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PERIODIC SOLUTIONS OF NONLINEAR ABSTRACT SECOND 
ORDER EQUATIONS WITH DISSIPATIVE TERMS 

VLADIMIR LOVICAR, Praha 

(Received May 27, 1977) 

1. INTRODUCTION 

Notation used in this paper is clear. In particular, R denotes the real line, D(A) 
denotes the domain of an operator A and x ^ x o r x / ^ x means that a sequence xn 

converges weakly to the element x in a Banach space B. 
Let H0 be a separable Hilbert space (with an inner product denoted by ( v ) 0 and 

the corresponding norm denoted by |*|0 and let A be a positive definite self adjoint 
operator in H0. For a > 0 we shall denote by Aa the positive a-th power of A and 
by Ha the (separable) Hilbert space D(Aa) (with the inner product (x, y)a = 
= (Aax9 Aay)0 (x, y e D(Aa)) and the corresponding norm | • | a). Further, let F be 
a continuous operator on on R x Hx x H0 into H0. Under the (generalized) solution 
of the equation 

(1) u\i) + A2 u(t) = F(t, u(t), u'(t)) 

on an interval [a, ft] £ JR we understand a function u e C*([a, ft]; H0) n 
n C([a, ft]; Ht) for which 

(2) u(t) = cos A(t - a) u(a) + A'1 sin A(t - a) u'(a) + 

+ -4""1 sin A(t - 5) F(s9 u(s), u'(s)) ds 

holds for t e [a, fc]. 

Remark 1. It may be easily verified that if u € C2([a, * ] ; H0) n Cx([a, ft]; Ht) n 
n C([a, 6]; H2) satisfies the equation (1) in the classical sense then it is a (generalized) 
solution of (1). (More about (generalized) solutions of the equation (l) is found e.g. 
in [3] (putting y = Q in the notation of the paper [3]).) 
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Remark 2. If u is a solution of (1) on [a, 6] then 

(3) u'(t) = -A sin A(t - a) u(a) + cos A(t - a) u'(a) + 

+ cos A(t - s) F(s, u(s), u'(s)) ds 

holds for t e [a, b]. 

Remark 3. If u e C(\_a, &]; Hi) and t; e C([a, 6]; H0) are such that u(t) = 
= cos A(f - a) u(a) + .A"1 sin A(t - a) v(a) + JJ AT1 sin A(* - s) F(s, u(s), v(s)) As 
and v(t) = -AL sin 4(f - a) u(a) + cos 4(f — a) v(a). + J„ cos A(t — s) F(s, u(s), 
v(s)) ds hold for t e [a, b] then u is a solution of (l) on [a, b] and u' = v. 

The aim of this paper is to find assumptions on the operator F under which there 
exists at least one co-periodic (generalized) solution of (l), i.e. such a solution u on 
the interval [0, co] for which u(0) = u(co) and u'(0) = U'(G>). The basic tool for 
obtaining this result is the following well known fixed point theorem which is a cose-
quence of the Schauder-Tichonov Fixed Point Theorem (see e.g. [1], p. 456): 

Proposition. Let B be a separable reflexive Banach space, K a nonempty closed 
bounded convex subset of B and T a weakly continuous operator on K into K (i.e. 
xneK and xn -> x implies T(xn) -> T(x)). Then Thas at least one fixed point in K, 
i.e. there exists x0eK such that T(x0) = x0. 

To prove the existence of an co-periodic solution of (l) we shall show that there 
exists a nonempty closed bounded convex set K c Ht x H0 such that to any 
(x, y)eK there exists a unique solution u of (l) on [0, co] with initial values (x, y) 
(i.e. u(0) = x, u'(0) = y). Further, the operator T defined by T(x, y) = (u(co), u'(m)) 
is a weakly continuous operator on K and maps K into K. Thus according to Proposi­
tion, T has at least one fixed point which will prove the main result. This method 
was used in fact e.g. in [4]. 

The assumptions on F and the main theorem are stated in Section 2. In Section 3 
some Lemmas are given from which the main theorem immediately follows. An 
example showing the applicability of the main theorem is given in Section 4. (This 
example deals with the equation of an extensible beam, see e.g. [5].) 

2. MAIN THEOREM 

We shall suppose that the right hand side of the equation (l) satisfies the following 
assumptions: 

(4) F is continuous operator on R x Ht x H0 into H0; to any r > 0 there exists 
a constant c(r) such that 

\F(U xl5 yx) - F(t, x2, y2)\0-£ c(r)(\Xl - x2\t + \yt - y2|0) 
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holds for teR,Xje Hx, \Xj\x £ r, yj e H0, \yj\0 ^ r (j = 1, 2). 

