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CATEGORIAL APPROACH TO GLOBAL TRANSFORMATIONS 
OF THE n-TH ORDER LINEAR DIFFERENTIAL EQUATIONS 

FRANTISEK NEUMAN, Brno 

(Received April 16, 1977) 

1. INTRODUCTION 

Investigations on linear differential equations started in the middle of the last 
century. They were connected with the names of E. E. KUMMER [4], E. LAGUERRE 
[5], F. BRIOSCHI, G. H. HALPHEN, A. R. FORSYTH, P. STACKEL [13], S. LIE, E. J. 
WILCZYNSKI [15] and others. Their results, however, were of local character. The 
global study began with second order equations about 25 years ago by O. BoRftvKA 
[1], [2], and results of algebraic character form the essential part of his theory. 

Here we describe algebraically the global structure of n-th order linear differential 
equations (n ^ 2). The geometric approach was given in [6] and the importance of 
global transformations for studying and understanding asymptotic behavior, pe­
riodicity, boundedness, zeros, oscillatory behavior, disconjugacy and other global 
properties of solutions essentially connected with the whole interval of definition was 
demonstrated in [6], [8], [9], [10], [11]. 

2. GLOBAL TRANSFORMATIONS 

Let CS(I, R*) denote the set of all (column) vector functions u : J -> R* with con­
tinuous derivatives up to and including the order s, s ^ 0, let I be an open interval 
of R, k ^ 1, let uT denote the transpose of u. Coefficients of linear homogeneous 
differential equations of the w-th order are supposed to be real and continuous on the 
corresponding open (bounded or unbounded) intervals of definition. For n ^ 2, 
P. STACKEL [13] in 1891 derived the most general pointwise transformation that 
converts any linear homogeneous differential equation of the n-th order into an 
equation of the same type. This transformation consists in changing the independent 
variable (x H> h(t)) and multiplying the dependent variable by a factor /(*), i.e. 
y^f(t)y. 
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With respect to this result we say that an n-th order linear homogeneous dif­
ferential equation S£ on J with n linearly independent solutions yl9..., yn on / is 
globally transformable into an equation & of the same type on / admitting n linearly 
independent solutions zl9 ...,zn if 

(1) z(t) = A.f(t).y(h(t)) 

for a real regular n by n matrix A, fe Cn(J, R), h e Cn(J, I), f(t) . dh(t)jdt 4= 0 on / , 
and h(J) = I, where (yu ..., yn)T is denoted by y and called a fundamental solution 
of the corresponding equation JSP. Similarly z is a fundamental solution of J. 

The global transformation (l) can be expressed as JS? * a = SL, where a is called 
the transformation of S£ into 2L. Since every fundamental solution of JS? is of the 
form Cy, C being an arbitrary regular n by n matrix, the transformation a essentially 
depends on /, called multiplier, and h, parametrization.. We shall write a = 
= </, h)#. 

Let us note that the global character of transformations is achieved by h( J) = /, 
and linear independency of coordinates of z in (1) is guaranteed by the conditions 
on A,f, h, and y. For more detail see [7]. 

Since global transformations form a reflexive, symmetric and transitive relation, 
the set of all n-th order linear homogeneous differential equations (n ^ 2) is 
decomposed into classes of globally transformable equations. Denote by A the 
decomposition. 

3. STATIONARY GROUPS 

Proposition 1. Let Ae A be a class of globally equivalent differential equations. 
The set of all global transformations, SB(A), between every pair of equations 
from A together with the composition rule form a Brandt groupoid. 

Proof. A Brandt groupoid is a category each element of which is invertible, and 
such that if a and y are its elements, there exists /? for which a/?y is defined, see [3], 
p. 81-83. 

