ VV7), ¥, = (U'UT + V'V P, X, = H'H", Y, = HH™. Then

HH'P™'X, — Y,P"'HH" =0, X, + Y, = —(HH"Y,
HH'P™'X, — Y,P"'HH* =0, X, + Y, = (HH"Y,

hence

(3.5)1 HH'P™'X, + X,P"'HH" = —(HHT)’ P-1HHT,
HH'P~'Y, + Y,P"'HHT = —HHTP’I(HHT)’,

(3.5)2 HH™P™'X, + X,P"'HH™ = (HHT)' P~'HHT,

HH'P-'Y, + Y,P~'HHT = HH'P~(HHT) .
As both systems (3.5); and (3.5), have unique solutions, we have X; = —X, and
Y, = —Y,,ie.
(36) P() (UG) UP(x) + V(3) V7)) = —B'(3) B

(U'(x) UT(x) + V'(x) V'(x)) P(x) = —H(x) H"'(x) .

Now, using (3.6) we can verify that

(3.7) S'(x) ST(x) + C'(x) C"(x) = 0,
and direct computation gives
(3.8) §'(x) CT(x) — C'(x) ST(x) = Q(x).

Multiplication of (3.7) and (3.8) from the right by S(x) and C(x), respectively, and
addition of these equations gives S'(x) = Q(x) C(x). Similarly we obtain C'(x) =
= — Q(x) S(x). It remains tp verify that if U(x) and V(x) are expressed by (3.2) then (2.6)
really holds. U™V — U™V’ = —UVP~ V" + U"P™'V' = —STH'P~'(HC)' + (STH")'
P 'HC = —S(H'P~'H’ — H"P~'H) C + STH'P~'HQS + CTQH'P~'HC = E.
This computation shows that the relation (3.1); is essential and cannot be removed.
Remark 1. Consider a more general selfadjoint system of the second order
(3.9) (Fx) Y'Y + P(x) Y=0,

where F(x) is a symmetric positive definite 7 x n matrix. In [6] the following trans-
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formation of systems (3.9) was investigated. Let R(x)e C'(I) be a nonsingular
n X n matrix for which

R™(x) F(x) R(x) — R"(x) F(x) R'(x) = 0.
Then the transformation U(x) = R™*(x) Y(x) transforms system (3.9) into the system

(F()UY + P U =0,
where '
(3.10) Fy(x) = R'(x) F(x) R(x), .
Py(x) = R'(x) [(F(x) R'(x)) + P(x) R(x)] .

Theorem 1 shows that the transformation S(x) = H~'(x) Z(x) transforms the system
(P~Y(x) Z'Y + Z = 0 into the system (Q~'(x) S’)’ + Q(x) S = 0.

If n = 1itis easy to see that in this case Q(x) = B'(x), where B(x) is a second phase
function of this scalar equation. Consequently, if a €I, we call the matrix B(x) =
= [2 Q(s) ds the second phase matrix of (1.4) determined by the pair of solutions
U(x), V(). It follows from (3.1), that B(x) e C'(I).

" 4. THE ASSOCIATED SYSTEM

In this section we shall suppose that P(x) e C*(I). Hence, according to (3.1),, we
have B(x) € C¥(I) for any second phase matrix of (1.4).
Denote by G(x) a nonsingular n x. n matrix for which

(4.1) G'(x) P~ 1(x) G(x) =
6™(x) P~(x) G(x) = G"(x) P~ *(_x) G(x).
Note that if G{x) is a matrix satisfying (4.1) (the existence of such a matrix was

proved in [6]) then G(x) G,, where G, is a constant orthogonal n x n matrix, also
satisfies (4.1). We can prove similarly as in T10, Lemma 3:1] that G(x) € C*(I). Let

(42 ) = G769 6() ~ GT() (@)
The system ' B
(4.3) Y +Px)Y=0

is called the associated systcm to (1:4). In the case n = 1, G(x) (P(x)) 12 and
hence the associated system (4.3) is identical with the asociated equation (2.3). '

Remark 2. Unlike in the scalar case the associated system to (1.4) is not deter-
mined uniquely. If P(x) is the carrier of the associated system and G, is a constant
orthogonal n x n matrix then Py x) GT P(x) GO is also the carrier of the assocxated
system to.(1.4), see [6]. ‘ Lo
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Theorem 2. An n x n matrix Y(x) is the solution of (1.4) if and only if the matrix
U(x) = G™*(x) Y'(x) is the solution of the associated system (4.3).

Proof. If Y(x) is a solution of (1.4) then Z(x) = Y’(x) is the solution of (3.4)
and hence 0= (P7'Z') + Z = G'[(P™'2'Y + Z] = G"(P"'G'U + PTIGU') +
+ G'GU = (GTP~'G'U + G'P~'GU’Y — GVP~'G’'U — GV'P~'GU’ + G'GU =
= GVP~!G'U + G"(P"'G'Y U + G"P"'G'U’' + U" - G"P~'G'U — G"'P~'GU’ +
+ GTGU = U + (GG + G*(P"G)) U = U” + (G'G — G*((G*Y)))U = U" +
+ P(x) U, which was to be proved.

Theorem 3. A matrix B(x) € C3(I) is a second phase matrix of (1.4) if and only
if it is a first phase matrix of (4.3).