(5) There exist G, g, d, p, j80 and r0 such that 

(5a) G is a continuous operator on Hx into H0; 
(5b) g is a continuous convex real functional on Hx; 
(5c) g is Gateaux differentiate on Hx and g'(x) (y) = 2 Re (G(x), y)0 holds for 

any x, y e Hx; 
(5d) d = min {|x|* + g(x); x e Hx}; 
(5e) p is a real nondecreasing continuous function on \d, oo) which is locally 

Lipschitzian on (d, oo); 
(5f) 2 Re (F(t, x, j ) + G(x) + 2p0y + jBfr, y + j80x)0 + 2j80 g(x) -

- 2p0(G(x), x)0 ^ p(\x\2
x + |y + jS0*|o + 0V*)) holds for t e R, x e H! and 

yefl0; 
(5g) r0> d and ~2j80r0 + p(r0) S 0. 

(6) If xn e if!, x „ H l - x, yn e fl0, yn
 Ho-> y then F(t, x„, yn)

 H° - F(f, x, y) for all 
reR. 

Theorem. Let co > 0. Lef H0 be a separable Hilbert space, A a positive definite 
selfadjoint operator in H0, Hx = D(A) and let F be an operator on R x Hx x H0 

into H0„ which satisfies the assumptions (4), (5) and (6). Then there exists an co-
periodic solution of the equation (l). 

The proof of Theorem follows immediately from Lemmas 5 and 6 (see next 
section) and from the above Proposition. 

Remark 4. Obviously, it suffices to suppose that F is defined only on [0, co] x 
x fly x fl0. We shall use this fact in Section 4. 

3. AUXILIARY LEMMAS 

Lemma 1. Let F satisfy the assumption (4). Then to any r > 0 and a,beR 
there exists d > 0 such that for (x,y)eHx x fl0 with \x\x ^ r, |j>|0 g r and 
t0 € [a, ft] there exists a solution u of(i) on the interval \t0, t0 + 6] with u(t0) = x 
and uf(t0) » y. 

Lemma 2. Let F satisfy the assumption (4) and let ux, u2 be solutions of(i) on an 
interval [a, b] £ R with ux(a) == u2(a) and u'x(a) -= 112(a). Then ux = u2. 

The above assertions may be proved in the same way as the analogous results 
from the theory of ordinary differential equations (the essential means being Banach 
Contraction Principle and GronwalPs Lemma). Therefore their proofs are omitted. 
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Lemma 3. Let u be a solution of the equation 

(7) u"(t) + A*»(t)=f(t) 

on an interval [a, b] £. R where fe C([a, b"]; H0). Then 

(8) K0|? + K O + P u(t)\l = e-2^(-«>(|u(a)|2 + \u'(a) + P u(a)2) + 

+ 2 f V 2 ^ ' 5 ) Re (f(s) + 2P u'(s) + p2 u(s), u'(s) + P u(s))0 ds 

holds for any P e R and t e [a, 6]. 

Proof. The proof of (8) may proceed in the same way as that for the usual energy 
equality. If u e C2([a, b]; H0) n C*([a, 6]; Ht) n C([a, b]; H2), then denoting 
z(s) = \u(s)\l + \u'(s) + p u(s)\l one immediately verifies that z'(s) + 2p z(s) = 
= 2 Re (f(s) + 2P u'(s) + p2 u(s), u'(s) + p u(s))0 holds for any p e R and s e [a, fc]. 
Multiplying this equality by e~

2fi(t~s) and integrating over [a, t\ we obtain (8). The 
validity of (8) for any solution u is obtained by the usual approximation process. 

Lemma 4. Let F satisfy the assumption (4) and let G, g satisfy the assumptions 
(5a), (5b) and (5c). Then for any solution u 0/(1) on an interval [a, b] c= R we have 

(9) \u(t)\l + \u'(t) + P u(t)\2 + g(u(t)) ~ 

= e-wX\u(a)\2 + \u'(a) + P u(a)\2 + g(u(a))) + 

+ 2 f V2/?(f-s)[Re(F(s, u(s), uf(s)) + G(u(s)) + 2Pu'(s) + 

+ p2 u(s), u'(s) + P u(s))0 + pg(u(s)) - P(G(u(s)), u(s))0] ds 

for any p e R and t e [a, fe]. 

Proof. It is easy to see that the function s -* g(u(s)) is continuously differentiable 
on [a, b] and g(u(*))' (s) = 2 Re(G(u(s)), u'(s))0. The relation (9) follows now 
immediately from (8). 

Lemma 5. Let F satisfy the assumptions (4) and (5) and let us denote 

(10) K = {(x, y)eHix H0; \x\2 + \y + p0x\2 + g(x) £ r0} . 