Let <£, 0>, Si be equations from A and let I, J, K denote the corresponding intervals 
of definitions. Let JS? * a = 0>, &*$ = £, a e 93(_d), p e ®(A). Define a)3 6 33(d) 
by (& * a) * J? = JS? * (aj8). Evidently ae = <lx, idj>^ is the left unit and ea = 
= <lj, idj>^ is the right unit of a, where lj : /-> {l}eR, and the associativity 
holds. Further, if a = </, K)z and /? = (g, k}?, then a/? = <(/o fc) . g, h o k>^ 
which always defined provided ea = fie; o denotes the composition of functions. 
Evidently a"1 = <l/(/o ft"1), ft"1)*, where ft"1 is the inverse to ft. For ye 93(d) 
there always exists g e Cn(K9 R) and fc e C*(K, J) such that g . k'(t) * 0 on K, k(K) = 
= J, where ye = <lx, idx>j. Hence for j8 := (g, fe>^, a/fy is defined. • 

We always consider each 93(.d) with the structure of Brandt groupoid. 
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For each JSf 6 A define 2l(j?) as the set of all global transformations that trans­
form Se into itself, S&(se) := {a e 93(A); 2 e A and Se * a = SB\ Evidently 2l(jS?) 
is a group called the stationary group of Se. With respect to (l), a = </, fe>^ G 2l(j&?) 
if and only if 

(2) y(t) = A.f(t).y(h(t)), h(l) - / , 

for a suitable regular n by n matrix .A, where I is the interval of definition and y 
is a fundamental solution of Se. 

Proposition 2. 7/ J£? e A e A, J27 * a = 0\ a e 93(A), fhen 

(3) ffl(0») = a-19I(^f)a. 

In other words: Each two stationary groups of any pair oj globally transformable 
differential equations are conjugate. 

Proof. For j ! e S&(0>) we have Se * ajfoT1 = (0> * fi) * a"1 = & * a"1 = J&? or 
ajfoT1 G 2I(«£?), hence j? e a"1 9l(JSf) a. For j8 G a"1 <&(&) a we have ajSa"1 e SSL(se) 
or Se * ajSa"1 = JSP which gives (.£? * a) * p = if * a, or ^ * j? = &, hence j8 G 9l(^). 
See also [3], [14]. • 

An interesting rdle is played by sugroups *&G(Se) of 9I(--^), elements of which leave 
invariant a certain subspace of solutions of Se, G assigning the corresponding sub­
groups of matrices A occuring in (2). In particular, S8L{E}(Se), E being the unit matrix, 
is characterized by the fact that each solution of Se is transformed into itself, or 

(4) y(0=/(0-y(H0)> K - W -
Transformations a = </, h}# with increasing parametrizations h, h' > 0, are 

important for studying global properties of solutions (like periodicity, boundedness, 
asymptotic behavior, L2-solutions, and others, see [6], [8], [9], [10], [11]), sinfce 
they often enable us to describe the global behavior of solutions according to their 
local character and some information of discrete kind (e.g., conjugate points). Hence 
denote 93+(d) = {a = </, K><,e 93(d); h' > 0}, and for J£?GA also 9l+(J5?) = 
• 9I(J&?) n 93+(_4) and W^Se = WG(£e) n 93+(A). Evidently 93+(A) has the struc­
ture of Brandt groupoid, and 9l+(jSf), ^G(Se) are groups. 

4. NONTRIVIAL STATIONARY GROUPS %+(ST) AND ^E)(^) 

Functional equations (2) and (4) that correspond to 9I(.S?) and %{E)(Se) were 
studied in [12]. From the results obtained there we have 

Theorem 1. Let &eAe\, I being the interval of definition of Se. If 9t+(j?) 
is not trivial, i.e., a = </, ft>^ e 9l+(jSf), a # sa, then {tel; h(t) = t} has no 

352 



accumulation point in I. On each maximal subinterval (a, b) cz I where h(t) # t9 

the equation S£ restricted on (a, b) is globally equivalent to a differential equation 
with periodic coefficients on (—00, 00). 

Theorem 2. If S£ is globally equivalent to a differential equation with periodic 
coefficients on (—00, 00), then its stationary group 9l+(jS?) is not trivial. 

Theorem 3. Let S£ e A. %*E)(S£) is not trivial if and only if there exists an equa­
tion in A having only periodic solutions on (—00, 00) with the same period. 