Proof. Let B(x) be a second phase matrix of (1.4) determined by a pair of isotropic
solutions Y;(x), Y(x) for which Y] (x) Y,(x) — Y](x) Y;(x) = E. According to
Theorem 1 there exists a nonsingular n x n matrix H(x) satisfying (3.1),, (3.1); and
such that Yi(x) = H(x) S(x), Y3(x) = H(x) C(x), where {S(x), C(x)} is a solution
of 8’ = B(x) C,C’ = —B'(x) S satifying (2.5). By Theorem 2, ¥(x) = G~*(x) Y}(x),
U(x) = G™!(x) Yj(x) are isotropic solutions of (4.3) for which (2.6) holds. Set
R(x) = G™'(x) H(x). Then V(x)= R(x)S(x), U(x) = R(x) C(x), R(x)RT(x)=
= U(x) U'(x) + V(x)V"(x), R"R — R'R’ = (HTG™~1) G~'H — H'G""}(G™*H) =

= HTIGT—IG—IH _ HTGT—IGTIGT—IG—IH - HTGT-IG—IHI +
+ H'G"™"'G"'G'G™'H = HYP™'H — H'P™'H' — HTGT'I(GT'P_IG -

— G'P7'G’)G™'H = 0 and (R'R)™! = (H'G""'G™'H)™! = (H'P™H)™! = B'.
Consequently, by (2.7), -3, B(x) is the first phase matrix of (1.4). As all arguments
can be reversed, the proof is complete.

From Theorem 3 and (2 9) the following statement 1mmed1ately follows

Theorem 4 Two matrices B(x),i =1, 2 for which Bj (x) are posmve definite,
are second phase matrices of the same differential system (1.4) if and only zf there
exist constant n x n matrices K, L, M, N satisfying (2. 8) such that

T(x, B;) = (T(x, B) N + M)~! (T(x, By L + K)

at all points where this expression is defined.

5. RELATIONSHIPS BETWEEN FIRST' AND SECOND PHASE MATRICES

Let U(x), V(x) be isotropic solutions of (1.4) for which (26) holds; and let A(x),
B(x) be the first and the second phase matrix of (1.4), respectively, determined by
this pair of solutions, i.e.
(5.1) U(x) = R(x)

U'(x) = H(x)

S 4). V() = RO Ol ),
S(x,B’), V'(x)= H(x)C(x,B'),
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where R(x) and H(x) are determined by (2.7) and (3.1), respectively, and {S(x, 4’),
C(x, A")}, {S(x, B), C(x, B')} satisfy (2.5). Then (5.1) implies

H(x) S(x, B') = R'(x) S(x, 4") + R(x) A'(x) C(x, 4"),
H(x) C(x, B') = R'(x) C(x, A") — R(x) A'(x) S(x, 4") .

Multiplication of the first and the second equation from the right by C™(x, A')
and —S"(x, A’), respectively, and addition of these equations gives

(5.2) S(x, B') C*(x, 4) — C(x, B') §(x, 4') = H~(x) R 1(x).

Before we state the main result of this section we give one auxiliary statement.

Lemma 1. Let {S(x), Ci(x)}, i = 1, 2, be solutions of
(53) S; = Q(x)Ci, Sfa) =M,
C = "Qz(x) Si, C,(a) = Ny,

where Q/(x) are symmetric positive definite n x n matrices and M,, N, are constant
n x n matrices satisfying M{M; + NN, = E, MIN; = N/M, = 0. If the matrix
Sy(x) C3(x) — C,(x) S3(x) is nonsingular on I then for every acl there exist
a real c€ [0, n[n) and an integer k such that

c+kn < -l—rtr (Qi(s) = Qz(s))ds < c+ (k+ D=

n a
for every xel.

Proof. See [7, Theorem 4].

Theorem 5. Let A(x), B(x) be the first and the second phase matrices of (1.4)
determined by the same pair of isotropic linearly independent solutions. Then
there exist a real c € [0, ni/n) and an integer k such that

¢+ kn <1tr(A(x) -Bx))<c+(k+1)=x
n
for every xel.

Proof. Since the matrices H(x), R(x) are nonsingular, it is seen from (5.2) that the
matrix S(x, B') C"(x, A") —.C(x, B’) S™(x, A’) is nonsingular on I and the statement
follows from Lemma 1.
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Souhrn

DRUHA FAZOVA MATICE DIFERENCIALNIHO SYSTEMU Y” + P(x) Y= 0
ONDREJ Do§;\’r
V praci je zaveden pojem druhé fazové matice diferencidlniho systému Y” + P(x) = 0, kde

P(x) je symetrickd positivnd definitni matice typu n X n. Jsou vySettovany zékladni vlastnosti
této matice a vztahy mezi prvni a druhou fizovou matici téhoZ diferencialniho systému.

Pe3ome

BTOPASL ®A30BASI MATPUIIA JUOOEPEHIIMAJIBHOM CUCTEMBI Y” + P(x) Y = 0
ONDREJ DoOSLY
B pa6ore BBemeHO mouATHE BTOPOM (a3osol Marpuusl muddepeHuuabHOK cncfemm Y’ 4
+ P(x) = 0, roe P(x)—caMMeTpHYeCcKas HOJOXATEILHO ONpeliesIcHHass MaTpHIa pa3Mepa n X n.

PaccMaTpuBaloTCs OCHOBHBIE CBOMCTBA 3TOM MAaTpHIBI H OTHOIICHMS MEXJy HEPBOMK U BTOPOH
dazoBoit MmaTpuneit OfHOMK 1 TOU JKe CHACTEMEI.
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