Then 

1. K is a nonempty closed bounded convex subset of Ht x H0; 
2. to any (x,y)eK there exists a solution u 0/(1) on the interval [0, a>] with 

initial values (x, y). Moreover, (u(t), u'(t))eK for t e [0, co], 
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Proof. It is easy to verify 1. To prove 2 it is sufficient to show, with respect to 
Lemma 1, that if u is a solution of (l) on [0, co] with (u(0), u'(0)) e K then (u(t)> u'(t)) e 
e K for te [0, co]. For t e [0, co] let us denote z(t) = |i*(*)ji + \u'(t) + J30 u(t)|0 + 
+ g(u(t)), 4(t) = z(Q) e"2**---) p(z(s))ds. Clearly Z e C([0, co]) and q e ^ ( [0 , co]). 
With respect to (5f) and Lemma 4 z(t) ^ g(f) holds for t e [0, co]. Since p is non-
decreasing, q'(t) = -2J?0 g(f) + p(z(t)) g — 2)S0 g(f) + p(q(t)) holds for re [0, co]. 
The assumption (5g) implies that z(t) S q(t) _ ro or> i*1 other words, (u(t), u'(t)) e K 
for t e [0, co]. 

For (x, y) e K let us define 

(11) T(x, y) - (u(co), u'(co)) 

where u is a solution of (1) on [0, co] with initial values (x, y). Lemmas 5 and 2 imply 
that Tis a single-valued operator which maps K into K. 

Lemma 6. Let F satisfy the assumptions (4), (5) and (6) and let K and T be defined 
by (10) and (11). Then Tis a weakly continuous operator. 

Proof. Let (xn, yn) e K (xn, yn) —* (x, y). First let us notice that it is sufficient to 
show that there exists a subsequence (xkn, ykn) such that T(xkn, ykn) -- T(x, y). Let un 

be solutions of (1) on [0, co] with initial values (xn, yn). It is easy to see from the 
expressions (2) and (3) that for any zeHi (z e H0) the functions t -> (un(t), z)x . 
• (* -* (M»(0' z)o) a r e equicontinuous on [0, co]. Hence (with respect to the separability 
of the spaces Hu H0 and using Cantor's diagonal method) we obtain that there 
exists a subsequence uk such that 

(12) ukn(t) •«-- «(0 , u'kn(t) »°^ v(t) (t e [0, co]) . 

The assumption (6) implies (with respect to theorems of Pettis and of Bochner — 
see e.g. [2] p. 131 and 133) that the function t -» F(t, u(t), v(t)) belongs to Li(0, co; H0) 
and that the relations u(t\ = cos At x + AT1 sin At y + J0 A~x sin A(t — s) . 
. F(s, u(s), v(s)) ds, v(t) = -A sin At x + cos At y + J0 cos A(t - s) F(s, u(s), v(s)) . 
. ds hold for t e [0, co]. Hence, by Remark 3, the function u is a solution of (1) on 
[0, co] with initial values (x, y) and u' = v. The relation (12) for t = co says in other 
words that T(xhn, yhn) - T(x, y). 

4. EXAMPLE 

On [0, co] x / (J = [0,1]) let us consider an equation 

(13) utt(t. x) + a ut(t, x) + uxxxx(u x) - b ̂  \ux(t, if d ^ uxx(t, x) - f(t, x) 
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with boundary conditions 

(14) u(t, 0) = u(t, 1) = uxx(t, 0) = uxx(t, 1) - 0 (t e [0, co]) , 

where a > 0 and b ^ 0. 
Solutions of (13), (14) may be defined as solutions of an equation of the form (l) 

where we set H0 = L2(J), D(A) = Wi(J) n Wl(J), Au = -uxx, F(t, u, v) = 
= -av -b\All2u\lAu + h(t) (h(t)(x) = f(t,x) for xeJ). If heC(J;H0) then 
it is easy to see that F satisfies the assumptions (4) and (6). To verify the assumption 
(5) we put G(u) = b|AL1/2u|0 Au, g(u) = 2~1b|A1/2u|0\ d = 0. Then it is easy to see 
that (5a), (5b), (5c) and (5d) are satisfied. Moreover, g(u) — (G(u), u)0 ^ 0 for 
u e Ht. Let c be such that \u\0 ^ c\u\t for u e Hv Further, let /?0 be a real number 
satisfying 0 < j30 < 2_1a, -2 + (2a - 4j80)

_1 (a - j30)
2 c2j!0 + 2c 2 ^ < 0. Define 

p(r) = 2|h| r1'2 + ((2a - 4^0)"1 (a - j80)
2 c2p2 + 2c2pi) r (r e [0, oo)), where \h\ 

denotes the norm of h in C(J; H0). Then (5e) and (5f) are satisfied and (5g) also if 
we take r0 sufficiently large. Theorem gives now the existence of an co-periodic solu­
tion of (13), (14) for any right hand side/for which h e C(J; H0). 
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