5. PHASES AND AMPLITUDES 

Let a differential equation S(A) e A be assigned to each A e A (e.g., called ca­
nonical). For each S£ e A we have a e S(zj) such that S(A) * a = S£. The a = 
= <f. h>*(j) is called a shift of S£ with respect to i(A), its multiplier f is an amplitude 
and its parametrization, h, is a phase of S£ (with respect S(A)). The set of all shifts 
of all equations from A with respect to S(A) will be denoted as <5A. The stationary 
group %($(A)) of S(A) will be called the fundamental group and denoted by 3fj. 

Theorem 4, If S£ e A, then 

(5) 9I(j^) = a " 1 ^ a , 

where a is a shift of S£. 

Proof follows from Proposition 2. • 

Theorem 5. Let A e A, S£ e A, 0> e A, let a be a shift of S£ and P a shift of 0> 
(with respect to S(A)). Then a""1)? is a transformation ofS£ into 2P, i.e., S£ * (a""1^) = 
= @. All transformations of S£ into 0 form the set 

(6) a " 1 ^ = ^(Se) a"1]? = a"1/? %(&) . 

Proof. Since S(A) * a = S£ and S(A) * j? = ^ , we have ^f * (a-1/?) = ' 0 0 * J8 = 
= 9. Each y such that S£ * y = 0 satisfies JSf * yj?~Ja = JSf, hence yp~1<xe 2t(j?% 
or y e 91(J^) a""1^. Conversely, for each y e 9t(j&?) a""1]? we get JSf • y = ^ . Finally, 
using (3) or (5) we obtain (6): 

%S£) a"1)? = a - ^ a a " 1 ) ? = r ^ J = a""1)? %(0>) P~lp. • 

Theorem 6. For _d e A, {Sf^a; a e S^} is a decomposition of the set ®j of all 
shifts from A, called the right decomposition of <ZA with respect to the fundamental 
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group %A and denoted by © J / $ J . There exists a „natural" bijection between A 
and Sj/5^. 

Proof. T£e bijection can be constructed so that we assign each J? e A all shifts 
of S£ = S(A) * a, that is, according to Theorem 5, exactly 3f4a. • 

6. SECOND ORDER LINEAR DIFFERENTIAL EQUATIONS 

Let us apply the above considerations to the set A* formed by all both-side oscil­
latory equations of the form y" = q(t) y on (—00, 00), q e C°(R, R), see [1], [2], 
A* is a subclass of the class of globally transformable second order homogeneous 
differential equations both-side oscillatory on arbitrary open (bounded or unbounded) 
intervals. If S(A*) = y" = -y on ( -00 , 00), then <H(S(A*)) is the fundamental 
group C, the stationary group 2l(j£?) is the group of dispersions of the 1st kind of 
the equation & e A* that is conjugate to the fundamental group (£ (Theorem 4). 
21{E}(J£?) is the group of the central dispersions of the 1st kind of if, both 2l(J5?) and 
2l{£}(j&?) being nontrivial, since each solution of y" = — y is periodic on R, Theorems 
1,2, and 3. Each shift a e Sj* with respect to S(A*) corresponds to a phase / e 
e C3(R, R), f'(t) # 0 on R, in the sense of formula a = <l/V|/'|>/>> 1/V|/'| b e i n S 
the amplitude of a with the phase / . 

We may introduce a group theoretical structure into the set Sj* by the function 
composition rule for phases in distinction of the Brandt groupoid structure. 
This is the reason why we write a = <l /N / | / , | , /> without the index of a specified 
equation. Then ® J*/5J» = ®j*/G is the right decomposition of the group of phases 
with respect to the fundamental (sub)group ©, the elements of the decomposition 
being in 1-1 correspondence to the equations in A* (Theorem 6). Theorem 5 describes 
all global Kummer transformations of an equation (qx) e A* with a shift (phase) a 
into an equation (q2) e A* with a shift (phase) ft as elements of a""1©/?. 
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